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A strongly interacting plasma of linearly dispersing electron and hole excitations in two spatial dimensions
(2D), also known as a Dirac fluid, can be captured by relativistic hydrodynamics and shares many universal
features with other quantum critical systems. We propose a one-dimensional (1D) model to capture key aspects
of the 2D Dirac fluid while including lattice effects and being amenable to nonperturbative computation. When
interactions are added to the Dirac-like 1D dispersion without opening a gap, we show that this kind of irrelevant
interaction is able to preserve Fermi-liquid-like quasiparticle features while relaxing a zero-momentum charge
current via collisions between particle-hole excitations, leading to resistivity that is linear in temperature via a
mechanism previously discussed for large-diameter metallic carbon nanotubes. We further provide a microscopic
lattice model and obtain numerical results via density-matrix renormalization group simulations, which support
the above physical picture. The limits on such fast relaxation at strong coupling are of considerable interest
because of the ubiquity of bad metals in experiments.

DOI: 10.1103/PhysRevB.107.L100301

Introduction. A strongly interacting plasma of linearly
dispersing electron and hole excitations in two dimensions
(2D), also known as a Dirac fluid, shares many universal fea-
tures with other quantum critical systems. With particle-hole
symmetry preserved, under an external electric field, there
exists a “zero-momentum mode” in the Dirac fluid which
carries a nonvanishing charge current [1–3]: Electrons and
holes move symmetrically in opposite directions. Protected
by conservation of momentum, in a continuous translation-
ally invariant system, such a charge current could only be
relaxed via scattering within the quasiparticles in the current.
The most studied example of this kind of Dirac fluid is the
electron-hole plasma in high mobility graphene at the charge
neutrality point, which is believed to have Planckian-bounded
dissipation [1–13], referring to a relaxation or scattering time
τp ∼ h̄/kBT set only by temperature and the Planck constant
[14,15]. There is considerable experimental evidence for the
importance of such relaxation rates as an upper bound in
a broad range of “bad metals” [16–19], most famously in
the linear-in-temperature resistivity of some cuprate super-
conductors at optimal doping, in contrast to the standard
form ρ = ρ0 + AT 2 of Fermi liquids. While the origin of
linear-in-temperature resistivity in the normal state of high Tc

superconductors at optimal doping remains an open question
[14–20], hydrodynamic studies for quantum critical fluids
suggest one kind of answer [1–3,11–15,21,22]: A quantum
critical electron fluid with maximal Planckian dissipation is
one theoretical route to linear-in-T resistivity, even if the na-
ture of a quantum critical point near optimal doping is difficult
to probe because of the intervening superconductivity.

Conceptually, if one were to take a sheet of graphene
and wrap it into a metallic armchair nanotube, one might
expect some signs of 2D Dirac fluid transport along the tube
axis to be preserved. Indeed, Balents and Fisher argued that

interactions in a sufficiently large nanotube, while expected
ultimately to open a gap, might show a linear-in-T resistivity
over a range of temperatures, based on particle-hole scattering
as a perturbation [23]. As nothing in the Dirac fluid picture is
manifestly specific to two dimensions, one could ask whether
similar features could be obtained in one spatial dimension,
where metallic transport is well known to have unique features
[24]. On the other hand, previous models have been studied
to explore whether it is possible to relax the current in an
impurity-free, nonintegrable 1D system at finite temperature,
but these generally have parametrically slower relaxation than
required for linear-in-T resistivity [25–28]. All these encour-
age us to look elsewhere for a 1D model which can support
Planckian dissipation and linear-in-T resistivity, in analogy
with the Dirac fluid. As more nonperturbative calculations
are available in one dimension both theoretically and numeri-
cally, constructing a 1D Dirac fluid and increasing interactions
to strong coupling is a test of one origin of Planckian
dissipation.

In this Letter, we propose a 1D model with no observ-
able gap, and use a kinetic theory approach to determine
its resistivity [29–34]. To check that this physics can be re-
alized in a solid, we then introduce a microscopic lattice
model that manifests the aforementioned internal scatter-
ing process. We further use time-dependent density-matrix
renormalization-group (DMRG) simulations [35–38] to con-
firm the gaplessness of the lattice model, and compute the
current relaxation at finite temperature.

