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Recent investigations have observed superdiffusion in integrable classical and quantum spin chains. An
intriguing connection between these spin chains and the Kardar-Parisi-Zhang (KPZ) universality class has
emerged. Theoretical developments (e.g., generalized hydrodynamics) have highlighted the role of integrability
as well as spin symmetry in KPZ behavior. However, understanding their precise role on superdiffusive transport
still remains a challenging task. The widely used quantum spin chain platform comes with severe numerical
limitations. To circumvent this barrier, we focus on a classical integrable spin chain which was shown to have
a deep analogy with the quantum spin- 1

2 Heisenberg chain. Remarkably, we find that KPZ behavior prevails
even when one considers integrability-breaking but spin-symmetry preserving terms, strongly indicating that
spin symmetry plays a central role even in the nonperturbative regime. On the other hand, in the nonperturbative
regime, we find that energy correlations exhibit clear diffusive behavior. We also study the classical analog
of the out-of-time-ordered correlator and Lyapunov exponents. We find a significant presence of chaos for
the integrability-broken cases even though KPZ behavior remains robust. The robustness of KPZ behavior is
demonstrated for a wide class of spin-symmetry preserving integrability-breaking terms.
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Superdiffusive spin dynamics in one-dimensional (1D)
spin chains has garnered a lot of attention recently. In par-
ticular, anomalous spin transport has been observed in an
integrable model, namely the quantum Heisenberg spin- 1

2
chain with isotropic interactions at infinite temperature [1,2].
Subsequent numerical computations [3] have shown that the
spin correlation agrees with the exact correlation function
[4] known in the context of the 1D Kardar-Parisi-Zhang
(KPZ) universality class [5,6]. Similar properties have been
unearthed in an integrable quantum spin chain with a larger
symmetry group [7]. This connection between integrability
and KPZ superdiffusion has also been a topic of recent analyt-
ical and numerical studies in the context of quantum models
[8–14]. Interestingly, recent experimental results have pro-
vided evidence of 1D KPZ physics in quantum spin chains as
well [15,16]. Moreover, numerical studies have also revealed
similar characteristics for the spin transport and correlations
in integrable and isotropic classical models [17–20]. These
developments in 1D quantum and classical spin chains suggest
that both spin symmetry and integrability have pivotal impli-
cations on the existence and nature of superdiffusion. It has
been argued [11] that the quantum-classical correspondence
is related to the dominant role of solitons (analogous to string
excitations in the quantum case) in causing superdiffusive
behavior.
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Naturally allied to the integrability property in the 1D
spin chains is the following question: What happens to the
KPZ superdiffusion when integrability is broken? Perturba-
tion theory has been applied for understanding the fate of
superdiffusion in the quantum Heisenberg spin- 1

2 chain under
the effect of weak integrability-breaking perturbations [21].
On the other hand, in the strongly chaotic regime, regular
diffusion has been observed for spin transport at an infinite
temperature by using conventional perturbative methods [22]
where the integrable term was treated as perturbation. An
extensive study of this problem is, nevertheless, still lacking in
the literature. In particular, only perturbative regimes (where
the weak parameter is either the integrability-breaking term
or the integrable term itself) have been investigated and non-
perturbative regimes are far from being understood. Needless
to mention, quantum models are plagued by severe numerical
limitations for such studies, thereby motivating the use of clas-
sical integrable systems (which share properties analogous
to quantum chains) as one of the most promising alternative
platforms.

In this Letter, we report that the KPZ superdiffusion
is robust when a symmetry preserving interaction breaks
integrability. This holds true even when integrability is bro-
ken strongly (nonperturbative). Our assertion is based on
an extensive numerical study for a 1D classical spin chain
which involves the Hamiltonian of the integrable lattice
Landau-Lifshitz (ILLL) model [23–25] at the isotropic point
and a spin-symmetry preserving, but integrability-breaking
interaction (described in detail later). When the integrability-
breaking term does not respect spin symmetry, we find
significant deviations from KPZ behavior [26]. We consider
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both perturbative and nonperturbative regimes. Since there
exists strong evidence of a quantum-classical correspondence
[11,18,27,28], we expect similar behavior in the quantum
case. Our numerical simulations in the classical case allow
us to probe transport and correlations for spin and energy
for perturbations of different magnitudes and different kinds
of interactions. We find that the energy correlations exhibit
ballistic or diffusive behavior depending on the strength of the
perturbation.

