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Nonlinear spectroscopy of bound states in perturbed Ising spin chains
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We study the nonlinear response of nonintegrable one-dimensional (1D) spin models using infinite
matrix-product state techniques. As a benchmark and demonstration of the method, we first calculate the
two-dimensional (2D) coherent spectroscopy for the exactly soluble ferromagnetic transverse field Ising model
where excitations are freely moving domain walls. We then investigate the distinct signatures of confined bound
states by introducing a longitudinal field and observe the emergence of strong nonrephasinglike signals. To
interpret the observed phenomena, we use a two-kink approximation to perturbatively compute the 2D spectra.
We find good agreement in comparison with the exact results of the infinite matrix-product state method in the
strongly confined regime. We discuss the relevance of our results for quasi-1D Ising spin chain materials, such
as CoNb2O6.
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Introduction. Spectroscopic tools have played a crucial
role in our understanding of complex quantum systems [1].
However, we can only partially measure their correlations
with existing tools. One promising direction is to detect the
nonlinear response of the target systems which has been
utilized to identify the ground-state symmetry of magnetic
[2] and superconducting [3,4] materials, geometric phase in
topological materials [5–7], novel ground states in correlated
systems [8,9], and quasiparticle decay processes in disordered
systems [10]. Along this line, two-dimensional (2D) coher-
ent spectroscopy, one of the developing spectroscopic tools
[11–13], stands out as a technique for a deeper understand-
ing of strongly correlated condensed-matter systems. Besides,
recent experimental advances with terahertz sources put the
technique in a proper energy range to study rotational dy-
namics in molecules [14], spin waves in conventional magnets
[15], and exotic excitations in quantum magnets [16–20].

In contrast to more common one-dimensional (1D) spec-
troscopy, the 2D extension unravels not only the optical
excitations, but also their interplay [12,13]. The advantage
of this experimental technique has been widely adopted by
chemists to reveal the structure of complex molecules with
great success. However, such achievements rely on pow-
erful numerical methods that help to interpret complicated
experimental data starting from concrete microscopic mod-
els [21–23]. In this regard, it is desirable to develop an
efficient numerical platform for future 2D spectroscopy ex-
periments on quantum magnets similar to the successful use
of matrix product state (MPS) techniques for conventional 1D
spectroscopy [24–30]. However, the calculation of nonlinear
response is less explored and the need for multiple time evo-
lutions makes it much more challenging.

In this Letter, we propose an efficient numerical tool using
infinite MPS (iMPS) and study the nonlinear response of the

1D spin model. To benchmark the method, we first focus on
the 1D transverse field Ising model (TFIM) whose nonlinear
response can be analytically calculated using Jordan-Wigner
(JW) transformations [16]. Motivated by the quasi-1D struc-
ture of CoNb2O6—ne of the best material example of an
Ising chain magnet—(albeit with more complicated magnetic
interactions [29,30]) we then include longitudinal field terms
which capture the effects of interchain interactions and lead
to the emergence of confined bound-state excitations [31–33].
As a consequence, new signals appear in 2D spectroscopy
which include strong nonrephasing and rephasinglike peaks.
Our results from the iMPS method are, furthermore, corrobo-
rated by perturbative calculations starting from the projected
two-kink (TK) low-energy subspace. We find quantitative
agreement in the strongly confined regime, which allows us
to understand the origin of sharp peaks in the 2D spectrum as
transitions between bound states.

Model. We first introduce the 1D TFIM,

H0 = −J
∑

n

σ z
nσ z

n+1 − hx
∑

n

σ x
n , (1)

with J, hx > 0. For hx < hc
x = J , it stabilizes a doubly de-

generate ferromagnetic ground state polarized along the easy
axis ẑ. When hx > hc

x, the system has a unique paramagnetic
ground state. In the ferromagnetic regime, the experimental
excitation, i.e., a local spin flip, splits into two freely moving
kinks (domain walls) between two degenerate states. In the
context of nonlinear spectroscopy these fractionalized excita-
tions have been shown to be manifest as sharp signatures in
the third-order magnetic susceptibilities [16].