Continuous model. The low-energy theory of a noninter-
acting 1D metal can be obtained by linearizing the spectrum
near the Fermi level. When the Fermi points for the left- and
right-moving linear branches coincide with each other, we
arrive at a Dirac-like crossing, as shown in Fig. 1(a). The
linearized free Hamiltonian around the Fermi point, H0, can
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FIG. 1. Fermionic spectrum linearization and scattering pro-
cesses based on it. (a) A 1D noninteracting metallic band can be
linearized close to the Fermi level EF within the energy cutoff vF �.
Note that the left Fermi point and right Fermi point coincide at k0

F .
(b) The linearized spectrum can be described by the chiral basis, with
the red modes moving to the right with velocity +vF and blue modes
moving to the left with velocity −vF in real space. The linearized
spectrum can also be written in the energy basis, where states are
labeled by positive (orange) and negative (purple) energies. The
velocities for different quasiparticles are also shown in the figure.
(c) Illustration for particle-hole scattering or fast umklapplike scatter-
ing (FUS). Two right movers with momentum k1 and k2 are scattered
to the left-moving branch with momentum k1 + q and k2 − q. Note
that the total momentum is conserved in this process. (d) Conven-
tional umklapp scattering in 1D metal for two right movers (k1, k2)
scattering into two left movers (k3, k4). Note that for conventional
umklapp scattering, the Fermi points for the right and left movers
are different (say at k±

F = ±π/2). The momentum is conserved only
up to a reciprocal vector G = 2π , i.e., there is a large momentum
transfer in the scattering process.

be written in a chiral basis as

H0 = vF

∫
dk

2π
k[ψ†

R(k)ψR(k) − ψ
†
L (k)ψL(k)], (1)

where ψR(k) and ψL(k) stand for the annihilation operators
for right- and left-moving chiral fermion modes at one-
dimensional momentum k, respectively, and vF is the Fermi
velocity near the Fermi level. The above chiral basis can be
transformed into the energy basis [12,31], in which γ+(k) and
γ−(k) annihilate an electron with energy above and below the
Dirac node, respectively,(

γ+(k)
γ−(k)

)
= 1

2

(
1 + ϑ (k) 1 − ϑ (k)
1 − ϑ (k) 1 + ϑ (k)

)(
ψR(k)
ψL(k)

)
, (2)

where ϑ (x) = 1 for x > 0 and ϑ (x) = −1 for x < 0. Note that
the density of states vanishes at the Dirac node, so hereafter
we can neglect the singularity at k = 0 itself. With this, the
free Hamiltonian is transformed into the following form:

H0 = vF

∫
dk

2π
|k|[γ †

+(k)γ+(k) − γ
†
−(k)γ−(k)]. (3)

Both chiral and energy bases are plotted in Fig. 1(b).

Now we study the full Hamiltonian H with an interaction
Hint turned on:

H = H0 + Hint. (4)

We would like the interaction to introduce the following fast
umklapplike scattering (FUS) among the chiral fermions [39]:

Hint =
∫

dk1

2π

dk2

2π

dq

2π
V (q)[ψ†

R(k1 + q)ψ†
R(k2 − q)ψL(k2)

× ψL(k1) + ψ
†
L (k1 + q)ψ†

L (k2 − q)ψR(k2)ψR(k1)].

(5)

This process takes two electrons on the same branch to the
opposite branch, as shown in Fig. 1(c) [40–43]. Unlike the
conventional umklapp scattering for a one-component model
[see Fig. 1(d)], the FUS defined here does not carry large
momentum transfer, as the left- and right-moving branches’
Fermi points coincide at the Dirac node. One can alternately
view one of the processes as the scattering of a hole rather than
an electron. We will see in a particle-hole symmetric system,
a current of oppositely directed particles and holes can have
zero total momentum, allowing the current to relax through
momentum-conserving collisions.

The interaction Eq. (5) can also be written in the energy
basis

Hint =
∑

λ1λ2λ3λ4

∫
dk1

2π

dk2

2π

dq

2π
Tλ1λ2λ3λ4 (k1, k2, q)

× γ
†
λ4

(k1 + q)γ †
λ3

(k2 − q)γλ2 (k2)γλ1 (k1), (6)

where the λ1,...,4 in the summation take the value of ± and
the structure factor Tλ1λ2λ3λ4 (k1, k2, q) = T 2

λ1λ2λ3λ4
+ T 3

λ1λ2λ3λ4

where T 2
λ1λ2λ3λ4

= V (q)[λ1ϑ (k1) − λ4ϑ (k1 + q)][λ2ϑ (k2) −
λ3ϑ (k2 − q)]/16 and T 3

λ1λ2λ3λ4
= V (q)[1 − λ1λ3ϑ (k2

1 +
qk1)][1 − λ2λ3ϑ (k2

2 − qk2)]/16 are the matrices which
indicate the scattering amplitudes among electrons with
positive and negative energy.

