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Johannes Knaute *

Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Givat Ram, Israel

(Received 14 November 2022; revised 4 March 2023; accepted 7 March 2023; published 17 March 2023)

We use tensor network simulations to calculate the time evolution of the lower part of the entanglement
spectrum and return rate functions after global quantum quenches in the Ising model. We consider ground state
quenches toward mesonic parameter ranges with confined fermion pairs as nonperturbative bound states in a
semiclassical regime and the relativistic E8 theory. We find that in both cases only the dominant eigenvalue of
the modular Hamiltonian fully encodes the meson content of the quantum many-body system or quantum field
theory, giving rise to nearly identical entanglement oscillations in the entanglement entropy. When the initial
state is prepared in the paramagnetic phase, the return rate density exhibits regular cusps at unequally spaced
positions, signaling the appearance of dynamical quantum phase transitions, at which the entanglement spectrum
remains gapped. Our analyses provide a deeper understanding on the role of quantum information quantities for
the dynamics of emergent phenomena reminiscent of systems in high-energy physics.
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Introduction and motivation. Quantum information con-
cepts became increasingly relevant for the study of entan-
glement properties in strongly coupled quantum many-body
(QMB) systems and quantum field theories (QFTs) in and out
of equilibrium [1–3]. While entanglement entropy is the most
popular measure to quantify the amount of entanglement in
pure states, to extract universal information, or to use it as an
order parameter in (quantum) phase transitions (see, e.g., the
review [4]), the seminal paper [5] introduced the more general
entanglement spectrum, which allows one to characterize the
entanglement structure of a physical system in a pure state on
an even deeper and more complete level.

Consider a pure state density operator ρ and a spatial bipar-
tition into a subsystem A and its complement B. The modular
(or entanglement) Hamiltonian Hmod [6] is then defined from
the reduced density matrix ρA of the subsystem via

ρA = TrBρ ≡ e−Hmod . (1)

The corresponding set of eigenvalues is denoted as the en-
tanglement spectrum, from which the entanglement entropy
and Rényi entropies can be calculated. While this concept
was originally employed to detect topological order [5,7], it
found an enormous amount of attention across different fields
in physics (see, e.g., [8] for a review). In particular, it has
been studied for lattice models [9–20] and fermionic sys-
tems [21–25]. Calculations of Hmod in QFTs, and especially
conformal field theories (CFTs), are based on the Bisognano-
Wichmann theorem [26,27], which allowed the authors of
[28–31] to find some explicit forms. The modular Hamiltonian
and its spectrum have also been studied using tensor networks
[32–36] and via holography in connection with further quan-
tum information measures [28,37,38].
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In this Letter, we are interested in studying the impact of
meson confinement on the dynamics of entanglement spectra
after quantum quenches. Mesons are nonperturbative bound
states, which appear in quantum chromodynamics (QCD) as
flux tube confined quark-antiquark pairs that are important
for the physics of the early universe after the big bang and
heavy-ion collisions in nuclear accelerators [39–41]. The phe-
nomenology of meson confinement, however, is not exclusive
to QCD. Mesonic bound states exist also as confined fermion
pairs (domain walls) in the spectrum of the quantum Ising
model with longitudinal field [42] or long-range interactions
[43,44]. The seminal paper [45] initiated the study of their im-
pact on the entanglement dynamics. Specifically, it was found
that mesons give rise to entanglement oscillations, i.e., an
oscillating behavior of the entanglement entropy after quan-
tum quenches, which bounds the overall entanglement growth
if the quench is performed within the ferromagnetic phase
and mesons are produced at rest. While analyses of quantum
quenches toward critical regimes revealed that the entangle-
ment spectrum carries universal information in the form of the
operator scaling dimensions of the underlying boundary CFT
[30,46,47], comparable studies in mesonic models have not
yet been pursued. We fill this gap in this Letter using tensor
network simulations [48,49] for both nonintegrable semiclas-
sical and integrable relativistic regimes of the Ising model at
early and intermediate timescales.

We are particularly also interested in differences between
quenches within the ferromagnetic phase versus crossings
from the paramagnetic one. It hence becomes insightful to
discuss our analyses in connection with dynamical quantum
phase transitions (DQPTs). These are nonequilibrium phase
transitions, which occur in the time domain after quenches,
showing up as nonanalyticities (cusps) in return rate functions.
(For reviews on that topic see [50,51].) Originally discovered
through regular cusps in [52] for quenches across the criti-
cal point of the transverse field Ising model, it was realized
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that DQPTs exist also for phase crossings in the longitudinal
field [53] and the long-range Ising model [54,55], i.e., in
models where mesons can exist. Their appearance was exper-
imentally confirmed in [56,57]. Moreover, it was shown that
anomalous DQPTs can even exist for quenches within the fer-
romagnetic phase [55,58–62]. Connections between DQPTs
and the dynamics of the entanglement spectrum have been
pioneered in [63–66]. While the necessity of meson states
for anomalous DQPTs has been explored in [59,61], their
explicit role in the entanglement spectrum has not yet been
addressed.

