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Symmetry breaking for semiconductor excitons
induced by Coulomb coupling between heavy and light holes
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Semiconductor excitons are commonly seen as hydrogen atom. This analogy requires a unique hole mass. In
reality, this is not so due to the complexity of the semiconductor band structure. The precise consequences on the
exciton physics of the Coulomb coupling between heavy and light holes remain a tricky open problem. Through
an “optimized perturbative” approach that uses excitons with a flexible hole mass as a basis, we show that for
zero exciton wave vector, the heavy-light hole mass difference does not split the (2×4) exciton degeneracy in
zinc-blende-like semiconductors, the hole mass for binding energy being close to the average mass inverse. By
contrast, for nonzero exciton wave vector that physically breaks the crystal symmetry, the exciton degeneracy
splits into two branches quantized along the exciton wave vector, with nontrivial center-of-mass dependence not
only on the heavy and light hole masses, but also on the electron mass.

DOI: 10.1103/PhysRevB.107.L081203

The impact of excitons on linear and nonlinear optics of
semiconductors is of paramount importance [1] for modern
technology. Powered by mature conventional heterostructures
and novel low-dimensional materials, a new momentum has
recently gathered to exploit excitons for sensing [2], quantum
simulation [3], quantum memory and quantum circuits [4,5].

The exciton is a composite quantum particle usually
seen as one negatively-charged conduction electron and one
positively-charged valence hole correlated by Coulomb attrac-
tion, in this way sharing similarity with the hydrogen atom.
Driven by this attraction, bound-state excitons show up as
pronounced narrow absorption lines below the band gap.

Such a simplified exciton picture, however, has to be
questioned when facing cutting-edge challenges in the emerg-
ing field of “excitonics” [6] because the hole definitely
is a very tricky quantum object: it fundamentally corre-
sponds to an electron absence in the full valence band, with
spin and spatial degeneracies mixed by the spin-orbit in-
teraction. The resulting valence band complexity defies the
gross exciton reduction to hydrogen-like eigenstates. Even
within the spherical approximation valid for zinc-blende-like
cubic semiconductors, there are still two holes with differ-
ent masses, coupled by Coulomb scatterings in a far from
trivial way [7]. These two masses prevent using the hydro-
gen procedure—that fundamentally transforms the two-body
problem into two separate one-body problems—to solve the
resulting Schrödinger equation exactly, as required to derive
bound states. A procedure, completely different from the very
first line, must be found.

The fact that heavy holes can turn light under Coulomb
interaction, leads us to anticipate that for zero exciton center-
of-mass wave vector, the heavy and light hole masses should
appear in the exciton binding energy, through a unique
averaged value because in the absence of cubic-symmetry

breaking, there is no physical reason for the exciton energy to
split. By contrast, a nonzero exciton wave vector that produces
such a symmetry breaking, should lead to a splitting of the ex-
citon energy into two branches with different center-of-mass
masses.

What we show. The exciton binding energy is driven by
a single hole mass value, so that the exciton degeneracy is
preserved despite the hole mass difference. This single mass
is close to m∗

h , obtained by averaging the hole mass inverses
[see Eq. (1)], not only for small hole mass difference, but
also for light conduction electron. Yet, this single hole mass
does not describe the exciton motion: When the exciton wave
vector K differs from zero, the exciton splits into two branches
in which the heavy and light holes appear through the two
(±3/2) and (±1/2) linear combinations quantized along K in
a way similar to the heavy-light hole splitting induced by the
spin-orbit interaction in the valence band.

The major difficulty of this problem is to handle the
Coulomb interaction exactly—as required for bound states—
while the extremely complicated heavy-light Coulomb scat-
terings [7] deprive any hope to analytically solve the
corresponding Schrödinger equation. The trick we have found
to overcome this difficulty, is to introduce an exciton basis
constructed on holes having a single, flexible hole mass mh.
Its states are obtained from a hydrogen-like procedure, with
the Coulomb interaction handled exactly. We look for the
consequences of having two hole masses different from mh,
by treating the residual one-body hole kinetic term through
a perturbative approach. The mh hole mass is ultimately ad-
justed for the resulting exciton ground-state energy to be
minimum. The procedure we propose, that can be qualified
as an “optimized perturbative approach”, is similar to the
optimized δ expansion [8,9] that aims at obtaining better than
conventional perturbative results. This procedure allows us
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FIG. 1. A “in” heavy hole (Jkh = ±3/2) can stay heavy
(Jk′

h
= ±3/2) or turn light (Jk′

h
= ±1/2) under a Coulomb inter-

action. The associated scattering depends on the angle between the
“in” and “out” hole wave vectors (kh, k′

h ) in a very complicated way
[7].