Kinetic theory. One can use the kinetic (hydrodynamic)
theory to describe transport properties [29–33]. Note that,
for the particle density ρ(x) = ψ

†
R(x)ψR(x) + ψ

†
L (x)ψL(x),

the continuity equation ∂tρ(x) + ∂x j(x) = 0 gives the U (1)
current density j(x) = vF [ψ†

R(x)ψR(x) − ψ
†
L (x)ψL(x)]. As-

suming the charge carried by each particle (hole) is +Q (−Q),
the total charge current J reads [12,31]

J = vF Q
∑

r=R,L

∫
dk

2π
rψ†

r (k)ψr (k) (7a)

= vF Q
∑
λ=±

∫
dk

2π

λk

|k|γ
†
λ (k)γλ(k). (7b)

Note that in Eq. (7a), we have r = 1 for right movers (R) and
r = −1 for left movers (L). Similarly, the total momentum
reads

P =
∑

r=R,L

∫
dk

2π
kψ†

r (k)ψr (k) =
∑

λ

∫
dk

2π
kγ

†
λ (k)γλ(k).

(8)
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We define the distribution functions under the energy basis
γ± at time t as

fλ(k, t ) = 〈γ †
λ (k, t )γλ(k, t )〉. (9)

In the equilibrium, without external perturbation, these are
related to the Fermi distribution function f 0(p), such that
f±(k, t ) = f 0(±εk ) = [e(±εk−μ)/kBT + 1]−1 with μ the chemi-
cal potential. From standard bosonization [44], one can safely
assume that turning on the interaction will neither open a
gap, nor have an immediate modification of the single-particle
spectrum of Eq. (3). Then the Fermi-liquid picture survives,
ελ(k) = λvF |k|, with λ = ± for two flavors of quasiparti-
cles: the positive energy ones with the distribution function
f+(k, t ), and the negative energy ones with the distribution
function f−(k, t ).

The quantum Boltzmann equation with collisions reads
[12,31,45][

∂

∂t
+ QE (t )

∂

∂k

]
fλ(k, t ) = −2π

vF

∫
dk1

2π

dq

2π
R. (10)

The integrand R = R1 + R2 [46], capturing the scattering
among excitations, can be derived by a simple application of
Fermi’s golden rule together with the interaction in Eq. (6).
The first part is the scattering among different flavors of exci-
tations (particle-hole to particle-hole) R1 = δ[(|k| − |k1|) −
(|k + q| − |k1 − q|)]R1(k, k1, q){ fλ(k, t ) f−λ(k1, t )[1 − fλ
(k + q, t )][1 − f−λ(k1 − q, t )] − [1 − fλ(k, t )][1 − f−λ

(k1, t )] fλ(k + q, t ) f−λ(k1 − q, t )]}, with scattering amplitude
R1(k, k1, q) = 4|T+−−+(k, k1, q) − T+−+−(k, k1,−k − q +
k1)|2. The second part R2 captures the scattering among the
same flavors of excitations (particles to particles or holes to
holes), which will not contribute to the resistivity at leading
order [47]. To solve Eq. (10), we first parametrize the change
in fλ from its equilibrium value by using the ansatz [12,45]

fλ(k, ω) = 2πδ(ω) f 0(λεk ) + Q
kE (ω)

|k| f 0(λεk )

