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Exceptional points as signatures of dynamical magnetic phase transitions
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One of the most fascinating and puzzling aspects of non-Hermitian systems is their spectral degeneracies,
i.e., exceptional points (EPs), at which both eigenvalues and eigenvectors coalesce to form a defective state
space. While coupled magnetic systems are natural hosts of EPs, the relation between the linear and nonlinear
spin dynamics in the proximity of EPs remains relatively unexplored. Here we theoretically investigate the spin
dynamics of easy-plane magnetic bilayers in the proximity of exceptional points. We show that the interplay
between the intrinsically dissipative spin dynamics and external drives can yield a rich dynamical phase diagram.
In particular, we find that, in antiferromagnetically coupled bilayers, a periodic oscillating dynamical phase
emerges in the region enclosed by EPs. Our results not only offer a pathway for probing magnetic EPs and
engineering magnetic nano-oscillators with large-amplitude oscillations, but also uncover the relation between
exceptional points and dynamical phase transitions in systems displaying nonlinearities.
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I. INTRODUCTION

The degeneracies of Hermitian Hamiltonians are diabolic
points, i.e., points at which two (or more) real eigenener-
gies coalesce, while the eigenstates still span the full Hilbert
space. Non-Hermitian degeneracies, i.e., exceptional points
(EPs), display properties that are radically different from their
Hermitian counterpart. At an EP, two (or more) complex
eigenvalues and the corresponding eigenvectors simultane-
ously coalesce, resulting in a defective Hamiltonian that
cannot span the entire Hilbert space [1–3]. The incomplete-
ness of the eigenbases at second-order EPs leads to a square
root dependence on external perturbations, resulting in a giant
sensitivity-factor enhancement [4–7].

As non-Hermitian systems are recently under comprehen-
sive research [8–12], intense efforts have been put forward to
explore the properties of EPs. Particular emphasis has been
placed on PT -symmetric systems [6,13–15], where EPs sig-
nal a PT -symmetry-breaking transition at which a system’s
eigenvalues turn from real to complex conjugate pairs. The
emergence of EPs does not, however, require a fine-tuned
balance of gain and loss [16]. EPs have been reported in a
plethora of open systems, ranging from optics and photon-
ics [4,6,13,17,18] to superconducting quantum circuits [19],
semimetals [20–23], and magnetic systems [24–35].

Magnetic systems are intrinsically open due to the ubiq-
uitous dissipation of magnetization dynamics [35–37]. The
gain can be tuned via experimentally established techniques
such as, e.g., spin current injection [35,38–42]. Exceptional
points naturally emerge in the description of coupled magneti-
zation dynamics and have been recently observed in magnonic
PT -symmetric devices [35]. Second-order and higher-order
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EPs displaying higher-order roots singularities [43–49], which
can yield further ultrasensitivity, have been reported in mag-
netic multilayers [29]. While the potential of EPs in magnetic
sensing has been under intense scrutiny, the role that EPs
play in dynamical magnetic phase transitions is yet relatively
unexplored.

Coupled magnetization dynamics can be described, in
the long-wavelength limit, via the coupled Landau-Lifshitz-
Gilbert (LLG) equations [50]. By linearizing the LLG equa-
tions of motion, one can derive an effective non-Hermitian
Hamiltonian quadratic in second-quantized magnon oper-
ators. The EPs appear as singularities of the quadratic
Hamiltonian, signaling a dynamical phase transition of the
linearized dynamics due to a width bifurcation [51–54]. If
signatures of such transition survive in the nonlinear LLG-
like classical dynamics, the analysis of the corresponding
quadratic magnon Hamiltonian can unveil unforeseen dy-
namical regimes as a function of experimentally tunable
parameters.