We now include a longitudinal field and focus on the
Hamiltonian given by H = H0 − hz

∑
n σ z

n with J, hx, hz > 0.
In the ferromagnetic regime, the longitudinal field lifts the
degeneracy and selects one of the polarized ground states.

2469-9950/2023/107(10)/L100404(7) L100404-1 ©2023 American Physical Society

https://orcid.org/0000-0002-0956-2419
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.L100404&domain=pdf&date_stamp=2023-03-07
https://doi.org/10.1103/PhysRevB.107.L100404


SIM, KNOLLE, AND POLLMANN PHYSICAL REVIEW B 107, L100404 (2023)

Besides, it induces a linear confining potential between the
kinks leading to bound states. As a result, the broad continuum
of free kink excitations as probed in linear-response fragments
into sharp peaks [34]. At a low transverse field, the splitting
can be understood via a Schrödinger equation for the relative
kink separation with a linear potential [35] which can also
be generalized to include lattice effects [36–42]. The main
questions of our Letter are as follows: How to efficiently sim-
ulate the nonlinear response of the TFIM with a longitudinal
field using MPS methods? What are the robust signatures of
confined bound states in nonlinear 2D spectroscopy?

Two-dimensional spectroscopy. Here, we introduce a two-
pulse protocol following previous work Ref. [16]. In this
setup, two time-domain Dirac-δ pulses B0 and Bτ which are
polarized along α̂ and β̂ directions, respectively, reach the
sample at time T = 0 and T = τ > 0 successively. These
magnetic pulses couple to the local moments of the sample
and the induced magnetization along γ̂ direction is recorded
as Mγ

0τ (T ) at time T = τ + t where t > 0 is the time inter-
val between the second pulse Bτ and the measurement. To
subtract the signal from the linear response, two different
experiments are repeated but with pulse B0 or Bτ alone to mea-
sure Mγ

0 (T ) and Mγ
τ (T ). The nonlinear signal field emerging

from the sample at T = τ + t in the γ̂ direction is defined as

Mγ

NL(T ) ≡ Mγ

0τ (T ) − Mγ

0 (T ) − Mγ
τ (T ). (2)

The nonlinear signal depends only on the nonlinear responses
and directly measures the second- and higher-order magnetic
susceptibilities [19],

Mγ

NL(t, τ ) = B0Bτ χ
(2)
γ βα (t, τ + t )

+(B0)2Bτ χ
(3)
γ βαα (t, τ + t, τ + t )

+B0(Bτ )2χ
(3)
γ ββα (t, t, τ + t ) + O(B4), (3)

where B0,τ are the spatial areas of the pulse B0,τ .
The 2D spectrum is the Fourier transform of Mγ

NL(t, τ )
over both time domains t and τ . In Eq. (3), the leading
contribution to the nonlinear response in the two-pulse setup,
i.e., the second-order nonlinear susceptibility χ

(2)
γ βα (t, τ + t ) is

given as

χ
(2)
γ βα (t, τ + t ) = −θ (t )θ (τ )

4L
Re

∑
j,l,m

[
Sγ βα

j,l,m(τ + t, τ, 0)

−Sβγα

j,l,m(τ, τ + t, 0)
]
, (4)

with the three-point spin-correlation function in the ground-
state |ψ〉,

Sγ βα

j,l,m(T1, T2, 0) = 〈ψ |σγ
j (T1)σβ

l (T2)σα
m (0)|ψ〉, (5)

where σ
γ
j (T ) ≡ eiHT σ

γ
j e−iHT . When the Hamiltonian and |ψ〉

preserve the lattice translation symmetry, the site index m in
Eqs. (4) and (5) can be fixed, e.g. as c ≡ L/2 the central site of
the system, which we use in the following. Then, χ

(2)
γ βα (t, τ +

t ) is obtained by evaluating:

−θ (t )θ (τ )

4
Re

∑
j,l

[
Sγ βα

j,l,c (τ + t, τ, 0) − Sβγα

j,l,c (τ, τ + t, 0)
]
.