× [1 − f 0(λεk )]gλ(εk, ω), (11)

with gλ(εk, ω) a function to be determined, and we have re-
placed fλ(k, t ) with its Fourier counterpart in the frequency
domain fλ(k, ω). When μ = 0, the system is at the particle-
hole symmetric point, and an applied electric field E (ω)
generates deviations in the distribution functions for particles
and holes with opposite signs. This is due to the fact that the
driving term Eq. (10) is odd under λ → −λ, thus the deviation
also has to be asymmetric in λ: gλ(εk, ω) = λg(k, ω). In co-
ordinate space, there will be newly generated holes (particles)
moving in alignment (antialignment) with the external electric
field. This can be viewed as the generation of particle-hole
pairs. For the states within the orange and purple squares
shown in Fig. 2(a), at the same k point, the particle and hole
have opposite momentum, and each particle-hole pair has
zero total momentum defined by Eq. (8) in the presence of
particle-hole symmetry. On the other hand, since the particles
and holes carry opposite charge, if they move in opposite
directions, the total current given by Eq. (7) is nonzero. Sub-
stituting Eq. (11) into Eq. (10), one could derive a solution
for g via the variational methods [12,44,45]. Combined with
Eq. (7b), with the definition of charge conductivity σ = J/E ,

FIG. 2. Generation and relaxation of charge current in a particle-
hole symmetric system. (a) Generation of the zero-momentum mode
under an external electric field. The net charge current for the states
in the plot is J = 4QvF . (b) Collision between the particle and hole
via the interaction (wavy line) based on the initial state shown in
(a). (c) Final state after the scattering process in (b), which has zero
momentum and zero charge current.

we arrive at

σ (ω) = 〈J〉
E (ω)

≈ 2Q2

h

h̄vF

−ih̄ω + κkBT
, (12)

where κ is associated with interflavor scattering,

κ =
∫

dk̃

2π

dq̃

2π

4R1(k̃,−k̃, q̃)/v2
F

(e−|k̃| + 1)(e|k̃| + 1)(e|k̃+q̃| + 1)(e−|k̃+q̃| + 1)
.

(13)

As a check for the validity of our kinetic theory, we first
notice that in the collisionless limit R = R1 = R2 = 0 such
that κ = 0, we shall see

σ (ω) ≈ 2Q2

h

h̄vF

−ih̄ω + η
, (14)

with η a positive infinitesimal. This is consistent with the
bosonization results for a clean system in 1D [48]. The
presence of a Drude peak in the low-frequency limit is the
signature of ballistic transport [48,49].

In the presence of FUS, κ �= 0. Compared with the
low-frequency diverging result for the collisionless case in
Eq. (14), the conductivity with collisions has some broadening
at finite temperature. This shows that the zero-momentum
mode can be relaxed solely by the momentum-conserved in-
ternal scattering process among excitations. Such a physical
picture is plotted in Figs. 2(b) and 2(c). From Eq. (12), we
find the resistivity ρ = 1/σ in the dc limit has a linear-in-T
dependence, i.e., the Planckian dissipation

ρ(ω → 0) ∼ AT, (15)

with the coefficient A = πκkB/Q2vF . A one-dimensional
Dirac system whose linear dispersion survives the interaction
can be captured by a single model-dependent parameter, the
Fermi velocity vF . Combined with the temperature T , the
only timescale in the continuous limit is the Planckian time
τp = h̄/kBT . Such a timescale gives the scattering rate for
particle-hole excitations in an impurity-free Dirac system, and
sets up an upper bound for the resistivity at finite tempera-
ture ρ = AT . The coefficient A ∝ |V (q)/vF |2, which shows
that the resistivity is also positively related to the interaction
strength in the perturbative region, in accordance with the pre-
vious results in wrapping a graphene sheet to large-diameter
metallic carbon nanotubes [23].
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Lattice model. We start from a fermionic lattice model
which possesses a low-energy Hamiltonian Eq. (4) that reads

H̃ = H̃0 + H̃2 + H̃3,

H̃0 = + t
∑

i

[−iξa†
i bi + iξb†

i ai − ib†
i ai+1 + ia†

i+1bi],

H̃2 = V2

4

∑
i

[(a†
i bi − b†

i ai )(a
†
i+1bi+1 − b†

i+1ai+1)

+ (b†
i ai+1 − a†

i+1bi )(b
†
i+1ai+2 − a†

i+2bi+1)],

H̃3 = V3

4

∑
i

[(a†
i ai − b†

i bi )(a
†
i+1ai+1 − b†

i+1bi+1)

+ (b†
i bi − a†

i+1ai+1)(b†
i+1bi+1 − a†

i+2ai+2)]. (16)