We consider a one-dimensional periodic chain of three-
component classical spins �S of unit length. The Hamiltonian
is given by

H = −
N∑

n=1

[J ln(1 + �Sn · �Sn+1) + λ�Sn · �Sn+1], (1)

where N is the length of the spin chain, J is the strength of
the integrable part, and λ is the strength of the integrability-
breaking perturbation. We set N = 2048 and J = 1 in our
computations unless otherwise mentioned. The ILLL spin
chain at the isotropic point, where the KPZ phenomenology
has been observed recently [18], is recovered for λ = 0. Thus
we refer to our model described by the Hamiltonian in Eq. (1)
as the isotropic perturbed ILLL (ipILLL) model. Notice that
the Hamiltonian in Eq. (1) remains invariant under a global ro-
tation of spin vectors, thereby obeying spin rotation symmetry.
The spin dynamics in this system is determined by Hamilton’s
equations of motion

d �Sn

dt
= {�Sn, H} = �Sn × �Bn, �Bn = −�∇�Sn

H. (2)

In order to understand transport properties for a conserved
quantity q = ∑N

n=1 qn, we compute Cq(x, t ), the connected
correlator for q, defined as

Cq(x, t ) = 〈[qx(t ) − 〈q0(0)〉eq][q0(0) − 〈q0(0)〉eq]〉eq. (3)

Here, 〈·〉eq denotes average with respect to the equilibrium
distribution e−βH/Z , where Z is the partition function at
temperature T and β = 1/T is the inverse temperature. We
are interested in the spin correlation Cs(x, t ) for Sz, the z
component of the spin �S, and the energy correlation Ce(x, t )
associated with the local energy defined as

en = −J ln(1 + �Sn · �Sn+1) − λ�Sn · �Sn+1. (4)

We expect that the correlation Cq(x, t ) satisfies

Cq(x, t ) = 1

tα
f q

(
x − ct

tα

)
, (5)

where f q(·) is a scaling function and α > 0 the scaling expo-
nent. It is worth noting that unlike in a nonlinear fluctuating
hydrodynamics description for generic nonintegrable models,
where KPZ behavior is associated with sound modes [29],
here we have c = 0. The exponent α can be directly extracted
from the mean squared deviation (MSD) for q,

〈�x2〉q :=
N∑

x=1

x2Cq(x, t ) ∝ t2α. (6)

To evaluate numerically these quantities (energy and spin cor-
relations as well as corresponding MSDs) for the ipILLL spin

FIG. 1. Plots of the spin correlations for different values of λ.
We plot Cs(x, t ) vs x in (a), (c), and (e) and t2/3Cs(x, t ) vs x/t2/3 in
(b), (d), and (f). We also plot the exact KPZ correlation function [4]
as well as a Gaussian function in (b), (d), and (f) for a comparison.
Insets in (a), (c), and (e), show the collapse using the KPZ exponent
on a normal scale. The total number of independent realizations is
2 × 105 and N = 2048.

chain, we perform numerical simulations that evolve the spin
chain starting from equilibrium initial conditions at the chosen
temperature. We then average over these equilibrium initial
conditions to obtain our results. See Supplemental Material
[26] (see also Refs. [30–32]) for more details regarding the
simulation methods.

We consider three cases for the ipILLL model, λ =
0.1, 0.5, 1.5, which approximately fall under perturbative, in-
termediate, and highly nonperturbative parameter regimes,
respectively. Below, we summarize our results.

Weakly perturbative regime. When λ = 0.1 the strength of
the integrability-breaking term is relatively weak. Nonethe-
less, we find that although the system is still chaotic, even
at significantly long times, the integrable part dominates over
the perturbation and the KPZ superdiffusion observed in the
integrable case (λ = 0) [18] survives in this case as well. This
is a surprising result in itself and is consistent with similar
predictions in the analogous quantum case [21]. We observe
KPZ superdiffusion for spin transport and ballistic transport
for energy up to time t = 640. We show the correlation for
spin in Fig. 1(a) and its remarkable collapse when scaled
with the KPZ exponent α = 2/3 (inset). In Fig. 1(b), we plot
the scaled function on a logarithmic scale to show that we
see agreement with not only the KPZ exponent but also with
the Prähofer-Spohn KPZ scaling function [4]. The correlation
for energy has a scaling exponent α ≈ 0.9 and exhibits two
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FIG. 2. Plots of the energy correlations for different values of λ.
We plot Ce(x, t ) vs x in (a), (c), and (e). In (b), we plot t0.9Ce(x, t )
vs x/t0.9, in (d), we plot t0.52Ce(x, t ) vs x/t0.52, and in (f), we plot
t0.53Ce(x, t ) vs x/t0.53. We consider 2 × 105 independent realizations
for averaging and N = 2048. This figure demonstrates the unusual
scenario where energy correlations can be diffusive (λ = 0.5 and λ =
1.5) although the corresponding spin correlations have KPZ behavior
(Fig. 1).