(6)

FIG. 1. Exploiting infinite boundary conditions for translation-
invariant systems, two real-time evolution runs are sufficient to
evaluate

∑
j,l Sγβα

j,l,c (τ + t, τ, 0). (a) iMPS representation of a state
eiHtσ γ

c |ψ〉 with L sites in the unit cell. (b) Transfer matrix of two
distinct iMPS “bra” and “ket” which represent eiHtσ

γ

c+2|ψ〉 and
σ

β

c−2e−iHτ σ α
c |ψ〉 respectively. The color gradient illustrates the light

cone spreading of correlations following a local quench.

Method. A promising tool for calculating Sγ βα

j,l,c (τ + t, τ, 0)
in Eq. (6) for a whole range of site indices j and l is to
use the iMPS method. We only need to perform two dif-
ferent real-time evolution runs to calculate

∑
j,l Sγ βα

j,l,c (τ +
t, τ, 0)=∑

j,l eiE (τ+t )〈ψ |σγ
j e−iHtσ

β

l e−iHτ σ α
c |ψ〉 where E is

the ground-state energy. In addition, finite-size effects are
avoided. Such effect originates from the bouncing of corre-
lations following a local quench at site j = 1 or L, boundary
sites of the system. Below, we explain a procedure to obtain
〈ψ |σγ

j e−iHtσ
β

l e−iHτ σ α
c |ψ〉 [see Appendix A for Sβγα

j,l,c (τ, τ +
t, 0)].

(1) Find a ground state and perform a time evolution
following a local quench, σ

γ
c or σα

c , using the infinite-time
evolving block decimation (iTEBD) method [43–45] to ob-
tain an iMPS for eiHtσ

γ
c |ψ〉, which is shown in Fig. 1(a), or

e−iHτ σ α
c |ψ〉.

(2) Shift every B tensor of an iMPS, which represents
eiHtσ

γ
c |ψ〉, (c − j) sites to the right within a window of size

L to obtain a new iMPS bra associated with eiHtσ
γ

j |ψ〉.
(3) Apply a local operator σ

β

l to an iMPS associated
with e−iHτ σ α

c |ψ〉 and get a new iMPS ke which represents
σ

β

l e−iHτ σ α
c |ψ〉.

(4) Evaluate an overlap of two iMPS bra and ket within
the window by calculating the dominant left and right eigen-
vectors of the corresponding transfer matrix, which is shown
in Fig. 1(b), and obtain 〈ψ |σγ

j e−iHtσ
β

l e−iHτ σ α
c |ψ〉 [34].
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FIG. 2. Second-order susceptibility in the ferromagnetic phase of
the TFIM with hx/J = 0.2. (a) χ (2)

xxx (t, τ + t ) from iMPS method with
a window of size L = 80. The data are rescaled such that the maximal
absolute value is 1. (b) χ (2)

xxx (t, τ + t ) at Jt = 15 from iMPS method
and JW formalism. For the latter case, we set a size of the system L =
80 with PBC. (c) Real part of Fourier-transformed χ (2)

xxx (t, τ + t ). The
inset: TK excitation continua of the TFIM.

Before investigating the 2D spectrum of the nonintegrable
TFIM with the longitudinal field, we first focus on the free
TFIM and compare the result of χ (2)

xxx(t, τ + t ) using two
different schemes, i.e., the numerical iMPS method and ana-
lytic calculations via the JW transformation with the periodic
boundary condition (PBC). Here and below, we set hx/J =
0.2 and all iMPS simulations are performed with a spatial
window of size L = 80 sites and over the time-range Jt, Jτ =
30. Within such temporal range, the light cone spreading of
correlations, which follows a local quench at the center of a
spatial window, does not reach the boundary of the window.
In Fig. 2(a), we plot the result of χ (2)

xxx(t, τ + t ) from the iMPS
method. In order to check the errors of our method, we tracked
the truncation error, the truncated weight of many-body wave
function at each time step in iTEBD, which quantifies an
upper limit for the truncation effect on local observables
(� 10−8 for every result given in our Letter). Besides, we also
followed the dependence of χ (2)

xxx(t, τ + t ) on the time-step δt
and the bond dimension χ , fixing to δt = 0.03/J and χmax =
30. In Fig. 2(b), we compare χ (2)

xxx(t, τ + t ) at Jt = 15 from the
iMPS method with the one from the JW formalism which con-
firms exact agreement. In Fig. 2(c), we plot Re χ (2)

xxx(ωt , ωτ ),
the real part of the Fourier-transformed χ (2)

xxx(t, τ + t ). It con-
tains a sharp vertical line of intensity centered at ωt = 0.
Regarding ωt and ωτ as the detecting and pumping frequen-
cies, the response is known as a rectification signal.1 It also

1The term rectification signal is used to denote signals which oscil-
late in time as e−iEτ for some E ’s [15,16].

