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Control of magnetic response in curved stripes by tailoring the cross section
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Curved magnetic architectures are key enablers of prospective magnetic devices with respect to size, func-
tionality, and speed. By exploring geometry-governed magnetic interactions, curvilinear magnetism offers
a number of intriguing effects in curved magnetic wires and curved magnetic films. The applicability of
the current micromagnetic theory requires that the sample has a constant width and thickness, which does
not correspond in many cases to the specificity of experimental sample preparation. Here, we put forth a
self-consistent micromagnetic framework of the curvilinear magnetism of nanowires and narrow stripes with
a spatially inhomogeneous cross section. The influence of the varying cross section is exploited and illustrated
by an example of the simplest topological texture, which is a transversal head-to-head (tail-to-tail) domain wall.
The cross-section gradient becomes a source of domain wall pinning which competes with the curvature gradient.
Eigenfrequencies of the domain wall free oscillations at the pinning potential are determined by both curvature
and cross-section gradients. Prospects for curvilinear magnonics and spintronics are discussed.
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Introduction. The manipulation of the material response of
objects using its geometrical properties became an important
topic of contemporary physics. In the case of magnetism a mu-
tual interplay of magnetization texture (material properties),
curvature, and topology (geometrical properties) becomes a
playground for curvilinear magnetism [1]. This rapidly de-
veloping research area of modern magnetism is aimed to
explore geometry-induced effects in curved magnetic wires
and films. The active exploration of this new material class
shines a light on the fundamentals of the magnetism of
nano-objects with curved geometry and applications of three-
dimensional (3D)-shaped curved magnetic nanoarchitectures,
leading to remarkable developments in shapable magnetoelec-
tronics, magnetic sensorics, spintronics, 3D magnonics, and
microrobotics [2].

An existing micromagnetic framework of curvilinear mag-
netism requires that samples possess an inalterable cross
section with constant width and thickness [2–4]. In real
experiments the width and thickness of samples can vary
in a wide range. In particular, the thickness gradients of
2D film are often achieved using moving shutters [5], and
plasma-enhanced chemical vapor deposition methods [6]. In
nanosphere lithography there appears a thickness gradient
across the cap structure with the thickest film at the top of
the cap and the thinnest film close to the equator due to the
specificity of the sample preparation using magnetron sput-
tering [7,8]. The specially varying width of the planar stripes
in the form of notches and protrusions can pin or even boost
domain walls [9–12]; in asymmetric nanorings changes in the
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stripe width become the geometrical sources of domain wall
nucleation [13] and its automotion [14]. Highly spatially vary-
ing thickness gradients are achieved with 3D nanopatterning
using focused-electron-beam-induced deposition (FEBID). In
particular, namely the thickness gradient is expected to be a
dominant mechanism of experimentally observed domain wall
automotion in 3D interconnectors [15]. The space modulation
of the diameter in nanowires becomes the main source of the
domain wall pinning [16].

Here, we present a generalized micromagnetic framework
of curvilinear wires and stripes with varying cross section,
e.g., with thickness and (or) width gradients. This theory
allows us not only to predict the geometry-induced effects in
conventional materials, but also to explain recent experiments
[14,15,17] and propose applied routes to explore the utility
of 3D-shaped curved magnetic architectures for curvilinear
spintronics and curvilinear magnonics. We apply the theory
to predict the effects in the static and linear dynamics of
domain walls in curved stripes with varying cross section.
In particular, the domain wall can be pinned by local cross-
section deformation; the eigenfrequencies of the domain wall
free oscillations at the pinning potential are determined by
both curvature and cross-section gradients.

Results. We aim to construct a theory of thin curved fer-
romagnet wires and stripes with varying cross section. For
this purpose we represent a ferromagnet body as a space
domain r = γ + ζ1eN + ζ2eB. Here, γ = γ (s) described the
central curve with s being the arc length coordinate, ζ1 and
ζ2 parametrize the perpendicular cross section with varying
area S = S(s), and unit vectors eN and eB determine the normal
and binormal direction to the central curve, respectively. Let
us focus on a classical biaxial ferromagnet with the simplest
energy density, W = W X + W A. Here, W X = −Am · ∇2m is

2469-9950/2023/107(10)/L100415(7) L100415-1 ©2023 American Physical Society

https://orcid.org/0000-0003-2731-2808
https://orcid.org/0000-0001-7311-0639
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.L100415&domain=pdf&date_stamp=2023-03-24
https://doi.org/10.1103/PhysRevB.107.L100415