In this Letter, we explore the connection between linear
and nonlinear spin dynamics in proximity of EPs by taking an
easy-plane magnetic bilayer as an example. The ratio between
gain and loss is modulated by spin injection in the bottom
layer and the loss of magnetization dynamics is taken to be
larger than the overall gain. As a function of the interlayer
coupling, we find that the linearized spectrum displays two
regions encircled by exceptional points, emerging around,
respectively, vanishing and strong antiferromagnetic (AFM)
interlayer coupling. The nonlinear dynamics in proximity of
the region with vanishing interlayer coupling displays a fer-
romagnetic (FM) to AFM dynamical phase transition. Such
transition has been reported in a magnonic PT -symmetric
system [28]: our results show that fine-tuned balance of gain
and loss is not necessary for the transition to take place.

Furthermore, we unveil a distinct dynamical phase tran-
sition occurring in the AF-coupled region encircled by the
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FIG. 1. (a) Magnetic bilayer with interlayer coupling J in an
external magnetic field B0. In the long-wavelength limit, the uniform
magnetization of the top (bottom) layer can be treated as a macrospin
SA(B). (b), (c) Dependence on J of the real and imaginary energy,
respectively, for K = 0. Region I is enclosed by EPs. The red dashed
line separates a collinear from a noncollinear ground state. (d) The
time evolution of SAB for different values of the interlayer coupling
J . The FM-to-AFM dynamical phase transition emerges in region
I for small interlayer coupling, e.g., J = 0.1 µeV. Instead, for val-
ues of J further away from region I, the relative alignment of the
macrospins remains the one of the corresponding ground state. In
each figure, the parameters are set to B0 = 0.1 T, K = 0, αA = 0.06,
and αB = −0.04.

EPs. Simulations of the nonlinear dynamics show that upon
crossing the EP in parameter space, the damped magnetization
dynamics enters a regime of steady self-oscillations with large
amplitude that can be described by a supercritical Hopf bifur-
cation [55–57]. According to our estimates, this dynamical
phase transition might be observed in van der Waals and
synthetic AFM bilayers [58,59], which could open up a route
to engineer magnetic nano-oscillators [42,60–66] with large-
amplitude oscillations. Our findings have also the potential
to shed light on the interplay between EPs and dynamical
phase transition in other dissipative-driven systems displaying
nonlinearities.

II. MODEL

We consider the magnetic bilayer shown in Fig. 1(a),
whose spin Hamiltonian can be written, in the long-
wavelength limit, as

H =
∑

i=A,B

(
KSz 2

i + γ B0 · Si
) + JSA · SB, (1)

where SA(B), with |SA,B| = S, is the (dimensionless) macrospin
operator of the top (bottom) layer, B0 is the applied magnetic
field, γ > 0 is the gyromagnetic, J is the interlayer coupling,
and K � 0 parametrizes the easy-plane anisotropy. Here we

set h̄ = 1 by adopting its unit to other parameters. To intro-
duce loss and gain, we recast the magnetization dynamics in
the form of coupled LLG equations [50], i.e.,

dSA

dt
= −γ SA × Beff

A − αA

S
SA × dSA

dt
, (2)

dSB

dt
= −γ SB × Beff

B − αB

S
SB × dSB

dt
, (3)

where we have introduced the effective field γ Beff
i = ∂H/∂Si,

with i = A, B. Here αA > 0 (αB < 0) represents the effective
damping (gain) parameter of the top (bottom) layer.

To investigate the non-Hermitian spin-wave spectrum as a
function of the exchange coupling J and magnetic field B0, we
orient the spin-space Cartesian coordinate system such that
the ẑ axis locally lies along the classical orientation of the
macrospin S̃i. The latter can be related to the spin operator Si

in the global frame of reference via the transformation (see
Supplemental Material [67])

Si = Rz(φi)Ry(θi )S̃i, (4)

where the matrix Rz(y)(η) describes a right-handed rotation
by an angle η about the ẑ(ŷ) axis, and θi(φi) is the polar
(azimuthal) angle of the classical orientation of the spin Si.
We then solve self-consistently Eqs. (2) and (3) in the linear
approximation, i.e., we consider S̃i = (S̃x

i , S̃y
i , S). Next, we

introduce the complex variable S̃+
i = S̃x

i + iS̃y
i and invoke the

Holstein-Primakoff transformation S̃+
A(B) ≈ √

2Sa(b), where
the second-quantized operator a(b) annihilates a magnon in
the top (bottom) layer and obeys bosonic commutation re-
lations [68]. By invoking the Heisenberg equation for a(b),
we obtain the non-Hermitian Hamiltonian HNH. The resulting
Hamiltonian is not block diagonal and a Bogoliubov transfor-
mation is required to obtain the spin-wave spectrum [67].