Here, the H̃0 stands for the free Hamiltonian and H̃2 + H̃3 is
the interaction. The kinetic part H̃0 can be connected to the
integrable XX model [50]. The addition of H̃2 + H̃3 breaks
the integrability (see a plot of the crossover of level statistics
from Poisson to Wigner-Dyson in the Supplemental Mate-
rial [44,51]), which justifies the legitimacy of using kinetic
equations in our analytic calculations. The form of the in-
teraction is obtained by seeking to construct a Hamiltonian
which has FUS as its naive continuum limit, then symmetriz-
ing the Hamiltonian, i.e., ensuring that it does not include a
relevant, gap-opening dimerization at least at leading order.
The a†

i and b†
i denote the creation operators for two distinct

degrees of freedom at the same point in the ith unit cell.
When ξ = 1, the Bloch Hamiltonian for H̃0 can be linearized
around k = 0, and has a Dirac-like structure as given in
Eq. (1). When V2 = V3, to the leading order the interaction
will only contain the FUS given in Eq. (5). We further provide
the charge current density operator ji+1 = (+tQ)[b†

i ai+1 +
a†

i+1bi] which with density-density interactions satisfies the
standard continuity equation ∂ρi(t )/∂t + ( ji+1 − ji ) = 0 for
the local charge density of each unit cell ρn = Q(a†

nan +
b†

nbn) [44]. The dc conductivity may be found via the Kubo
formula

σ = lim
tM→∞ lim

N→∞
1

NT
Re

∫ tM

0
dt〈J (t )J (0)〉, (17)

where the total charge current for a system with N unit cells
at time t is J (t ) = ∑N

i=1 ji(t ) [28,52–55].
DMRG results. We first confirm that the lattice model

Eq. (16) is gapless for V2,V3 < 4t using the density-matrix
renormalization group [35,44]. To evaluate the conductivity,
we proceed using standard techniques [56–58]: Finite tem-
peratures are implemented by going from a pure state to
the density operator. We enlarge the local Hilbert space to
include an auxiliary part, which is traced out when perform-
ing expectation values. The state at β = 1/T = 0 is exactly
initialized on a finite chain with L = 96 and then propagated
to the desired β. After that, the state is perturbed by applying
the current operator and propagated in real time up, which
yields the current correlation function 〈J (t )J〉/L. We have
chosen a system size that is large enough so as not to allow
the current to reach the finite system boundaries at the end
of the simulation. Since the Hamiltonian contains more than
nearest-neighbor interactions, we cannot use a standard time-
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FIG. 3. Time-dependent current-current correlation function at
V2 = V3 = 3 calculated using DMRG.

evolving block decimation algorithm but instead employ the
time-dependent variational principle (TDVP) [59]. We use the
two-site TDVP algorithm [44,59–61].

For small V = V2 = V3, the entanglement buildup is rela-
tively small, but we are also very close to the integrable point
V = 0, resulting in very long relaxation times, and vice versa
for large V . Faced with these trade-offs, we find that we need
to go to V = 3 to be able to evaluate the current correlations.
The results are shown in Fig. 3. It turns out that we still can-
not reach timescales which are long enough to quantitatively
compute the integral in Eq. (17), and we observe that below
T = 1/8–1/10, the different curves essentially collapse onto
one curve for the times we are able to access. Assuming that
this collapse will continue to hold for the inaccessible times
as well, this means that the integral over 〈J (t )J〉/L becomes
independent of T in this regime. Due to the prefactor of 1/T
in Eq. (17), this points towards a resistivity which is indeed
proportional to T in the low-temperature regime. The seem-
ingly complicated model Eq. (16) provides a route to realize
the conjectured Planckian upper bound to the resistivity for a
class of realistic interacting semimetals in 1D with local and
nonrandom interactions [23,62].

Conclusion. We proposed a model for a 1D Dirac fermionic
system as well as its lattice counterpart, and showed that
quasiparticles broaden from collisions at finite temperature
compared with the well-known diverging results for 1D two-
channel ballistic transport. Verifying transport similar to that
proposed for the 2D Dirac liquid in a 1D model provides an
alternative point of view on the origin of bad metallic behav-
ior, and observing the dominance of umklapp-like scattering
in our model complements other possibilities for transport
theory in one dimension dominated by other irrelevant oper-
ators [63]. The analytical and numerical methods available to
explore transport in low spatial dimensions make it feasible to
search for evidence of other physics originally proposed for
higher dimensions, as we have done here for the Dirac fluid
[64–68].
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