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First-order transitions in spin chains coupled to quantum baths
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We show that tailoring the dissipative environment allows us to change the features of continuous quantum
phase transitions and even induce first-order transitions in ferromagnetic spin chains. In particular, using
a numerically exact quantum Monte Carlo method for the paradigmatic Ising chain of one-half spins in a
transverse magnetic field, we find that spin couplings to local quantum boson baths (in the Ohmic regime)
can drive the transition from the second to the first order even for a low dissipation strength. Moreover, using
a variational mean-field approach for the treatment of spin-spin and spin-boson interactions, we point out that
phase discontinuities are ascribable to a dissipation-induced effective magnetic field which is intrinsically related
to the bath quantum fluctuations and vanishes for classical baths. The effective field is able to switch the sign of
the magnetization along the direction of spin-spin interactions. The results can be potentially tested in recent
quantum simulators and are relevant for quantum sensing since the spin system could not only detect the
properties of nonclassical baths, but also the effects of weak magnetic fields.

DOI: 10.1103/PhysRevB.107.L100302

Introduction. A quantum phase transition (QPT) occurs at
zero temperature when quantum fluctuations, tuned through
a physical parameter, such as a magnetic field, are able to
induce a sudden change in the ground state of a system with
many-body interactions [1]. The behavior of static quantities
at QPT is typically obtained at the thermodynamic equilib-
rium by exploiting the quantum-to-classical mapping, that is,
the mapping to a classical statistical model with an additional
imaginary-time dimension [1]. Most studied QPTs are contin-
uous [1,2]. A paradigmatic example is provided by the Ising
chain of one-half spins where the increase of a transverse mag-
netic field induces the change from an ordered ferromagnetic
to a paramagnetic disordered phase [3]. Attention has recently
focused also on first-order QPTs [2] whose large sensitivity to
external perturbations can be exploited for sensing applica-
tions.

Any quantum system is inevitably coupled to the envi-
ronment whose interactions can significantly change physical
features. Then the fundamental question is as follows: How
does the coupling with its surroundings affect a system close
to a QPT? To this aim two different routes have been pro-
posed in the literature. In the former one, the steady state
reached by the system coupled to Markovian baths has been
investigated starting from a Lindblad master equation [4,5].
In the latter one, dissipation is explicitly introduced by mod-
eling the environment as an infinite set of harmonic quantum
oscillators [5–7]. Within this approach, the entire universe
(system+environment) is considered at thermodynamical
equilibrium. Of course, this does not imply any assumption
for the system stationary state. As a further consequence, non-
Markovian effects can be fully included [8]. In the following
we will focus our attention on this second proposal.

The recent realization of programmable spin models with
tunable interactions [9–11] has stimulated an intense theoreti-
cal study of the transverse field Ising model in the presence
of dissipation [12]. In some studies of this model, the en-
vironment is accurately modeled as an infinite set of local
boson baths. Indeed, each spin is coupled to an infinite num-
ber of oscillators giving rise to the well-known spin-boson
model [6,7,13]. In the Ohmic case, quantum Monte Carlo
(QMC) studies have shown that these dissipative mecha-
nisms can drive QPTs even in the case of a single-spin
system [13–15]. For many-body systems, nonperturbative
properties depend in a crucial way on the specific coupling
with the bath. Indeed, for the quantum Ising chain coupled to
oscillator baths [16–18], when spin-bath couplings are along
the direction of spin-spin interactions, the dynamical critical
exponent changes while the transition remains continuous.

In this Letter, the spin-bath interaction is further tailored
with the aim to induce first-order transitions. In particular, we
study zero-temperature stationary properties of the transverse
field Ising chain with one-half spins coupled to bosonic lo-
cal baths in the Ohmic regime through a term which, for a
single spin, is a combination of Jaynes-Cummings and anti-
Jaynes-Cummings interactions [19,20]. We remark that these
spin-bath couplings have been previously analyzed, limited to
the case of a single spin with a single oscillator. We stress
that, in the present Letter, for each spin there is a local bath,
each made of a large number of oscillators. This is completely
different from the situation, analyzed for example in Ref. [14]
by some of us, where there is only one global bath for all the
spins in the chain. We use the numerically exact QMC method
up to the thermodynamic limit showing that the spin couplings
considered in this work are able to drive the phase transition
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from the second to the first order also for a low dissipation
strength. Following previous studies [16–18], we focus on the
effects due to Ohmic baths, however, the change of the order
of the transition is quite robust to other kinds of baths, such as
sub-Ohmic or super-Ohmic ones.