III. ANTIFERROMAGNETIC TO
FERROMAGNETIC TRANSITION

As a first instructive example, we turn off the easy-plane
anisotropy, i.e., K = 0, and we take a damping coefficient
of the same order of magnitude of the ones reported for
chromium trihalide crystals [69], i.e., αA = 0.06, while we
set αB = −0.04 [70]. We set B0 = 0.1 T and take B0 ‖ x̂. It
is worth noting that our results do not depend on the field
direction since the Hamiltonian (1) is SO(3) symmetric for
K = 0. The real and imaginary energy spectra of HNH as a
function of J are shown, respectively, in Figs. 1(b) and 1(c).
Near J = 0, region I is enclosed by EPs. On the left side of the
red dashed line, the ground state of the Hermitian Hamiltonian
[i.e., Eq. (1) for αA(B) = 0] is collinear and oriented along
the magnetic field. On the right side of the dashed line, the
interplay between the magnetic field and the antiferromag-
netic coupling J leads to a noncollinear ground state, while
increasing J further yields an AFM ground state.

To investigate how the degeneracies of the non-Hermitian
linear spectrum affect the nonlinear magnetization dynamics,
we simulate Eqs. (2) and (3) by setting the initial direc-
tion of the spins slightly away (2◦) from their ground-state
equilibrium position. We solve Eqs. (2) and (3) for different
values of J and track the time evolution of the product of
the macrospins, i.e., SAB(t ) = SA(t ) · SB(t )/S2. As shown in
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FIG. 2. Real (a) and imaginary (b) energy for B0 = 0.14 T, K =
45.9 µeV, αA = 0.06, and αB = −0.04. Here, region I is in direct
correspondence with region I of Fig. 1. The red dashed line marks the
transition from a collinear to a noncollinear configuration. Region II
is enclosed by another pair of EPs in the noncollinear configuration.
(c)–(e) The time evolution of SAB(t ) for different values of the inter-
layer coupling J . A periodic dynamical phase emerges only within
region II.

Fig. 1(d), the relative alignment SAB between the macrospins
remains FM or AFM for values of J further away from the
exceptional point. Instead when we choose J within region I,
we observe a switch from a FM to an AFM configuration. Our
result agrees with the observations of Ref. [28], in which the
authors analyze the PT -symmetric case (i.e., αA = −αB) of
Eqs. (1)–(3) for K = 0. Here, we propose a simple explanation
for this dynamical phase transition, which occurs when the
coupling J is close to zero. In this regime, the spins are
barely coupled and, thus, eventually, each macrospin obeys its
individual dynamics. The macrospin experiencing gain flips,
while the lossy one recovers its equilibrium orientation, lead-
ing to an AFM orientation. As we have shown, PT symmetry
is not required for the FM-to-AFM switching to occur.

IV. MAGNETIC NANO-OSCILLATOR

To explore the dynamical phase diagram of our model,
we now turn on the easy-plane anisotropy, i.e., K > 0. With
CrCl3 in mind, we set K = 45.9 µeV [58]. We consider a
U (1)-symmetry-breaking magnetic field B0 ‖ x̂ and set B0 =
0.14 T, αA = 0.06, and αB = −0.04. The real and imaginary
parts of the magnon energy are shown in Figs. 2(a) and 2(b),
respectively. We find two regions enclosed by EPs: region I
near J = 0 and region II near J = 12.2 µeV, i.e., the exchange
interaction of CrCl3 [58]. Region I corresponds to region I
shown in Figs. 1(b) and 1(c). Region II emerges instead in
correspondence with a noncollinear ground state and, as we
will show in detail, its nonlinear magnetization dynamics (2)
and (3) display very different features from the ones observed
in region I.