to catch the physics of the heavy-light hole problem. The
result we find reads in terms of the hole mass difference
(mH − mL )/(mH + mL ), within a me/(me + m∗

h ) prefactor, for
the electron mass has to show up in some way when dealing
with exciton.

The problem. We consider a zinc-blende-like cubic semi-
conductor with valence band having a threefold spatial
degeneracy labeled as μ = (x, y, z) along the crystal axes.
The spin-orbit interaction mixes the (3×2) hole states |μ〉 ⊗
|s〉 and splits their subspace into a fourfold level Jz =
(±3/2,±1/2) quantized along the crystal axis z, and a
twofold level that we here neglect as it is far below in energy
[10]. The k · p coupling of the fourfold valence electrons to
the conduction levels [11] produces two energy dispersions
associated with heavy and light masses (mH , mL ) in the spher-
ical approximation that neglects the warping [12–16]. The
resulting heavy and light holes are labeled by Jkh = (±3/2)
and Jkh = (±1/2) indices that are quantized along the hole
wave vector kh.

The Coulomb interaction, diagonal for holes in the spatial
Bloch states labeled by μ, stays diagonal [17] for spin-orbit
holes labeled by Jz, but does not stay diagonal [7] for Jkh

holes because the hole wave vector kh changes in a Coulomb
scattering (Fig. 1). This is why working with different heavy
and light masses makes the exciton problem in bulk samples
tremendously difficult. Note that this difficulty does not exist
in quantum wells because the confinement brings the light
holes far below in energy, so that we can neglect their role
[18].

It is then not a surprise that when dealing with bulk exciton,
a unique mass is assigned to the hole, its common value
[12,13] reading in terms of heavy and light masses as

1

m∗
h

= 1

2

(
1

mH

+ 1

mL

)
(1)

While averaging mass inverses is reasonable for exciton bind-
ing because this binding depends on the hole mass as 1/mh,
such an averaging is hard to accept for exciton center of mass
because its hole part would then tend to 2mL for mH � mL .

As the Coulomb interaction couples heavy and light holes,
a heavy hole can turn light in a Coulomb scattering, with
an amplitude that heavily depends [7] on the angle between
the incoming and outgoing wave vectors, kh and k′

h. For
holes having different masses, the exciton that results from
the repeated Coulomb scatterings between electron and hole
is not analytically solvable for a very simple reason: it is no
more possible to reduce the two-body electron-hole problem
to two one-body problems. Indeed, the kinetic energy of an

TABLE I. Values for m∗
h in Eq. (1), m∗∗

h in Eq. (3), E (±)
K =

EK(1 ± r) in Eq. (4) and TK = EK/kB , for various semiconductors.
The mass unit is the free electron mass m0. The exciton wave vector
K is obtained from Egap � h̄(c/nr )|K| where nr is the semiconductor
refractive index.

GaAs GaSb InP InAs

me 0.063 0.041 0.08 0.023
mH 0.51 0.4 0.6 0.42
mL 0.082 0.05 0.089 0.026
Egap (eV) 1.52 0.81 1.42 0.42
m∗

h 0.14 0.089 0.16 0.049
m∗∗

h /m∗
h 1.15 1.17 1.17 1.22

r 0.5 0.53 0.49 0.6
nr 3.26 3.71 3.08 3.51
EK (µeV) 117 68.5 79.4 28.9
TK (K) 1.36 0.8 0.92 0.34

electron-hole pair with masses (me, mh) can be rewritten as

h̄2k2
e

2me
+ h̄2k2

h

2mh
= h̄2K2

2(me + mh)
+ h̄2k2

2

(
1

me
+ 1

mh

)
(2)

for ke = k + γeK and kh = −k + γhK with γe = 1 − γh =
me/(me + mh). Depending on which hole is scattered, mh can
be mH or mL . So, although the pair center-of-mass wave vector
ke + kh = K stays constant in a Coulomb scattering, it is
impossible to define a pair relative-motion wave vector k and
follow its change at each Coulomb interaction.