Our analyses are also strongly motivated by significant
advances of quantum simulation technologies for the study
of fundamental physics problems [67–70]. Recently, the im-
pact of confinement and mesons on quantum correlations,
entanglement dynamics, and related properties has been stud-
ied experimentally [71,72] and theoretically [73–81]. On the
other hand, not only DQPTs became accessible in quantum
simulations [56,57], but also the spectrum of the modular
Hamiltonian via entanglement tomography [82–84]. It there-
fore is a very timely problem to address the impact of meson
confinement also in the latter context.

Model. The one-dimensional nearest-neighbor quantum
Ising model is defined by the Hamiltonian

H = −J

⎛
⎝N−1∑

j=1

σ z
j σ

z
j+1 + h

N∑
j=1

σ x
j + g

N∑
j=1

σ z
j

⎞
⎠, (2)

where σα
j (α = {x, z}) are Pauli matrices at lattice position j

within an open chain of N sites. The unit J ≡ 1 sets the overall
lattice energy scale, and the transverse and longitudinal field
perturbations with respect to the first interaction term are
quantified by the parameters h and g, respectively. The trans-
verse model (g = 0) exhibits a quantum critical point at J =
h=1, at which a quantum phase transition from a disordered
paramagnetic phase (h > 1) toward an ordered ferromagnetic
phase (h < 1) occurs [85].

In the thermodynamics limit (N → ∞), there exists a scal-
ing limit, in which the infrared regime is described by a

FIG. 1. Overview of the considered quench protocols in the
transverse (h) vs longitudinal (g) field plane. Ground states are pre-
pared in the ferromagnetic and paramagnetic phase of the purely
transverse field Ising model (indicated by green dots) and quenched
toward a nonintegrable semiclassical meson regime [types (1, 2)]
and the integrable E8 QFT regime (indicated by the gray dotted line)
[types (3, 4)].

1 2

FIG. 2. Time dependence of physical quantities in quench proto-
cols (1) [(a)–(d)] and (2) [(e)–(h)] to a semiclassical meson regime.
From top to bottom: entanglement entropy S1 and 2-Rényi entropy
S2 [(a), (e)], eigenvalues λr of the entanglement spectrum [(b), (f)],
entanglement gap ratios gr�2/g1 [(c), (g)], return rate functions ri

[(d), (h)]. See text for detailed discussion.

Majorana fermion QFT, given by the Hamiltonian [86]

HIR =
∫ ∞

−∞
dx

{
i

4π
(ψ∂xψ − ψ̄∂xψ̄ ) − iMh

2π
ψ̄ψ

+ CM15/8
g σ

}
. (3)

Here, Mh ≡2J|1 − h| is the free fermion mass, Mg ≡
DJ |g|8/15 is a longitudinal mass scale, and C ≈ 0.062,D ≈
5.416 are numerical constants [86,87]. The spin field σ is the
continuous generalization of σ z

j .
At criticality, i.e., for Mh = Mg = 0, the Hamiltonian (3)

describes the Ising conformal field theory (CFT) of central
charge c = 1/2, which possesses two scalar primary op-
erators, ε = iψ̄ψ and σ with scaling dimensions 
ε = 1
and 
σ = 1/8. Transverse perturbations of the Ising CFT
(Mh > 0, Mg = 0) result in an integrable massive free fermion
regime. Longitudinal perturbations confine domain walls as
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FIG. 3. Results of the Prony signal analysis of S1 [(a), (c)] and ξ0 = − ln(λ0) [(b), (d)] under quench type (1) (left column) and (2) (right
column). Gray vertical lines indicate meson masses Mi obtained from a semiclassical approximation; green vertical lines show all possible
mass differences mi j ≡ |Mi − Mj | between them: m34, m23, m12, m24, m13, m14 (ascending). The results demonstrate that the meson content of
entanglement oscillations is fully encoded in the dominant eigenvalue of the modular Hamiltonian.

elementary excitations in the ferromagnetic phase into non-
perturbative meson bound states [42]. In particular, pure
longitudinal perturbations (Mh = 0, Mg > 0) give rise to the
integrable and interacting E8 QFT [88], whose 8 stable meson
masses Mn are analytically known as ratios to the lightest
mass M1 ≡ Mg. Combined transverse and longitudinal pertur-
bations (Mh > 0, Mg > 0) result in a nonintegrable interacting
QFT with both stable and unstable mesonic bound states
[89–92].