Figures 2(c)–2(e) show the time evolution of the relative
alignment of the macrospins SAB(t ) for, respectively, J = 9,

12.2, and 16 µeV. Similarly to region I, passing through the
EPs yields a dynamical phase transition. However, around
region II, the exchange interaction is too strong for a FM-to-
AFM switching to take place. Instead, while for J = 9.0 and
16.0 µeV we observe damped dynamical phases, see Figs. 2(c)
and 2(e), inside region II (i.e., J = 12.2 µeV) a periodic
dynamical phase emerges, as shown in Fig. 2(d). Within the
periodic dynamical phase, the value of SAB ranges from 0.7
to −0.7, signaling unusual large-amplitude oscillations. Our
results show that, although the overall loss is larger than the
effective gain, i.e., αA > |αB|, the system can still survive in a
steady periodic state in a EP-enclosed region. The dynamical
phase transition can be understood as a supercritical Hopf
bifurcation [55–57]. When crossing the EPs and entering in
region II, the fixed point of the dynamical system, which cor-
responds to the damped magnetization dynamics, bifurcates
into a stable orbital. We have verified numerically that the
large-amplitude oscillations persist at long times.

V. TUNABILITY

We proceed to investigate the dependence of the periodic
stable magnetization dynamics on the system’s parameters.
Not surprisingly, the stability of the periodic solution strongly
depends on the ratio between the effective gain and loss.
Setting J = 12.2 µeV and αA = 0.06, in Figs. 3(a)–3(d) we
show the time evolution of SA (upper panel) and SB (lower
panel) on the Bloch sphere decreasing the effective gain |αB|
from 0.055 to 0.01. The colors in Figs. 3(a)–3(d) are in direct
correspondence with the time intervals of the time evolution of
SAB shown in Figs. 2(c)–2(e). For larger values of gain, e.g.,
αB = −0.055, the dynamics of both macrospins SA and SB

flow to a fixed point, as shown by Fig. 3(a). We have verified
that the same scenario is realized at the PT -symmetric point.
For lower values of the gain, the spin dynamics evolve into
a steady-state oscillations [see Figs. 3(b)–3(d)]. Since the
macrospin SB is directly subjected to gain while SA experi-
ences it indirectly via the coupling to SA, the amplitude of
oscillations of the macrospin SA is smaller than the one of SB.
For decreasing αB, the amplitudes of both limit cycles shrink.

In an experimental setup, the effective gain αB can be
controlled via the injection of spin current Js into the bot-
tom layer. As shown in a very recent work [71], swapping
the dynamical gain in Eq. (3) with a spin-transfer torque
term, i.e., −αB

S SB × dSB
dt → JsSB × (SB × ẑ), does not affect

the emergence of an oscillatory phase in correspondence of
EP crossing.

The ratio αA/αB is determined by the spin current transport
efficiency through the magnetic layers which, to our knowl-
edge, has not been yet thoroughly investigated in van der
Waals magnets. It is worth noting that here we take CrCl3

as an example; in practice, the high degree of tunability of-
fered by synthetic AFMs might make them a more desirable
platform for engineering non-Hermitian phenomena [72]. To
avoid spin current injection in the top layer of a synthetic
AFM bilayer, one could sandwich a good spin sink, e.g., Pt
thin film [35,73], between the two magnetic layers. In this
case, the strength of the (Ruderman-Kittel-Kasuya-Yosida)
interlayer coupling can be controlled by tuning the Pt layer
thickness [35]. Synthetic AFM based on permalloy magnetic
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FIG. 3. (a)–(d) The spin evolution on the Bloch spheres for different values of the effective gain αB in the region II of Fig. 2 for B0 = 0.14 T,
K = 45.9 µeV, J = 12.2 µeV, and αA = 0.06. The above (below) panels shows the time evolution of SA (SB). The colors on curves are in direct
correspondence with the time intervals of the time evolution of SAB in Figs. 2(c) and 2(d), i.e., they label the earliest to the latest time by ordering
purple, blue, gray, green, yellow, orange, and red. (a) For αB = −0.055, the dynamics of SA and SB flow into fixed points (FP). (b)–(d) When
|αB| � 0.05, the system drops on periodic orbitals (PO) through the supercritical Hopf bifurcation. SA with larger loss than the gain in SB would
form smaller orbitals to maintain the steady periodic oscillation. (e) Frequency f of the coupled oscillations SAB as a function of the effective
gain αB for different values of J . For J = 4.2 µeV (J = 8.2 µeV), steady periodic dynamical phases exist only for |αB| � 0.035 (|αB| � 0.045).
(f) The dependence of the square of the overlap of the two right eigenvectors, i.e., PEP ≡ |〈ψR