To approach this problem, we introduce the Ĥ0 Hamilto-
nian in which all Jk = (±3/2,±1/2) holes are taken with
the same mass mh, not necessarily equal to m∗

h . The resulting
ground-state exciton, obtained from the standard hydrogen-
like procedure, is (2×4)-fold degenerate. The consequences
of the hole mass difference follow from �̂ = Ĥ − Ĥ0 acting
in this eightfold exciton subspace (see Supplemental Material,
SM [19]), for Ĥ being the Hamiltonian when mH �= mL .

Main results.
(i) For zero exciton center-of-mass wave vector, the �̂ dif-

ference is diagonal in the eightfold ground-exciton subspace,
all states suffering the same energy shift. So, the hole mass dif-
ference does not break the exciton degeneracy. The effective
average hole mass associated with the ground exciton binding,
as obtained from Eq. (25) (see below), reads

m∗∗
h � m∗

h

[
1 + β

me

me + m∗
h

(
mH − mL

mH + mL

)2
]

(3)

with β � 0.90. It deviates from m∗
h at second order only in

hole mass difference, with a larger deviation for large electron
mass. Table I for zinc-blende-like semiconductors shows that
the hole mass m∗∗

h is heavier than m∗
h by 15% to 20%.

(ii) For nonzero exciton wave vector K, the �̂ difference
splits the eightfold ground exciton into two branches in a
tricky way: The resulting heavy and light excitons are not
made of heavy or light holes as naïvely thought, but of their
spin-orbit-like combinations, JK = ±3/2 and JK = ±1/2,
with JK quantized along K. The associated center-of-mass
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energies, given in Eq. (29), read (Table I)

E (±)
K = h̄2K2

2M (±)
X

� h̄2K2

2(me + m∗
h )

[
1 ± mH − mL

mH + mL

m∗
h

me+m∗
h

]

(4)

When the hole mass ratio mL /mH decreases from 1 to 0,
the center-of-mass ratio (me + m∗

h )/M (±)
X

varies from 1 to
1 ± m∗

h/(me + m∗
h ) = 1 ± 2mL /(me + 2mL ): The smaller the

electron mass compared to light hole, the larger the change
in center of mass, a result hard to anticipate.

Relevant Hamiltonians. The Hamiltonian Ĥ for one elec-
tron and one hole reduces to the kinetic energies of the
spatially nondegenerate electron and the threefold hole, plus
their Coulomb interaction, Ĥ = K̂ (e) + K̂ (h) + V̂ (eh).

(a) The kinetic part for me conduction electron reads

K̂ (e) =
∑

ke

∑
s=±1/2

h̄2k2
e

2me
â†

ke,s
âke,s (5)

where â†
ke,s

creates a ke electron with spin s quantized along
an arbitrary axis.

(b) In the spherical approximation that neglects the warp-
ing, the upper fourfold valence level consists of holes having
different masses (mH , mL ), labeled by Jkh = (±3/2,±1/2)
index quantized along the hole wave vector kh. The hole
kinetic part reads

K̂ (h) =
∑

kh

∑
J=(±3/2,±1/2)

h̄2k2
h

2mJkh

b̂†
kh,Jkh

b̂kh,Jkh
(6)

where b̂†
kh,Jkh

creates a heavy or light hole with mass
(m±3/2, m±1/2) = (mH , mL ).