Setup. In the present Letter, we study real-time properties
of entanglement spectra and return rate functions after global
quantum quenches in both the integrable E8 QFT as well
as in the nonintegrable meson regime. For this purpose, we
employ well established ab initio tensor network simulations,
which directly give access to the quantities of interest in the
thermodynamic limit of a translational invariant spin chain.
In particular, based on the matrix product state (MPS) ansatz
[93–96], we use the infinite time-evolving block decimation
(iTEBD) algorithm [97] to construct a MPS approximation to
(gapped) ground states |ψ0〉 = limβ→∞ e−βH0 with respect to
an Ising model Hamiltonian H0 of the form (2) via imaginary-
time evolution. We then use the same iTEBD algorithm to
calculate its real-time evolution |ψ (t )〉 = e−itH1 |ψ0〉 under a
different Hamiltonian H1. In nontrivial cases, the state |ψ0〉 is
not an eigenstate of H1, such that this quench protocol drives
the QMB system instantaneously out-of-equilibrium (at time
t = 0) and causes the emergent phenomena.

We consider the specific quench protocols illustrated in
Fig. 1. We choose two distinct prequench parameter points
in the free fermion ferromagnetic and paramagnetic phase

(shown as green dots) for the parameters h = 0.25 and
h = 1.75, respectively. Protocols 1© and 2© quench toward a
nonintegrable meson regime for which we exemplarily choose
{h = 0.25, g = 0.1} (indicated by the left cross). This quench
point is far away from criticality; i.e., a QFT description
is not amenable but instead a semiclassical approximation
based on the Bohr-Sommerfeld quantization condition can be
used to determine four meson states and their masses (see
[45] for detailed discussions). Protocols 3© and 4©, on the
other hand, quench to the integrable E8 QFT regime from the
different prequench phases. The postquench parameter point
is given for {h = 1, g = 0.48} [98]. In Appendix A of the
Supplemental Material [99] we contrast the resulting prop-
erties to a nonmesonic case, realized through quenches from
the paramagnetic phase to the critical point (protocol 5©; CFT
results are available) and toward the ferromagnetic phase in
the free fermion regime (protocol 6©; regular DQPTs occur).

We analyze real-time entanglement properties of the state
|ψ (t )〉 for a semi-infinite bipartition of the Ising chain, real-
ized through a cut in between two repeating tensors of the
translational invariant chain, which defines subsystem A as
all the infinitely many sites to the left of the cut, and the com-
plement B as all sites to the right. A Schmidt decomposition
across this cut takes the form |ψ (t )〉 = ∑

r

√
λr |ψA

r 〉 ⊗ |ψB
r 〉,

where the Schmidt values λ0 � λ1 � λ2 � . . . are directly
related to the eigenvalues ξr of the entanglement spectrum
via λr ≡ e−ξr . A relevant quantity of interest is the entan-
glement gaps gr ≡ ln λ0 − ln λr = ξr − ξ0. The entanglement
entropy is given by S1(ρA) = −TrA[ρA ln ρA] = −∑

r λr ln λr

as the von Neumann entropy of the reduced density matrix,
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FIG. 4. Time dependence of physical quantities in quench proto-
cols (3) [(a)–(d)] and (4) [(e)–(h)] to the integrable E8 QFT regime.
Legends and quantities are the same as in Fig. 2. See text for detailed
discussion.

and the 2-Rényi entropy follows as S2(ρA) = − ln TrAρ2
A =

− ln
∑

r λ2
r .

The central quantity to identify DQPTs is the Loschmidt
amplitude G(t ) ≡ 〈ψ (0)|ψ (t )〉 = 〈ψ (0)|e−itH1 |ψ (0)〉, from
which the return rate density is defined as

r1(t ) = − lim
N→∞

1

N
ln |G(t )|2. (4)

The latter can be interpreted as an analog of the free energy
density in equilibrium, such that nonanalyticities in r1(t ) in-
dicate the appearance of DQPTs as dynamical analogues of
equilibrium phase transitions [50–52]. As discussed in [58],
this definition can be generalized to the rate functions

ri(t ) = −2 ln |εi(t )|. (5)

Here, εi are the eigenvalues (in decreasing order) of the mixed
MPS transfer matrix E (t ) ≡ Trphys[C̄(0) ⊗ C(t )] between two
MPS tensors C of |ψ0〉 and |ψ (t )〉, where a trace over physical

indices is taken. Cusps or kinks in r1(t ) correspond to level
crossings between r1 and ri>1.