FIG. 3. The 2D spectra χ (2)
xxx (ωt , ωτ ) of TFIM with the longitu-

dinal field for hx/J = 0.2 and hz/J = 0.03. For the spectra, the first
and fourth quadrants are only shown. The other half are obtained
by complex conjugation. (a) Result of the iMPS method. (b) Result
of perturbative calculation within the projected TK subspace. The
inset: The dispersion relation En(p) in momentum space of the seven
lowest bands of TK bound states in the weakly confined regime.
En(p) is given in Eq. (13).

contains a diffusive, weak nonrephasing signal2 in the first
frequency quadrant, mirroring the energy range of the free TK
continuum, which is shown in the inset of Fig. 2(c) [16].

Results. Next, we focus on the 2D spectrum of the 1D
TFIM with the longitudinal field using the iMPS method.
Figure 3(a) shows the Re χ (2)

xxx(ωt , ωτ ), which is calculated in
weakly confined regime with hz/J = 0.03 (see Appendix B
for the Im χ (2)

xxx(ωt , ωτ ), which is related to the Re χ (2)
xxx(ωt , ωτ )

by the dispersion relation [46–48]). This value is similar to
the one used in Ref. [36] to describe CoNb2O6. New spec-
troscopic signals are encoded in χ (2)

xxx(ωt , ωτ ) in the presence
of a longitudinal field. First, it contains a dominant non-
rephasing signal which appears as diagonal peaks in the first
quadrant. At the same time, a weakly diffusive terahertz rec-
tification signal is also detected as a streak along the ωτ axis.
In Fig. 4(a), we plot Re χ (2)

xxx(ωt , ωτ ) in a strongly confined
regime with hz/J = 0.4. Unlike the previous regime, it con-
tains a nonrephasing, such as the signal which appears as
strong cross (off-diagonal) peaks in the first quadrant. Be-
sides, a subdominant rephasing like signal appears as cross
peaks in the fourth quadrant.

Few-kink effective description and interpretation. To in-
terpret the 2D spectra, we use a projected TK model and
can study the excitations of Eq. (1) perturbatively [38,41].
The idea is to project the full Hilbert space down to
the Hilbert space of TK states where regions of opposite

2The term rephasing (nonrephasing) signal is commonly used in
nonlinear optics to denote signals which oscillate in time as e−iE (t−τ )

(e−iE (t+τ )) [12,13].
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FIG. 4. The 2D spectra χ (2)
xxx (ωt , ωτ ) of TFIM with the longitudi-

nal field for hx/J = 0.2 and hz/J = 0.4 (a) Result of iMPS method.
(b) Result of perturbative method. The inset: The dispersion relation
En(p) in momentum space of the two lowest bands of TK bound
states in the strongly confined regime. En(p) is given in Eq. (13).

magnetization are separated by the two different domain
walls. In this model, each TK state is represented as | j, l〉 ≡
| · · · ↑↑↓ j↓ · · · ↓↓( j+l−1)↑↑ · · · 〉, where j is the starting site
of down spins. The TK model has been adopted to phe-
nomenologically understand the confinement of excitations
observed in the dynamical (1D) neutron response of CoNb2O6

[36,38]. The projected model is expected to capture the low-
energy excitations of the original model quantitatively well as
long as hx/J � hz/J . This can be understood by looking into
the energy gap between TK states and four-kink states [49].
We adopt the model also in a weakly confined regime hx/J �
hz/J to investigate the qualitative structure of 2D spectra and
to help the understanding of the exact iMPS result. The TK
Hamiltonian HT K ≡ PHP with projector P acts as follows:

HT K | j, l〉 = 4J| j, l〉 − hx[| j, l + 1〉 + | j, l − 1〉
+| j + 1, l − 1〉 + | j − 1, l + 1〉] + 2hzl| j, l〉.