(c) The electron-hole Coulomb interaction is diagonal
[17] when written in terms of holes in Bloch states labeled by
μ = (x, y, z), or in spin-orbit states labeled by Jz quantized
along the crystal axis z,

V̂ (eh) = −
∑

s=±1/2

∑
J=(±3/2,±1/2)

×
∑
q �=0

4πe2

εscL3q2

∑
kekh

â†
ke+q,sz

b̂†
kh−q,Jz

b̂kh,Jz âke,sz (7)

for a sample volume L3 and a dielectric constant εsc.
By contrast, this interaction does not stay diagonal, with

complicated Coulomb scatterings [7], when written in terms
of heavy/light holes with Jkh index quantized along the hole
wave vector kh (Fig. 1). Indeed, the creation operators for the
two sets of holes are related by the following basis change:

b̂†
kh,Jkh

=
∑

J ′
z =(±3/2,±1/2)

b̂†
kh,J ′

z
z〈J ′|J 〉kh (8)

where the z〈J ′|J 〉kh overlap depends [7] on the (θkh , ϕkh ) an-
gles of the kh vector in the (x, y, z) crystal axes, Jkh reducing
to Jz for kh along z.

Exciton basis. To derive the effects of the hole mass differ-
ence on exciton, we introduce as exciton basis, the eigenstates
of

Ĥ0 = K̂ (e) + K̂ (h)
0 + V̂ (eh) (9)

where K̂ (h)
0 reads as K̂ (h) with (mH , mL ) replaced by mh, which

is determined by minimizing the resulting exciton energy in
the presence of different hole masses.

(a) To calculate the Ĥ0 eigenstates, we first note that∑
J=(±3/2,±1/2)

|J 〉kh kh〈J | =
∑

J=(±3/2,±1/2)

|J 〉zz〈J | (10)

since they both form a complete set. This allows us to replace
Jkh by Jz in K̂ (h)

0 , since the hole masses in K̂ (h)
0 are the same.

The Ĥ0 Hamiltonian then splits as

Ĥ0 =
∑

sz=±1/2

∑
Jz=(±3/2,±1/2)

ĥsz,Jz (11)

where ĥsz,Jz is a hydrogen-like Hamiltonian.
(b) The resulting eigenenergies split into a center-of-mass

part and a relative-motion part

EK,ν;sz,Jz = h̄2K2

2(me + mh)
+ εν (12)

The creation operators for the corresponding (2×4)-fold ex-
citons |K, ν; sz,Jz〉 read as

B̂†
K,ν;sz,Jz

=
∑

k

â†
−k+γeK,sz

b̂†
k+γhK,Jz

〈k|ν〉 (13)

where 〈k|ν〉 is the hydrogen-like wave function, with energy
εν that scales in Rydberg unit [20]

RX = μX e4

2h̄2ε2
sc

= h̄2

2μX a2
X

(14)

for μ−1
X

= m−1
e + m−1

h .
These Ĥ0 eigenstates are used as a basis to approach exci-

tons with different hole masses.
Effects of heavy and light holes. The hole mass difference

is concentrated into the one-body operator

�̂ = Ĥ − Ĥ0 = K̂ (h) − K̂ (h)
0 (15)

To better catch its effect in the Ĥ0 exciton subspace, we
split �̂ as �̂(h) + �̂(HL). The part �̂(h) = K̂ (h∗ )

0 − K̂ (h)
0 for

K̂ (h∗ )
0 reading as K̂ (h)

0 with mh replaced by m∗
h , concentrates

on using mh instead of the commonly accepted m∗
h value.

The part �̂(HL) = K̂ (h) − K̂ (h∗ )
0 , which cancels for mH = mL ,

concentrates on the mass difference.
The �̂ matrix elements in the ν = ν0 ground exciton sub-

space

〈K′, ν0; s′
z,J ′

z |�̂|K, ν0; sz,Jz〉 = δK′,Kδs′
z,sz�K;J ′

z ,Jz (16)

differ from zero for s′
z = sz and K′ = K because �̂, that

comes from difference in hole kinetic energies, does not act
on spin nor on wave vector. This feature holds true for higher-
order terms in �̂.

Change in binding energy. We first focus on binding energy,
i.e., K = 0 exciton.