KOSTIANTYN V. YERSHOV AND DENIS D. SHEKA PHYSICAL REVIEW B 107, L100415 (2023)

the exchange energy density with A being the exchange
constant, m = M/Ms being the normalized magnetization,
and Ms being the saturation magnetization. The next term,
W A = −Keff

T (m · eT)2 + Keff
B (m · eB)2, describes the density of

biaxial anisotropy energy with Keff
T = KT + 4πM2

s kms
T and

Keff
B = KB + 4πM2

s kms
B being the anisotropy coefficients of

the tangential easy axis and binormal hard axis, respectively,
and KT > 0 and KB > 0 being magnetocrystalline anisotropy
constants. Terms kms

T and kms
B arise from the magnetostatic

contribution (see Supplemental Material Sec. SM-1 [18] for
details).

The energy of the curved magnet is well known [2] to be
restructured in the curvilinear reference frame, which follows
the sample geometry, providing the means to recover the
translation invariance of the effective anisotropy. The total en-
ergy, normalized by E0 = 4πM2

s �3, has the form E = E/E0 =∫
E (ξ )dξ with the energy density

E = E0 + EA︸︷︷︸
effective

anisotropy

+ ED︸︷︷︸
effective

DMI

. (1)

Here, an exchange length � = √
A/(4πM2

s ) determines a
length scale of the system. The applicability of the current
micromagnetic framework requires that anisotropy directions
do not vary along the cross section, i.e., eT = eT(s) and eB =
eB(s). This makes it possible to suppose that the magnetization
texture remains uniform along the direction normal to the
sample, which typically means that the sample thickness does
not exceed several times the characteristic magnetic length
scale �. One more restriction is that possible deformations
of the sample cross section are smooth enough [14,15,17].
These limitations specify the applicability of the theory to
the description of quasi-1D objects including curved wires,
stripes, and ribbons.

The first energy contribution in (1), the term E0 = Sm′
im

′
i,

is a “common,” regular isotropic part of the exchange in-
teraction with S = S(ξ )/�2 being a dimensionless cross
section and ξ = s/� being the dimensionless coordinate along
the central curve of the sample. The Einstein summation con-
vention is applied here and below, where the prime denotes
the derivative with respect to ξ , and indices i, j, k numer-
ate the curvilinear coordinates and curvilinear components
of magnetization. The second term, an effective anisotropy,
EA = Ki jmimj , comprises the intrinsic magnetocrystalline
anisotropy W A and extrinsic curvilinear geometry-governed
contributions. The effective anisotropy coefficients are Ki j =
S(�2δi j − �i� j − kTδ1iδ1 j + kBδ3iδ3 j ) with � = σeT + κeB

being the Darboux vector, determined by a reduced cur-
vature κ = κ� and reduced torsion σ = τ�, and δi j being
the Kronecker delta; the reduced anisotropy coefficients kT

and kB are determined in Sec. SM-1 [18]. An effective
geometry-governed Dzyaloshinskii-Moriya interaction (DMI)
ED = εi jkDim jm′

k is linear with respect to the curvature
and torsion with D = 2S� being the geometry-governed
exchange-driven Dzyaloshinskii vector.

Emergent geometry-induced magnetic field. Let us discuss
here the behavior of systems with a strong anisotropy. This
allows us to assume that the magnetic texture, modified by the
geometry, will not deviate significantly from the equilibrium
state given by the anisotropy. By introducing small devia-

FIG. 1. Emergent geometry-induced magnetic field: Schemat-
ics of emergent field F and equilibrium magnetization texture
m in a curved stripe r with spatially varying cross section. The
transparent magenta color corresponds to the stripe shape without
cross-section deformation. The green arrows and ribbon correspond
to the direction of the field F, blue arrows correspond to the equilib-
rium magnetization distribution, and the cyan line corresponds to the
central line γ of the stripe.

tions from a strictly tangential magnetization distribution, one
can obtain the energy density (1) in the following form (see
Sec. SM-2 [18] for details):

E ≈ ET − SF · m + S[kT(ϑ2 + ϕ2) + kBϑ
2],

F = 2C

(
κ

′ + κ

S′

S

)
eN + 2Cκσ eB. (2)

Here, the first term ET is the energy density of the strictly
tangential distribution, and the second term describes the in-
teraction with the emergent geometry-induced magnetic field
F (see Fig. 1). Parameter C = ±1 defines the direction of
magnetization along the stripe. This field causes the magne-
tization to tilt from the tangential distribution by the angles

ϑ ≈ − C

kT + kB

κσ, ϕ ≈ 1

kT

(
κ

′ + κ

S′

S

)
. (3)

One can see that the cross-section gradient S′ acts as a ge-
ometrical source of the ground state tilting in addition to
the curvature gradient [4,19,20]. While the strictly tangen-
tial magnetization distribution in curved wires/stripes with
a constant cross section can be realized only in straight or
flat arc-shaped wires with constant curvature, samples with
a varying cross section possess another criterion: A strictly
tangential distribution is possible when κ

′/κ = −S′/S and
σ = 0 only.