(7)

For our translational invariant model, the total momentum p of
the bound state is a good quantum number. In the momentum
basis |p, l〉 = ∑

j exp(ip j)| j, l〉, the Hamiltonian is diagonal
in p and acts on |p, l〉 as

HT K |p, l〉 = 4J|p, l〉 − hx[(1 + eip)|p, l + 1〉
+(1 + e−ip)|p, l − 1〉] + 2hzl|p, l〉. (8)

The eigenequation with the excitation energy En(p) takes the
form as

HT K |�n(p)〉 = En(p)|�n(p)〉, (9)

where

|�n(p)〉 ≡
∞∑

l=1

exp

(
ipl

2

)
ψn(l, p)|p, l〉

/√√√√ ∞∑
l=1

|ψn(l, p)|2

with discrete band index n. Equation (9) can be expanded as

[4J + 2hzl − En(p)]ψn(l, p) − 2hx cos(p/2)

×[ψn(l + 1, p) + ψn(l − 1, p)] = 0. (10)

Equation (10) can be rewritten as

(−λn + μl )ψn(l, p) − ψn(l + 1, p) + ψn(l − 1, p)

2
= 0,

(11)

where

λn ≡ En(p) − 4J

4hx cos(p/2)
, μ ≡ hz

2hx cos(p/2)
,

with the boundary conditions, liml→0 ψn(l, p) = 0 and
liml→+∞ ψn(l, p) = 0. The solution of Eq. (11) reads as

λn = −μνn. (12)

Here, νn is the solution of the equation Jνn (1/μ)=0 where
Jν (x) is the Bessel function of order ν [38]. Then, the excita-
tion energy En(p) reads as

En(p) = 4J − 2hzνn. (13)

Now,
∑

j,k,l Sxxx
j,k,l (τ + t, τ, 0) can be calculated within the

TK subspace as∑
j,k,l

Sxxx
j,k,l (τ + t, τ, 0)

=
∑
j,k,l

〈ψ |eiH (τ+t )σ x
j e−iHtσ x

k e−iHτ σ x
l |ψ〉

=
∑
j,k,l

∑
n,m,p,q

e−i(En (p)t+Em (q)τ )〈ψ |σ x
j |�n(p)〉

× 〈�n(p)|σ x
k |�m(q)〉〈�m(q)|σ x

l |ψ〉
=

∑
j,k,l

∑
n,m,p

e−i(En (p)t+Em (p)τ )〈ψ |σ x
j |�n(p)〉

× 〈�n(p)|σ x
k |�m(p)〉〈�m(p)|σ x

l |ψ〉 (14)

where |ψ〉 is the nondegenerate ferromagnetic ground state
with no kinks. Here,

∑
k〈�n(p)|σ x

k |�m(p)〉 can be expanded
as ∑

k,l ′,l〈p, l ′|σ x
k |p, l〉e−ip(l ′−l )/2ψn(l ′, p)ψm(l, p)√∑∞

l=1 |ψn(l, p)|2
√∑∞

l=1 |ψm(l, p)|2
, (15)

with

〈p, l ′|σ x
k |p, l〉 =

∑
j′, j

exp[−ip( j′ − j)]
〈
j′, l ′∣∣σ x

k

∣∣ j, l
〉
. (16)

Equation (16) clearly shows that 〈�n(p)|σ x
k |�m(p)〉 is finite

only when one of the following four conditions is met:

1. | j, l〉 = |k + 1, l〉, | j′, l ′〉 = |k, l + 1〉,
2. | j, l〉 = |k − l, l〉, | j′, l ′〉 = |k − l, l + 1〉,
3. | j, l〉 = |k, l〉, | j′, l ′〉 = |k + 1, l − 1〉,
4. | j, l〉 = |k − l + 1, l〉, | j′, l ′〉 = |k − l + 1, l − 1〉.
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Then,
∑

k〈�n(p)|σ x
k |�m(p)〉 can be simplified as∑

l cos p
2 [ψn(l, p)ψm(l + 1, p) + ψn(l, p)ψm(l − 1, p)]√∑∞

l=1 |ψn(l, p)|2
√∑∞

l=1 |ψm(l, p)|2
.