ballistically moving peaks [see Figs. 2(a) and 2(b)]. We plot
the MSDs for spin and energy correlation in Figs. 3(a) and
3(b), respectively. Using a linear fit, we obtain α ≈ 0.67 for
spin consistent with the scaling in Fig. 1(b). Similarly, we find
α ≈ 0.88 for energy correlation using a linear fit in Fig. 3(b)
which is close to the scaling in Fig. 2(b).

Intermediate regime. When λ = 0.5, the system is in
the intermediate-coupling regime (nonpertubative) where one
would expect a significant impact of integrability-breaking
terms. However, remarkably in this case too, we observe that
KPZ superdiffusion prevails for the spin transport. We plot
the spin correlation in Figs. 1(c) and 1(d). The corresponding
MSD [Fig. 3(a)] gives the exponent α ≈ 0.66 which confirms
the scaling in Fig. 1(d). The energy correlation exhibits dif-
fusive behavior for long times in this case [see Figs. 2(c) and
2(d)]. This is supported by the computation of the MSD for
energy [see Fig. 3(d)] where we obtain α ≈ 0.52 for t > 80.
It is worth noting that this is a very unusual scenario in
which a model exhibits diffusive behavior in energy but KPZ
superdiffusion in spin correlations.

Highly nonperturbative regime. To investigate the robust-
ness of the KPZ behavior, we further ramp up the contribution
of the integrability-breaking term. We consider λ = 1.5,
where the energy contribution of the integrability-breaking
term is even greater than twice that of the integrable term. To

FIG. 3. Plots of the MSDs for (a) spin and (b) energy for λ =
0.1, 0.5, 1.5. We see a remarkable robustness of KPZ behavior in
spin correlations even when integrability breaking is significant.
The last data points are omitted during the fitting process to avoid
potential boundary effects.

our surprise, we observe KPZ superdiffusion for spin trans-
port in this case too. We show the KPZ scaling of the spin
correlation in Fig. 1(f). As in the other cases, we also compare
with the exact KPZ scaling function and find good agreement.
The energy transport is diffusive in this case as well [see
Figs. 2(e) and 2(f)]. The MSDs (see Fig. 3) for the spin and
energy correlation give the values α ≈ 0.67 and α ≈ 0.53,
respectively, consistent with the scalings, in Figs. 1(f) and
2(f).

Thus, our results show that as long as the integrability-
breaking term in the Hamiltonian is isotropic, the spin
transport shows KPZ scaling. Although our results corre-
spond to β = 1, our observation should hold true at any
temperature. In addition to these results, we study a case
with λ = 1 and J = 0.2 such that the integrable term plays
the role of perturbation. The fact that it is perturbative is
established by (i) an almost unchanged Lyapunov exponent,
(ii) low value of the energy of the integrable part, and (iii)
almost unchanged spin alignment. Even in this case, we ob-
serve near-KPZ behavior with exponent α ≈ 2/3 [26], in stark
contrast to the exponent (≈0.54) in the J = 0 case [33].
When we consider integrability-breaking terms that do not
respect spin symmetry, then we immediately find deviations
from KPZ behavior [26]. We also consider different types
of integrability-breaking but spin-symmetry preserving terms
and our computations indicate that the robustness of KPZ
behavior holds at least for a wide family of models [26].