Domain wall in a planar curved stripe. We illustrate the
above theory by a flat narrow curved ferromagnetic stripe of a
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rectangular cross section. Using a curvilinear reference frame,
one can parametrize the magnetization as m = eT cos θ +
eN sin θ cos φ + eB sin θ sin φ. The spatial-temporal evolution
of magnetization follows the well-known Landau-Lifshitz-
Gilbert equations, and its curvilinear form is represented in
Sec. SM-3 [18].

We start with the static case, when the minimization of the
energy results in a planar texture within the stripe plane with
cos φ = C = ±1 and planar deviations from the tangential
direction described by θ (ξ ), which satisfies the driven dissi-
pative nonlinear pendulum equation

θ ′′ + S′

S
θ ′ − kT cos θ sin θ = f (ξ ), f (ξ ) = −C

(
κ

′+κ

S′

S

)
.

(4)

The spatially dependent external force f (ξ ) results in the ab-
sence of a strictly tangential magnetization pattern. This force
has two sources: gradient of the curvature and the gradient
of the cross section [cf. (3)]. In addition, variable thickness
causes an effective dissipative motion of the nonlinear pendu-
lum: the term with the first derivative θ ′. Note that one can
avoid the appearance of effective dissipation by reducing to
the parametric pendulum problem (for details, see Sec. SM-4
[18]).

Let us analyze how this force influences the nonlinear
magnetization texture, the domain wall. We apply a collective
variable approach based on the q-� model [21,22],

cos θDW = −p tanh

[
ξ − q(t )

�

]
, φDW = �(t ). (5)

When the force is absent, f (ξ ) = 0, this model provides an
exact solution of (4) for the straight stripe with constant cross
section; it describes head-to-head or tail-to-tail domain walls
with a domain wall width � = 1/

√
kT for p = 1 and p = −1,

respectively.
The domain wall motion can be realized under the influ-

ence of the force f (ξ ). This dynamics can be described using
collective variables {q,�}, which determine the domain wall
position and phase, respectively. The domain wall width � is
assumed to be a slaved variable [23], i.e., � = �[q(t ),�(t )].
Such an approach is valid, when the force f (ξ ) can be
considered as a small perturbation, which does not modify
significantly the domain wall profile, i.e., when the curvature
gradients and the cross-section gradients are weak on a scale
of domain wall width. In equilibrium a narrow domain wall
becomes pinned at the position q0 and its angle �0, which are
determined by

κ
′
0

κ0
+ S′

0

S0
=

√
kT,0

π |κ0|
(

k′
T,0

kT,0
+ 2

S′
0

S0

)
, (6a)

cos �0 = −p sgnκ0, �0 = 1/
√

kT,0, (6b)

where κ0 ≡ κ(q0), S0 ≡ S(q0), and kT,0 ≡ kT(q0) (see
Sec. SM-3 [18] for details). The geometry-governed effective
chiral DMI results in domain wall phase selectivity, which
is defined by the signs of the topological charge p and the
curvature κ. While the domain wall in the stripe with a
constant cross section is pinned at the curvature maxima, the

FIG. 2. Domain wall pinning: Equilibrium state of the transver-
sal domain wall in a parabola-shaped stripe with curvature at the
extremum κ0 = 0.2. The cross-section deformation is defined as
S/s0 = 1 − �/ cosh[(ξ − η)/λ] with � = 0.9, η = 7.5, and λ = 15.
The top inset corresponds to the magnetization distribution obtained
by means of NMAG micromagnetic simulations, while the bottom
inset corresponds to a comparison of simulations (symbols) and
analytical predictions (solid and dashed lines). The vertical magenta
dashed line is obtained with prediction (S15). Inset (a) shows the top
view of the stripe geometry where the gray color corresponds to the
stripe with a constant cross section.

pinning position in the general case is defined by a complex
combination (6a) (see Fig. 2). In the following, for the sake
of simplicity, we will consider stripes with a constant aspect
ratio, i.e., stripes with constant anisotropy coefficients.