Moreover, we develop a semianalytical zero-temperature
variational mean-field (VMF) approach which is in very good
agreement with the QMC method, clarifying that phase dis-
continuities are present only for quantum baths. In fact, the
VMF approach highlights the role played by a dissipation-
induced effective magnetic field which switches its sign along
the direction of spin-spin interactions with varying the proper-
ties of the bath. Finally, we point out that the strong sensitivity
of the spin system to the properties of nonclassical baths at
minimal coupling and to the strength of the magnetic field
could be exploited in phenomena relevant for the realization
of small-scale quantum sensors.

The model. The Hamiltonian is

H = HS + HB + HSB, (1)

where HS describes the spin couplings within the Ising chain
in a transverse field [3]

HS = �

2

L∑
i=1

σ x
i − J

4

L−1∑
i=1

σ z
i σ z

i+1, (2)

with the energy � providing the strength of the transverse field
along the x direction, the energy J the exchange couplings of
spins along the z direction, i = 1, . . . , L, indicating the L sites
of the chain, σ x

i , σ z
i the Pauli matrices on each chain site with

eigenvalues 1,−1. In Eq. (1), the Hamiltonian HB describes L
local baths, each one being associated to one of the L sites i,

HB =
L∑

i=1

∑
k

h̄ωka+
i,kai,k, (3)

where a+
i,k (ai,k) creates (destroys) the boson mode k of the

bath at the site i. All the local baths are assumed to have
the same frequency spectrum ωk (independent of the site i).
Finally, the spin-bath coupling combines Jaynes-Cummings
(rotating) and anti-Jaynes-Cummings (counterrotating) inter-
actions [19,20] through the dimensionless bath parameter γ ,

HSB =
L∑

i=1

∑
k

λk{ai,k[γ σ−
i + (1 − γ )σ+

i ] + H.c.}, (4)

where the bath spectral function F (ω) is defined in
terms of the couplings λk: F (ω) = ∑

k λ2
kδ(ωk − ω) =

αh̄
2 ω1−ν

c ων
(ωc − ω), which is proportional to the dimension-
less spin-bath coupling constant α. Unless otherwise stated,
we take h̄ = 1, � = 1, cutoff energy ωc = 10. In addition to
the coupling strength α, a very important parameter charac-
terizing the bath is ν [13]. Actually, ν = 1 corresponds to the
most studied Ohmic baths, ν < 1 to sub-Ohmic ones, ν > 1 to
super-Ohmic ones. In analogy with previous studies [16–18],
the focus of the work will be on Ohmic baths.

The QMC approach. The QMC method consists of
quantum-to-classical mapping with the introduction of an ad-
ditional imaginary-time dimension, exact integration of boson

bath degrees of freedom, and MC simulation of the resulting
system spin action up to the thermodynamic limit [1].

For the first step, we use the Suzuki-Trotter approx-
imation [3] writing the partition function as Tr(e−βH ) =∑

{φ1,φN }〈φ1|e− β

N H |φ2〉 · · · 〈φN |e− β

N H |φ1〉, where |φ j〉 is the
state of the system (both spins and bosons degrees of freedom)
at the jth imaginary time. We therefore obtain a classical
system in (1 + 1) dimensions, where Si, j = ±1 is the value of
the spin at site i = 1 . . . L and time j = 1 . . . N . For each site
i and pair of imaginary times j, j′, we introduce an auxiliary
variable bi, j, j′ = 0, 1 that is equal to 1 if a phonon is emitted
and absorbed at j and j′, 0 otherwise.

After summing over the phonon degrees of freedom, the
weight of a configuration {Si, j, bi, j, j′ } is given by

W ({Si, j, bi, j, j′ }) = exp[−Hnn({Si, j})]

×
∏
i, j

(
δBi, j ,0 + δSi, j ,−Si, j+1δBi, j ,1

)

×
∏
j′> j

[
4

�2
KSi, j ,Si, j′

(
β

N
| j′ − j|

)]bi, j, j′

,

(5)

where Hnn({Si, j}) is a nearest-neighbor classical Hamiltonian
induced by the quantum Hamiltonian (1),

Hnn({Si, j}) =
L∑

i=1

N∑
j=1

(−Jτ Si, jSi, j+1 − J̃Si, jSi+1, j ), (6)

with Jτ = − 1
2 ln( τ�

2 ), J̃ = τJ
4 , couplings along the time and

spatial directions, respectively, and periodic boundary condi-
tions in the time direction. The variables Bi, j are defined as
Bi, j = ∑

j′ bi, j, j′ , and are limited to values 0 and 1 in the limit
N → ∞, since larger values are suppressed by factors β/N .
The long-range kernel Ks,s′ (τ ) is given by

Ks,s′ (τ ) =
{

γ 2K̃s(τ ) + (1 − γ )2K̃s′ (τ ), if s �= s′,

γ (1 − γ )[K̃1(τ ) + K̃−1(τ )], if s = s′,

with

K̃s(τ ) =
∫ ∞

0
dω F (ω)

esω(τ− β

2 )

eωβ/2 − e−ωβ/2
.