One might wonder if the robustness in KPZ behavior even
when integrability is broken (λ �= 0) is rooted in the fact
that the final system is still close to integrable (nonchaotic).
To rule out this possibility, we demonstrate that the system
is chaotic as soon as λ coupling is turned on. To do so,
we compute the out-of-time-ordered correlator (OTOC) in
the ipILLL model. The OTOC has recently been studied in
several classical models as a diagnostic tool to probe how
initially localized perturbations spread spatially and grow (or
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FIG. 4. Heat maps of the OTOC for different values of λ with
ε = 10−6. We plot D(x, t ) for λ = 0 in (a), λ = 0.1 in (b), λ = 0.5
in (c), and λ = 1.5 in (d). In (e), we show the time variation of the
Lyapunov exponent �D(t ) and �L (t ) (solid lines). We averaged over
1000 independent realizations to compute D(x, t ) with N = 2048
and �(t ) with N = 512.

decay) temporally [34–43]. In order to compute the OTOC for
the spin chains, we consider the following scheme. From an
equilibrium initial configuration, which we denote by A, we
generate a perturbed copy B by replacing the N/2-th spin with
�S′

N/2 = (�SN/2 + �pε )/|�SN/2 + �pε |, where �pε = (0, 0, ε), ε > 0.
We evolve the two copies A and B and compute the OTOC
defined as [34]

D(x, t ) = 2
[
1 − 〈�S A

N/2+x(t ) · �S B
N/2+x(t )

〉]
, (7)

where �S A
n (t ) [�S B

n (t )] is the spin at site n in the copy A (copy B)
of the spin chain. In connection with the OTOC we define the
finite-time Lyapunov exponent as �D(t ) = ln |D(0, t )/ε2|/2t .
We also find a linearized equation for δ�Sn = �S B

n (t ) − �S A
n (t )

with ε → 0 [26]. In terms of δ �Sn, the Lyapunov exponent
is �L(t ) = ln |〈δ �S2

N/2〉/ε2|/2t . We show the OTOC for the
integrable case (λ = 0) as well as the three cases mentioned
above in Figs. 4(a)–4(d) in the form of heat maps. These
heat maps show nontrivial behavior as soon as λ is turned
on. The OTOC in Figs. 4(b)–4(d) indicate the presence of
chaotic behavior, as expected when integrability is broken.
The behavior of the OTOC in the ipILLL model resembles
that for the classical Heisenberg model [34]. Even for small
λ, the system becomes significantly chaotic. We note that the
butterfly velocity (slope of the cone) increases as we increase
the strength of the integrability-breaking term. In Fig. 4(e) we
show the finite-time Lyapunov exponent �(t ) [both �D(t ) and

�L(t )] as a function of time. It is clear that �(t → ∞) ≈ 0
when λ = 0. As soon as we turn on the integrability-breaking
term (λ �= 0), we see that �(t → ∞) is positive and increases
with λ, thereby indicating chaos. Note that �D(t ) and �L(t )
agree at early times, while at late times �D(t ) shows a decay
(∼1/t), as expected for any finite ε.

In conclusion, we have studied transport properties in
the presence of integrability-breaking perturbation in a clas-
sical spin chain, namely the ipLLL model. Our numerical
investigation establishes the robustness of the KPZ physics
for spin correlations under spin-symmetry preserving but
integrability-breaking perturbations of the integrable Hamil-
tonian. The robustness of KPZ behavior remains even in
the highly nonperturbative regime. In the limit λ/J  1,
however, we expect that the features of the classical Heisen-
berg spin chain will take over for the spin transport at long
times, destroying the KPZ superdiffusion. In this limit we
expect diffusive behavior with possible logarithmic correc-
tions [34,44–54]. However, surprisingly, we do not observe
such a crossover in time from the KPZ superdiffusion to
diffusion even in the limit of large λ/J , thereby not rul-
ing out the possibility of a different scenario. Moreover,
surprising KPZ behavior has recently been reported at low
temperatures for the classical Heisenberg spin chain [33].
This temperature is well below the one considered here. For
integrability-breaking perturbations which do not respect spin
symmetry, the KPZ superdiffusion is immediately lost [26].
Our findings on classical spin chains strongly support the cor-
responding results for quantum systems [21] and predict the
possible robustness of KPZ physics in quantum models even
deep in the nonperturbative regime. Despite this robustness to
integrability-breaking terms, one cannot rule out the crossover
to features finally dominated by nonintegrable terms (such
as conventional diffusion [7,22,54]) at extremely long times
and large system sizes inaccessible in present state-of-the-art
computations.

The KPZ scaling in nonintegrable but spin-symmetry pre-
serving systems could be rooted in a possible robustness of
solitons of the ILLL in the presence of integrability-breaking
but spin-symmetry preserving terms and this will be explored
in the future. The anisotropic but integrable generalization
of ILLL and the effect of breaking its integrability is an
interesting question that is expected to yield a plethora of
possibilities.
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