A spatially varying curvature and cross section become
sources of the domain wall dynamics. Let us consider the
internal-to-system eigenmotion of the domain wall. By in-
troducing small harmonic decaying oscillations from the
equilibrium positions, we derive the domain wall eigenfre-
quency ω, normalized by ω0 = 4πγ0Ms as � = ω/ω0,

� ≈ √
�A�g, �g = �κ + �S + �κS,

�A = 2
(
kB − κ

2
0

) + π

�0
|κ0|, �κ = −π�0κ

′′
0 sgnκ0,

�S = 2
S′′

0

S0
, �κS = −π�0

sgnκ0

S0
(2κ

′
0S′

0 + κ0S′′
0 ), (7)
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FIG. 3. Domain wall eigenoscillations. Frequencies for different
geometries: (a) for rectilinear- (κ0 = 0) and circular-segment- (κ0 =
0.1) shaped stripes; (b) for parabola-shaped stripes with different cur-
vatures at the extremum. Dashed lines correspond to the predictions
(7) and solid lines correspond to prediction (S22). Symbols show
the results of micromagnetic simulations (for details, see Sec. SM-5
[18]).

where γ0 is the gyromagnetic ratio (see Sec. SM-3 [18] for
details). One can see that the expression for �A essentially
depends on anisotropy constants. The next terms, �κ , �S ,
and �κS , describe the influence of the curvature deformation,
cross-section deformation, and their coupling onto the eigen-
frequency, respectively.

In order to verify our analytical results we performed full-
scale micromagnetic simulations of magnetically soft stripes
within the NMAG code [24]. Permalloy is chosen as a material
with the following material parameters: exchange constant
A = 26 pJ/m, saturation magnetization Ms = 860 kA/m, and
damping coefficient α = 0.01. These parameters result in the
exchange length � ≈ 5.7 nm and ω0 ≈ 30.3 GHz. In simula-
tions the thermal effects and anisotropy are neglected. In all
simulations we considered stripes with total length L = 500
nm and cross section defined as S(ξ ) = s0{1 − �/ cosh[(ξ −
η)/λ]}. The parameter s0 = 75/�2 corresponds to the cross-
section area on the edges with dimensions 15 × 5 nm2. For
detailed information, see Sec. SM-5 [18]. The results of
micromagnetic simulations are in good agreement with ana-
lytical calculations (see Figs. 2 and 3).

Discussion. To study the function of varying cross sec-
tion we deliberately separated the effects of curvature and
torsion from those caused by the cross section. Another in-
structive approach is to reduce the problem of a curved magnet
with varying cross section to that of a curved stripe with
a fixed cross section, but with curvature, torsion, and local
anisotropy modified by the varying cross section (for details,
see Sec. SM-4 [18]). In this case the presented system can be
treated as a chiral biaxial ferromagnet.

The developed theory of curved wires and stripes allows
us to generalize existing theories [2,4] and to predict the
effects in the statics and dynamics of magnetization textures

depending on the deformation of the sample cross section. A
spatially varying sample cross section S = S(ξ ) becomes an
additional source of geometry-governed DMI and anisotropy
in curved wires and stripes. Even in the simplest cases
of rings (κ′ = 0, σ = 0) and helices (κ′ = 0, σ ′ = 0), the
spatial deformation of the cross section produces a coordinate-
dependent Dzyaloshinskii parameter (see Sec. SM-3 [18]),
which acts similar to the functionally graded DMI [25]. One
can expect similar consequences, in particular, the concept of
a domain wall diode [25].

The appearance of another geometrical source of DMI
has the potential to geometrically tailor the magnetochirality.
Curvilinear magnetism proposes the concept of a mesoscale
DMI, which unites an intrinsic DMI, determined by the ma-
terial parameters, and an extrinsic DMI, determined by the
local curvatures and torsion; both DMIs influence magnetic
textures acting at different length scales [26]. Here, we report
on another geometrical source of DMI, determined by the
varying cross section. The strength of this DMI contribution
can be changed by properly choosing the deformation of the
cross section. Such a method to control DMI can find different
applications, in particular, in artificial magnetoelectric mate-
rials [27].

Originating from the geometrical DMI, the varying cross
section of the sample shows itself in emergent geometry-
induced magnetic fields (2), and causes the tilting (3) of the
equilibrium texture proportional to the cross-section gradient.
Due to the chiral nature of DMI it can provide a chiral re-
sponse for an originally achiral system similar to the influence
of the gradient of the curvature [4].