(17)

To formulate Eq. (19), we first rewrite Eq. (11) with two
different band indices, n and m,

(−λn + μl )ψn(l, p) = ψn(l + 1, p) + ψn(l − 1, p)

2
,

(18)

(−λm + μl )ψm(l, p) = ψm(l + 1, p) + ψm(l − 1, p)

2
.

(19)

Now, we multiply ψm(l + 1, p) to Eq. (20) and ψn(l − 1, p)
to Eq. (21), subtract one from the other, and sum it over n.
Then, we get

∑
l

ψn(l, p)ψm(l + 1, p) = −2

λn − λm − μ
, (20)

where we set ψn(1, p) = −2 without loss of generality [38].
We can proceed similarly and obtain

∑
l

ψn(l, p)ψm(l − 1, p) = −2

λm − λn − μ
. (21)

In the end, we obtain
∑

j,k,l Sxxx
jkl (τ + t, τ, 0) within the TK

subspace as ∑
n,m,p

Cn,m(p)e−i[En (p)t+Em (p)τ ], (22)

with the optical matrix element,

Cn,m(p) ≡ − 2 cos
p

2

(
1

λm − λn − μ
+ 1

λn − λm − μ

)

× In(p)Im(p). (23)

Here, the relative intensity of the nth mode is defined as

In(p) ≡ |ψn(1, p)|2∑∞
l=1 |ψn(l, p)|2 = 4∑∞

l=1 |ψn(l, p)|2

= 2μ

{
∂

∂ν

[
Jν (1/μ)

Jν+1(1/μ)

]}−1∣∣∣∣
ν→νn

.

(24)

Similarly, we can express
∑

j,k,l Sxxx
jkl (τ, τ + t, 0) within the

TK subspace as∑
n,m,p

Cn,m(p)e−iEm (p)τ e−i[Em (p)−En (p)]t . (25)

With Eqs. (24) and (25), we obtain

χ (2)
xxx(t, τ + t ) = θ (t )θ (τ )(Q1 + Q2 + Q3 + Q4), (26)

with

Q1 =
∑
n,p

Cn,n(p) cos[En(p)(t + τ )],

Q2 =
∑
n,p

Cn,n(p) cos[En(p)τ ],

Q3 =
∑

n �=m,p

Cn,m(p) cos[En(p)t + Em(p)τ ],

Q4 =
∑

n �=m,p

Cn,m(p) cos{[En(p) − Em(p)]t − Em(p)τ }.

The interpretation of 2D spectra now becomes transparent:
Q1 gives rise to diagonal nonrephasing peaks at ωt , ωτ =
En(p), and Q2 produces dominant terahertz rectification sig-
nals at ωt = 0 and ωτ = ±Em(p) [Figs. 3(b) and 4(b)]. In
the strongly confined regime, Q3 gives rise to dominant cross
peaks in the first frequency quadrant originating from the
nonrephasinglike process [Fig. 4(b)]. To be more precise,
such peaks sharply appear at ωt =E1(0) and ωτ =E2(0) or
ωt =E2(0) and ωτ =E1(0), indicating the presence of different
TK excited states. Such sharp peaks do not appear in the free
1D TFIM, which can be mapped to independent two-level sys-
tems with each having a single excited state [16]. Q4 contains
terms which induce sharp rephasing- (nonrephasing-) like sig-
nals in the fourth (first) frequency quadrants which are visible
in the strongly confined regime [Fig. 4(b)]. Such signals also
originate from the presence of different TK excited states and
appear at ωt = E2(0) − E1(0), an energy gap between first
and second excited states, and ωτ = E2(0) or −E1(0), see the
inset.

Conclusions. In the present Letter, we have developed
an iMPS method for calculating the nonlinear response of
1D spin systems. As a demonstration, we calculated the
second-order susceptibility, which dominates the nonlinear
response for the ferromagnetic 1D TFIM where a single spin
flip is fractionalized into two freely moving domain walls.
We benchmarked our numerical results with exact analytical
calculations. We then included a longitudinal field, which
induces a linear confining potential between kink excitations.
In the presence of a longitudinal field, the second-order sus-
ceptibility contains new signals which give rise to strong
nonrephasing- and rephasinglike peaks. To understand the
emergence of such signals, we employ a simplified two-kink
description, which describes the low-energy excitations in the
strongly confined regime and calculates the second-order sus-
ceptibility perturbatively. The approximate method captures
the nonlinear response of the system in the strongly confined
regime and allows for a simple interpretation.