1 |ψR
2 〉|2, on the magnetic field strength B0 and

polar angle 	.

elements displays an easy-plane anisotropy consistent with
our model (1) [72].

We find that the periodic oscillatory phase does not require
fine tuning but it can instead be accessed within a relative
broad range of αA/αB values. As shown in Fig. 3(e), the
strength of the interlayer coupling controls the frequency f
of the periodic oscillations (found by changing B0) of the
coupled dynamics SAB. For CrCl3 [58], the interlayer coupling
strength J = 12.2 µeV yields large-amplitude oscillations
with frequencies in the 1–10-GHz range.

Finally, we explore the dependence of the onset of region II
on the strength and direction of the applied magnetic field. In
Fig. 3(f), we plot PEP ≡ |〈ψR

1 |ψR
2 〉|2, where ψR

1,2 are the two
right eigenvectors of the non-Hermitian Hamiltonian HNH.
While approaching an exceptional point, the two eigenstates
coalesce, i.e., PEP → 1. The two red regions in Fig. 3(f)
appear in proximity of the EPs: the region comprised between
them, which centers on white and blue, corresponds to region
II, i.e., it displays periodic oscillatory coupled spin dynamics.
As shown by Fig. 3(f), accessing the region II does not require
fine tuning: there is a broad range of values of the magnetic
field’s strength and polar angle 	, with B0 · ẑ = B0 sin 	, for
which the steady-state oscillations appear.

VI. DISCUSSION AND OUTLOOK

In this Letter, we investigate the interplay between the lin-
ear and nonlinear spin dynamics in proximity of exceptional

points. We show that the emergence of EPs in the linearized
magnon Hamiltonian underlies a dynamical phase transition
of the nonlinear spin dynamics. As an example, we consider
an easy-plane bilayer in which, while one layer experiences
effective gain, the other layer keeps a larger loss rate. An
analysis of the linearized long-wavelength magnetization dy-
namics of the bilayer shows that two regions encircled by
EPs can appear as a function of the interlayer coupling. One
region, characterized by small values of the interlayer cou-
pling, displays an interlayer FM-to-AFM dynamical phase
transition. The second region, appearing for larger values
of the AFM interlayer coupling, displays large-amplitude
steady-state oscillations without fine tuning or PT symme-
try. We argue that this oscillatory dynamical regime might
be accessed via spin injection in CrCl3 or synthetic AFM
bilayers, opening a concrete route for experimentally probing
magnetic EPs and for engineering large-amplitude magnetic
nano-oscillators.

Our theory has the potential to shed light onto the relation
between non-Hermitian singularities and dynamical phase
transitions in a plethora dissipative-driven systems whose
dynamics display nonlinearities, e.g., molecular spin dimers
[74,75], quantum dots [76–78], and microwave resonators
[34,79].

ACKNOWLEDGMENTS

K.D. thanks B. Li for helpful discussions. This work was
supported by NSF Grant No. DMR-2144086.

L100402-4



EXCEPTIONAL POINTS AS SIGNATURES OF DYNAMICAL … PHYSICAL REVIEW B 107, L100402 (2023)

[1] W. Heiss, Phys. Rev. E 61, 929 (2000).
[2] W. Heiss, J. Phys. A: Math. Theor. 45, 444016 (2012).
[3] C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D.

Heiss, H. Rehfeld, and A. Richter, Phys. Rev. Lett. 86, 787
(2001).
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