In curvilinear magnonics, spin waves are known to be
bound by the curvature gradient [28] in curved wires. Simi-
larly, we expect the appearance of the effect of localization of
magnon modes by the gradient of the cross section.

In curvilinear spintronics, the motion of domain walls in a
curved waveguide is essentially affected by the sample curva-
ture and torsion. In particular, the curvature gradient becomes
the source of external force, which can pin the domain wall
at the curvature maxima, causing the domain wall automo-
tion, and essentially influencing domain wall mobility under
external driving (for reviews, see Refs. [2,4]). We expect a
series of similar effects caused by the gradient of the cross
section in 2D and 3D wires and stripes in different setups
[13,14,29,30], including domain wall oscillations pinned by
geometrical defects [31], current-induced spin-wave emit-
ters based on pinned domain walls [32], and the domain
wall automotion in curved stripes, recently observed in
Ref. [15].

We apply our theory to the problem of domain wall stat-
ics and dynamics. First, we show the effect of domain wall
pinning in a planar stripe and its eigenoscillations. One can
see in Fig. 2 the domain wall can be pinned in a geometri-
cally unexpected place, defined by the combination between
the curvature gradient and cross-section gradient [see (6)].
By applying a weak external field or spin current, one can
excite the oscillation of the domain wall near its equilibrium
position, which is described by Eq. (7). Now we illustrate
eigenoscillations of the domain wall by several examples. We
consider three different geometries with varying cross section:
rectilinear stripes, ring segments with constant curvature, and
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parabola geometry. In the case of the rectilinear stripe, the
general expression for eigenfrequency (7) is reduced to �r =
2
√

kBS′′
0 /S0 and is caused by the cross-section deformation

�S [see Fig. 3(a)]. In the limited case of a curved wire with
a constant and circular cross section, the well-known result
� = π

√−κ0κ
′′
0 is reproduced [33]. The coupling between

the curvature and the cross-section deformation, described by
�κS , stands out sharply for stripes with constant curvatures,
in particular, for segments of a circle, which results in � =√

�A(2 − π�0|κ0|)S′′
0 /S0 [see Fig. 3(b)]. In the case of small

curvatures it results in � ≈ �r[1 − (π/4)|κ0|�0(1 − kT/kB)].
One can see that the curvature decreases the frequency for
cases with kT < kB. The temporal evolution of such domain
wall oscillations in a curved wire with varying cross section is
presented in a video in the Supplemental Material [18]. Ex-
pression (7) for the frequency of free domain wall oscillations
within the pinning potential is valid for the range of param-
eters κ0 ∼ 10−2 and S′′(q0)/S(q0) < 10−2. For the case of
strong curvature (κ0 ∼ 10−1) and big cross-section deforma-
tions one should use the general result (S23) from Sec. SM-3
[18]. The good agreement between the analytical predictions
and results of full scale micromagnetic simulations for mag-
netically soft stripes (KT = 0 and KB = 0) demonstrates that
the approximation of the magnetostatic interaction by the
effective biaxial anisotropy for thin and narrow stripes with
a coordinate-dependent cross section is physically sound for a
domain wall dynamics.

By analyzing the properties of eigenfrequencies (7) we can
make some general remarks: (i) Easy-surface anisotropy kB

increases the eigenfrequency of the domain wall oscillations.
(ii) Localized cross-section deformation also increases the

eigenfrequency of the domain wall oscillations in the vicinity
of equilibrium. (iii) However, the coupling between curvature
and cross-section deformation decreases the eigenfrequen-
cies. The corresponding conclusions are well presented in
Fig. 3.

To conclude, we develop a micromagnetic framework of
curved wires and stripes with varying cross section. Using this
framework we proved the spatially varying cross section be-
comes another source of geometry-governed DMI on par with
local curvature and torsion. It allows us to describe the ef-
fects of domain wall pinning and eigenoscillation. We expect
that this theory will push different directions in curvilinear
magnonics and spintronics. Its generalization for the case of
curved films and shells would affect curvilinear skyrmionics
as well. The proposed model can be extended for different
ordered media, including curvilinear antiferromagnets [3,34–
36]. The impact of such an approach goes well beyond the
magnetism community. The proposed description of the vec-
tor field behavior can be applied to different emergent fields
of studies of curvature effects. The prospective applications
include the manipulation of molecule alignment in liquid
crystals [37,38], topological textures in flexible ferroelectrics
[39,40], and curved superconductors [3,41].
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