Quenches to nonintegrable semiclassical meson regimes.
Figure 2 shows the simulation results for quenches from the
ferromagnetic (type 1©; left column) and paramagnetic phase
(type 2©; right column) into the nonintegrable semiclassical
meson regime. The time evolution of S1 and S2 for quench 1©
[panel (a)] within the ferromagnetic phase exhibits a bounded
oscillatory behavior, representing the known entanglement
oscillations induced through meson confinement [45] [100].
On the other side, S1 and S2 show a very large entanglement
growth under quench 2© [panel (e)], which are superimposed
with oscillations. The latter are, in contrast, unbounded in the
available simulation times [101].

Panels (b) and (f) show the first eigenvalues ξ0, . . . , ξ5 of
the corresponding entanglement spectra. One can observe that
the dominant eigenvalue ξ0 = − ln(λ0) in quench type 1©,
shown as the blue dashed curve in panel (b), oscillates on a
much smaller magnitude (with respect to the left axis) than
the remaining eigenvalues; i.e., the entanglement spectrum is
largely gapped. The shape of ξ0 follows nearly identically
the time evolution of S1 and hence seems to encode the en-
tanglement oscillations (cf. the quantitative analyses below).
In contrast, in all higher eigenvalues, many level crossings
appear, indicated by nonanalyticities (cusps) of any single
level. The same findings hold also for quench protocol 2©
[panel (f)] with the difference that ξ0 is of the same scale as
ξr�1. Only at very early times after the quench, at tJ ≈ 0.9,
the entanglement spectrum becomes gapless, corresponding
to a singularity in gr/g1 [cf. panel (g)].

The time dependence of the gap ratios gr/g1 is shown
in panels (c) and (g) for r = 2, . . . , 5. We want to contrast
their behavior to CFT expectations in the case of quenches
to the critical point (cf. Appendix A of the Supplemental
Material). In the latter case, the ratios assume the constant
values gr/g1 = 
r/
1, where 
r are the conformal dimen-
sions of primary fields and their descendants in the boundary
CFT [30]. In the ferromagnetic meson quench in panel (c),
all shown values are instead oscillating at later times around
values smaller than the lowest integer CFT value g2/g1 = 3
(indicated by the gray dashed line). In particular, g2/g1 (green
curve) exhibits multiple nonanalytic cusps, when the gap be-
tween ξ1 and ξ2 closes and the ratio hence assumes the value
1 as the lower bound. The same features exist also under
quench 2© [panel (g)]. Here, the oscillations display a larger
amplitude and assume higher values (shown on a logarithmic
scale), while a single singularity appears immediately after
the quench [102]. Since also higher order ratios exhibit cusps,
when the gap between other eigenvalues closes, these gap
ratios do not contain information on meson masses.

The behavior of the first four return rate functions ri is
visible in panels (d) and (h). For quench protocol 1©, r1 is on
a much smaller scale than all higher order ones. It exhibits
regular oscillations, which carry the meson content of the
postquench Hamiltonian (cf. the discussion below). On the
other side, all ri in quench type 2© exhibit multiple level
crossings. Since the first cusp in r1 appears before the first
minimum, we can identify them as regular ones according
to the nomenclature in [55] [103]. In contrast to the DQPT
regime in the transverse Ising model (cf. Fig. 6 in Appendix A
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FIG. 5. Fourier spectra of ξ0 and S1 [(a), (c)], and their time derivatives [(b), (d)] under quench type (3) (left column) and (4) (right column).
Green background lines mark the following mass differences: m23, m34, m12 (ascending). Red vertical lines indicate the following mass sums
Mi j ≡ Mi + Mj : M12, M13, M14, M23 (ascending). The results allow us to identify several meson states equally accurately from entanglement
oscillations in S1 and ξ0.

of the Supplemental Material), which is also characterized
by regular cusps, they are, however, not equally spaced in
time. Moreover, while regular cusp positions coincide in the
previous case with times when the entanglement spectrum
becomes gapless [64], this is not a necessary consequence
in the mesonic regime under consideration; i.e., the modular
Hamiltonian remains gapped at these points in time, apart
from the single exception at early times.