Note that, for γ �= 1
2 , the kernel Ks,s′ breaks the Z2 symmetry,

since K1,−1(τ ) �= K−1,1(τ ). In particular, for γ > 1
2 , config-

urations with negative magnetization mz are favored, while
for γ < 1

2 , it is the opposite. Finally, in the classical limit,
the function K̃s(τ ) becomes constant and independent of s:
K̃s(τ ) = αωc

2β
, so that the Z2 symmetry is restored [21].

We point out that breaking of Z2 symmetry is quite gen-
eral for quantum baths, such as sub-Ohmic or super-Ohmic,
as long as γ is different from 1/2. Likewise, restoration of
Z2 symmetry is valid for different kinds of classical baths.
Therefore, we believe the main findings of our work do not
qualitatively change with varying the features of the quantum
baths. Of course, at γ = 1/2, the universality class of the
continuous transition could depend on the kind of quantum
bath [13].
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FIG. 1. Left panel: Phase diagram with J vs α for γ = 0.5 in
the case of both quantum and classical baths. FERRO stands for the
ferromagnetic, and PARA for the paramagnetic phase. Right panel:
Distribution function P as a function of the magnetization mZ for
different values of J in the case of quantum baths at γ = 0.5 and
α = 0.3 (critical Jc = 2.47). QMC simulation parameters for the
right panel: L = 10, and β = 10.

The left panel of Fig. 1 shows the phase diagram for γ = 1
2

obtained by using Binder cumulants [21]. For α = 0, QMC
results recover the well-known critical value Jc = 2 for the
transition from the paramagnetic to ferromagnetic phase [3].
The local spin operator in the spin-bath Hamiltonian (4) be-
comes γ σ−

i + (1 − γ )σ+
i = σ x

i /2, therefore it is along the
direction x as the transverse field � in Eq. (2). Clearly, at
J = 0 (case of a single spin), only the paramagnetic phase
is stable. Indeed, the single-spin model is exactly solved,
and it does not present any delocalized-localized transition of
Kosterlitz-Thouless type with increasing α [14,22]. For finite
J larger than Jc, we always find a second-order transition from
a paramagnetic to a ferromagnetic phase as a function of α.
Indeed, the critical Jc gets enhanced with increasing α along
a transition line quite sensitive to system parameters. More-
over, as detailed in the Supplemental Material, the dynamical
critical exponent z is always equal to 1 with changing α, in
analogy with QMC results in Ising chains with Ohmic bond
dissipation [23]. Therefore, our results differ from those of
the QMC literature [16–18] where σ z

i is the local spin oper-
ator mediating the interaction with quantum local baths [24].
QMC results for γ = 1

2 can be interpreted within the VMF
approach, introduced below, in terms of an enhancement, pro-
portional to α, of an effective transverse magnetic field.

As discussed in the Supplemental Material [21], classi-
cal baths provide more intense effective transverse magnetic
fields. The left panel of Fig. 1 shows that, as expected, the
classical baths are more effective in contrasting ferromagnetic
correlations. Indeed, at fixed J , the critical α to the para-
magnetic phase is smaller for classical baths. Therefore, at
α = 0.3, Jc = 2.47 for quantum baths, while Jc = 3.67 for
classical baths. In particular, for the case of quantum baths, in
the right panel of Fig. 1, we plot the distribution function P as
a function of the magnetization mZ along the z axis for values
of J smaller and slightly larger than JC . Actually, as expected
for systems with Z2 symmetry, the function P is symmetric
around zero and shows a change from a monomodal to a
bimodal character with crossing JC .

FIG. 2. Distribution function P as a function of the magnetiza-
tion mZ for different values of J in the case of quantum (left panel)
and classical baths (right panel) for α = 0.3 and γ = 0.51. QMC
simulation parameters: L = 10, and β = 100.