As a future direction, it would be interesting to apply our
iMPS method near the quantum critical point between the
ferromagnetic and the paramagnetic states where a hidden
E8 symmetry emerges [34,36]. A crucial question regards
then the existence of robust signals in 2D spectrum which
detect the emergent symmetry. Regarding the microscopic
description and three-dimensional nature of CoNb2O6 [36,37]
(BaCo2V2O8 [50,51]); it would be interesting to study a
more quantitative model [29,30] and go beyond simple
chains, e.g., by extending these to coupled Ising ladders [37].
Terahertz 2D coherent spectroscopy holds the promise of
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FIG. 5. The 2D spectra χ (2)
xxx (ωt , ωτ ) of TFIM with hx/J = 0.2

and (a) hz/J = 0.03 and (b) hz/J = 0.4.

uncovering the nature of exotic excitations in strongly corre-
lated quantum materials. A challenging but very worthwhile
direction will be an extension of our method to quantum
magnets beyond one dimension where the nature of frac-
tionalized excitations and confinement thereof remains poorly
understood.

Note added. When finalizing the Letter, related works ap-
peared that investigate nonlinear response from quasiparticle
interactions [52,53].
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APPENDIX A: A PROCEDURE TO OBTAIN Sβγα

j,l,c(τ, τ + t, 0)
WITH THE IMPS METHOD

In this Appendix, we provide steps to calculate Sβγα

j,l,c (τ, τ +
t, 0) = eiEτ 〈ψ |σβ

j eiHtσ
γ

l e−iH (τ+t )σα
c |ψ〉 using the iMPS.

(1) Find an iMPS approximation of the ground-state |ψ〉
with energy E [55,56].

(2) Allow the tensors of the iMPS with a spatial window
of size L to vary in time as in Refs. [57–60].

(3) Apply a local operator σβ
c (σα

c ) at the center of the
window to get σβ

c |ψ〉 (σα
c |ψ〉).

(4) Perform a real time evolution following the local
quench σβ

c (σα
c ) using the iTEBD method [43–45] to obtain

an iMPS which represents e−iHtσβ
c |ψ〉 (e−iH (τ+t )σα

c |ψ〉).
(5) Shift every B tensor of an iMPS, which represents

e−iHtσβ
c |ψ〉, (c − j) sites to the right within the window to

obtain a new iMPS bra associated with e−iHtσ
β
j |ψ〉.

(6) Apply an operator σ
γ

l to an iMPS, which approxi-
mates e−iH (τ+t )σα

c |ψ〉 and get a new iMPS ket associated with
σ

γ

l e−iH (τ+t )σα
c |ψ〉.

(7) Evaluate an overlap of two iMPS bra and ket
within the window by calculating the dominant eigen-
value of the corresponding transfer matrix to obtain
〈ψ |σβ

j eiHtσ
γ

l e−iH (τ+t )σα
c |ψ〉.

(8) Multiply eiEτ and 〈ψ |σβ
j eiHtσ

γ

l e−iH (τ+t )σα
c |ψ〉.

APPENDIX B: IMAGINARY PART OF χ(2)
xxx(ωt, ωτ )

In this Appendix, we focus on Im χ (2)
xxx(ωt , ωτ ) in the fer-

romagnetic phase of the Ising model. In Fig. 5(a), we plot
Im χ (2)

xxx(ωt , ωτ ) in the weakly confined regime with hx/J =
0.2 and hz/J = 0.03. We use the iMPS method to obtain the
real-time correlation functions χ (2)

xxx(t, τ + t ) and perform fast
Fourier transformations. One can clearly observe the emer-
gence of strong nonrephasing signals in the first frequency
quadrant. Figure 5(b) shows Im χ (2)

xxx(ωt , ωτ ) in the strongly
confined regime with hx/J = 0.2 and hz/J = 0.4. Similar to
the real part, it contains cross peaks which include rephasing-
like and nonrephasinglike signals.
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