We use different methods in this Letter to analyze the me-
son content of entanglement spectra quantitatively and draw
reliable interpretations from them. Figure 3 shows the results
of a Prony signal analysis, whose basic idea is to represent a
function as a sum of complex exponentials with frequencies
plotted in the complex plane (see Appendix D for more de-
tails). The first row displays the analysis of S1 in comparison
to ξ0 in the second row. In quench type 1© [panels (a) and
(b)] within the ferromagnetic phase, both quantities allow the
clear and stable detection of four meson states Mi, which are
consistent with a semiclassical approximation [45] (shown as
gray vertical lines). Additionally, meson mass differences mi j

(shown as green vertical lines) and the continuum threshold
at 2M1 can be identified. When the initial state is in the
paramagnetic phase, i.e., for type 2© [panels (c) and (d)],
remnants of the meson states are still visible, but less clear
due to the large entanglement growth. In both quenches, one
can observe that ξ0 even allows for a clearer extraction of
meson poles in the Prony analyses than S1. These analyses
show that the meson content of the postquench Hamilto-
nian, giving rise to entanglement oscillations, is fully encoded
in the dominant eigenvalue of the modular Hamiltonian

[104]. Interestingly, r1 in quench type 1© equally encodes the
meson masses in the frequency pattern, but in contrast to
ξ0, neither mass differences nor the continuum threshold are
appearing.

Quenches to the integrable E8 QFT regime. We now con-
sider protocols 3© and 4©, which quench toward the integrable
E8 QFT regime with 8 stable meson states. Figure 4 shows the
simulation results. In type 3© [panel (a)], S1 and S2 show entan-
glement oscillations, which, in contrast to 1©, are not bounded
but superimposed with a linear growth. As discussed, e.g., in
[105,106], such a behavior can be explained in a quasiparticle
picture by mesons produced at finite velocity (due to a large
quench magnitude), which are able to spread entanglement
and quantum correlations faster. As in the previous section,
the entanglement oscillations in the same quantities are much
less pronounced under quench type 4© [panel (e)], when the
initial state is in the paramagnetic phase.

The corresponding entanglement spectra [panels (b) and
(f)] are gapped. As in the semiclassical regime, ξ0 (blue
curves) shares the qualitative behavior of S1 in both quenches.
Similarly, multiple level crossings appear in all higher order
eigenvalues. The gap ratios gr/g1 [panels (c) and (g)] are
oscillating around lower values than the constant CFT value.
For g2/g1, the oscillations are broken by several cusps at
the minimal lower value. While the return rate density r1 in
type 3© shows oscillations, which are given by the E8 meson
masses, only higher order rate functions ri>1 exhibit level
crossings [panel (d)] [107]. The same quantity in quench type
4© [panel (h)] instead has numerous regular cusps at unequally

spaced positions, indicating the appearance of DQPTs.
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Figure 5 shows a Fourier analysis of S1 (blue curves) and
ξ0 (purple curves) for both quenches [panels (a) and (c)]. Due
to the dominating linear entanglement growth, the Fourier
spectra are decreasing toward larger frequencies and overall
relatively flat with only small peak structures. For that reason
we evaluate in panels (b) and (d) also their time derivatives,
which allow us to identify the oscillating contributions more
clearly. Several peaks become discernible that match the ana-
lytical E8 meson mass ratios as well as some mass differences
and sums. For quench 4© from the paramagnetic phase, these
features are much less pronounced. There are only mild dif-
ferences between the behavior of S1 and ξ0.

The discussions of this section exemplify that the previ-
ously found conclusions in the semiclassical meson regime
hold equally also in the relativistic E8 QFT. That is, the
dominant eigenvalue of the entanglement spectrum fully en-
codes the meson content of the QMB system or QFT. The
appearance of regular cusps at irregular positions, indicat-
ing the appearance of DQPTs, does not imply that the
entanglement spectrum becomes gapless at these points in
time.

Discussion and outlook. In this Letter we have studied the
impact of meson confinement on the time evolution of the
lowest eigenvalues in the entanglement spectrum and return

rate functions after global quantum quenches in the Ising
model. Our analyses contribute to a deeper understanding
of entanglement properties of emergent phenomena in QMB
systems and QFTs. The study of meson confinement and
DQPT properties in the (1+1)-dimensional Ising QFT is a
first step to more complex systems akin to QCD in particle
physics. This necessarily involves the consideration of gauge
theories, where the existence of DQPTs has been predicted
in [108,109] and further investigated in [110,111]. Very re-
cently, its first experimental observation was realized on a
quantum computer and simultaneously discussed with entan-
glement tomography [112]. As a key implication of our study
we see the potential use of such tomographic experiments
to access the meson content of entanglement oscillations
from the lowest part of the entanglement spectrum, in-
stead of the experimentally inaccessible entanglement entropy
itself.
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