More interesting QMC results are obtained for γ �= 1
2

where quantum bath fluctuations break Z2 symmetry. For
J = 0 (single-spin case) the transition from a delocalized to
localized phase is still absent with increasing α, in analogy
with the case γ = 1

2 [25]. However, we find different results
about the magnetic behavior. Indeed, as shown in the left panel
of Fig. 2, for γ = 0.51, P is centered around negative values
of the magnetization mZ . With increasing J , the distribution
P shifts towards more negative values. Therefore, as soon as
γ is different from 1

2 , the effects of the bath induce a finite
magnetization along the z axis. QMC results for γ �= 1

2 can be
better understood through the VMF approach, exposed below,
in terms of a dissipation-induced magnetic field along the z
axis. On the other hand, interactions between spins and clas-
sical baths preserve Z2 symmetry, therefore, as shown in the
right panel of Fig. 2, the function P bears some resemblance
with the distribution function shown in the right panel of Fig. 1
at γ = 1

2 . We stress the prominent link between Z2 symme-
try and magnetic properties in the case of quantum/classical
baths with varying γ .

The values of the bath parameter γ smaller than 1
2 favor

positive values of the magnetization along the z axis. In fact,
configurations with opposite values of mz are obtained for
values of γ symmetric around 1

2 . For example, at γ = 0.49
and fixed α, the distribution function P can be obtained from
that shown in the left panel of Fig. 2, making only the transfor-
mation mZ → −mZ . In order to interpret in a more effective
way the numerically exact QMC results, in the following we
will present a zero-temperature VMF approach within the
framework of the spin polaron [13].

VMF: Spin polaron framework. The trial wave function is
|ψ〉 = ∏L

i=1 |ψi〉, where |ψi〉 represents the wave function of
a single spin interacting with its local bath. The single-spin
polaron will be variationally addressed for both classical and
quantum baths. We simplify the notation for L = 1 in Eq. (1):
σ x

i = σx, σ z
i = σz, σ+

i = σ+, σ−
i = σ−, and, consequently,

a+
i,k = a+

k , ai,k = ak .
First, we use the adiabatic approximation, rigorously valid

in the classical limit. Indeed, the wave function of the system
can be factorized into a product of normalized variational
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functions |ϕ〉 and |g〉, depending on the spin and bosonic
coordinates, respectively: |ψ〉 = |ϕ〉|g〉. The expectation value
of the Hamiltonian (1) on the state |ϕ〉 provides an effective
Hamiltonian for the bath whose ground wave function is a
coherent state:

|g〉 = e
∑

k

(
f λk
ωq

ak−H.c.
)
|0〉. (7)

Here, |0〉 is the bosonic vacuum state and f = 〈ϕ|[(1 −
γ )σ+ + γ σ−]|ϕ〉. At this stage, the bosonic state |g〉 can be
used to obtain an effective Hamiltonian Heff for the spin. It
is straightforward to show that Heff = − �̃

2 σx + C, where �̃ =
1 + ∑

k
2 f λ2

k
ωk

and C = ∑
k

f 2λ2
k

ωk
, i.e., the adiabatic approxima-

tion leads only to an enhancement of the transverse magnetic
field along the x axis, which is, however, enough to interpret
the QMC results at γ = 1

2 , shown in Fig. 1.
In order to get a proper inclusion of the quantum nonadi-

abatic contributions, relevant for γ �= 1
2 , we first apply a uni-

tary transformation H1 = eS1 He−S1 , with S1 = −∑
k ( f λk

ωk
ak −

H.c.), as suggested by Eq. (7). The transformed Hamiltonian
assumes the form

H1 = Heff +
∑

q

ωka†
kak + H̃I , (8)

where H̃I = ∑
k λkAak + H.c., A being an operator acting

only on the spin subsystem: A = [(1 − γ )σ+ + γ σ−] − f . By
treating H̃I as perturbation, one includes the nonadiabatic con-
tributions. The first order of the perturbation theory, followed
by the assumption of no correlation between the emission
of different bosons, suggests the following trial state for the
bath: e−S2 |0〉, where S2 = −∑

k σz( f1λk

ωk+�̃
ak − H.c.) and f1 =

γ − 1/2. In other words, S2 takes into account the possibility
that the bath can follow instantaneously the spin oscillations.
The effective Hamiltonian for the spin turns out to be

Heff = −�eff

2
σx + Ceff + heffσz, (9)

where �eff = (�̃ + ∑
k

4 f 2
1 λ2

k

ωk+�̃
)e

− ∑
k

2 f 2
1 λ2

k
(ωk+�̃)2 is the effective

transverse magnetic field, Ceff = C + ∑
k

ωk f 2
1 λ2

k

(ωk+�̃)2 is a con-

stant, and heff = 2 f
∑

k
f1λ

2
k

ωk+�̃
is the effective longitudinal

magnetic field. It is evident that the quantum fluctuations
of the bath induce a field heff along the z axis that breaks
the Z2 symmetry. Moreover, the field heff changes sign with
crossing γ = 1

2 . We note that the parameter f1 is relevant for
γ different from 1/2. Indeed, heff is proportional to the product
of the parameters f and f1.

The VMF approach can be further improved by diagonal-
izing the original Hamiltonian in the subspace spanned by
the following 2M wave functions, ψi = e

∑
k (lk,iak−H.c.)|0〉| ↑〉

and φi = e
∑

k (hk,iak−H.c.)|0〉| ↓〉, with i = 1, . . . , M, in analogy
with approaches for polaronic models [26–30]. Here, as sug-
gested by the above described approach, we assume lk,i =
f λk

ωk
+ λk fi

ωk+�i
, hk,i = f λk

ωk
− λk fi

ωq+�i
, with f , fi, and �i 2M + 1

variational parameters. In Figs. 3(a) and 3(b), where we suc-
cessfully compare the calculated magnetization mZ with QMC
results for the single spin, we prove that M = 2 is enough
to get a very accurate description of the spin polaron in any

FIG. 3. Magnetization mZ as a function of γ for different values
of J and α by using both QMC and VMF methods. Simulation
parameters: β = 100 for QMC, T = 0 for VMF; L = 1 (single spin)
in (a) and (b) for QMC and VMF, L = 40 in (c), and L = 10 in (d) for
QMC, L very large for VMF in (c) and (d).

regime. Moreover, in the case of a single spin, as expected,
the magnetization vanishes at γ = 1

2 , and, as a function of
γ , shows a crossover behavior, weakly dependent on α, from
positive to negative values.

In the case of a spin chain, as shown in Figs. 3(c) and 3(d),
the calculated magnetization mZ perfectly matches QMC re-
sults for J larger than JC [Fig. 3(c), α = 0.3, JC = 2.47 at γ =
1
2 ] and smaller than JC [Fig. 3(d), α = 1, JC = 3.63 at γ = 1

2 ].
In the first case, there is an actual first-order transition induced
by γ between states with opposite magnetization, while in the
second case, only a crossover takes place at γ = 1

2 . We stress
that the first-order transition does take place only for values
of J larger than the critical Jc obtained at γ = 1/2. Moreover,
we remark that the first-order transition occurs also for lower
values of α, therefore the spin system shows a large sensitivity
to external perturbations even at minimal coupling [21].

Finally, we complement the phase diagram of Fig. 1, show-
ing in Fig. 4 the diagram with γ vs α at fixed J (left panel), and

FIG. 4. Phase diagram with γ vs α at J = 2.5 (left panel), with
γ vs J at α = 0.3 (right panel). Vertical arrows indicate first-order
transitions, and circles denote second-order critical points which can
be encircled (curved arrows). QMC simulation parameters: β = 100,
L = 40.
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the diagram with γ vs J at fixed α (right panel). It is apparent
that one gets a horizontal line at γ = 1

2 of first-order transi-
tions terminating with a second-order critical point (denoted
with a circle in the panels of Fig. 4). From the comparison
with the phase diagram in Fig. 1, the critical point at α = 0.3
in the right panel corresponds to Jc = 2.47. As expected in
this kind of transition [1], one can go continuously from a
magnetization state to its opposite encircling the second-order
critical point (curved arrows).

Conclusions. In this Letter, through a numerically exact
QMC method and VMF approach, we have shown that a com-
bination of Jaynes-Cummings and anti-Jaynes-Cummings
spin-bath local couplings drives the transition in a transverse
field Ising chain from the second to the first order even for a
low dissipation strength α. Actually, first-order transitions are
obtained by varying the additional parameter γ , which mod-
ulates the relative coupling between Jaynes-Cummings and
anti-Jaynes-Cummings terms. We stress that, in the absence
of the parameter γ , as reported for example in a previous
study [14], a global boson bath promotes quantum phase

transitions which are continuous and start from a critical value
of α.

In addition to spin-spin interactions [9,10], Jaynes-
Cummings couplings can be implemented in quantum simu-
lators [31,32], which, therefore, can potentially test the results
exposed in this Letter. Moreover, one can exploit the high sen-
sitivity of the systems near the transition point of first-order
quantum transitions [2], which are found to be robust against
dissipation [33]. Indeed, for values of γ close to 0.5, the
magnetization is sensitive to the variation of J (hence of the
magnetic field �). Therefore, the quantum bath engineering
gives rise to a setup which can be relevant for the realization
of small-scale quantum sensors. Finally, the approaches used
in this Letter can be easily generalized to more complex spin
systems [34,35] and spin-bath couplings [36], and in principle
allow us also to include the effects of coherent sinusoidal
drives [37].
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