(i) We find that the first-order contribution in �̂(HL) can-
cels (see Eq. (S39) in SM [19]),

�
(HL)
0;J ′

z ,Jz
= 0 (17)
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while the �̂(h) part leads to (see Eq. (S41) in SM [19])

�
(h)
0;J ′

z ,Jz
= δJ ′

z ,Jz

h̄2

2a2
X

(
1

m∗
h

− 1

mh

)
(18)

Being diagonal in Jz, the �(h) difference thus produces the
same energy shift

RX μX

(
1

μ∗
X

− 1

μX

)
(19)

to all eightfold ground-exciton states, that is, no splitting. The
resulting exciton energy then reads

RX

[
−1 + μX

(
1

μ∗
X

− 1

μX

)]
= R∗

X

μX

μ∗
X

[
−2 + μX

μ∗
X

]
(20)

where R∗
X

is given by Eq. (14) for mh = m∗
h . Its minimum

value, obtained for μX = μ∗
X
, gives a maximum ground-

exciton binding equal to R∗
X
. So, up to first order in �̂, the

hole mass difference does not break the ground-exciton de-
generacy, the appropriate hole mass value for binding being
the one given in Eq. (1).

(ii) Similar but somewhat heavier calculations (see SM
[19]) performed for the product �̂(h) �̂(h) show that the (mh −
m∗

h ) difference leads to (see Eq. (S65) in SM [19])

�
(h,h)
0,J ′

z ,Jz
= δJ ′

z ,Jz

[
h̄2

2a2
X

(
1

m∗
h

− 1

mh

)]2
β1

RX

(21)

with β1 � −0.50. In contrast to first order, the (mH −
mL ) difference now brings a nonzero contribution through
�̂(HL) �̂(HL), equal to (see Eq. (S56) in SM [19])

�
(HL,HL)
0,J ′

z ,Jz
= δJ ′

z ,Jz

[
h̄2

2a2
X

(
1

mH

− 1

mL

)]2
β2

RX

(22)

with β2 � −0.22, while the mixed term in �̂(HL) �̂(h) gives no
contribution.

(iii) Since the above contributions also are diagonal in Jz,
the exciton degeneracy remains unbroken, but the energy shift
they produce now depends on the hole mass difference. When
combined with Eq. (20), the exciton energy now reads as

RX

⎡
⎣−1 + μX

(
1

μ∗
X

− 1

μX

)
+ μ2

X

(
1

μ∗
X

− 1

μX

)2

β1

+μ2
X

(
1

mH

− 1

mL

)2

β2

⎤
⎦ (23)

Its minimum value, obtained for

μX = μ∗
X

(
1 − 3β2

2 + 2β1
μ∗ 2

X

(
1

mH

− 1

mL

)2
)

(24)

gives the ground exciton energy as (see Eq. (S71) in SM [19])

R∗
X

[
−1 + β2μ

∗ 2
X

(
1

mH

− 1

mL

)2
]

≡ − μ∗∗
X

e4

2h̄2ε2
sc

(25)

that corresponds, for μ∗∗ −1
X

= m−1
e + m∗∗ −1

h , to the hole ef-
fective mass m∗∗

h given in Eq. (3).

Change in center-of-mass energy. We now look for the
effect of the �̂ difference on the eightfold ground exciton
subspace when its center-of-mass wave vector K differs from
zero. This will tell how the hole mass difference affects the ex-
citon motion. By taking mh = m∗

h , which produces the correct
binding at first order in �̂, this difference reduces to �̂(HL). Its
contribution to the exciton energy appears as (see Eq. (S73) in
SM [19])

�
(HL)
K;J ′

z ,Jz
=

∑
k

|〈k − γ ∗
h K|ν0〉|2 h̄2k2

2mHL

z〈J ′|D̂k|J 〉z (26)

with γ ∗
h = m∗

h/(me + m∗
h ) and 1/mHL = (1/mH − 1/mL )/2,

for D̂k given by

D̂k =
⎛
⎝ ∑

J=±3/2

−
∑

J=±1/2

⎞
⎠|J 〉k k〈J | (27)

As �
(HL)
K;J ′

z ,Jz
is equal to zero for K = 0, its lowest-order term

in K, obtained from the |〈k − γ ∗
h K|ν0〉|2 expansion, leads

after summing over k, to

�
(HL)
K;J ′

z ,Jz
� h̄2γ ∗ 2

h K2

2mHL

z〈J ′|D̂K|J 〉z (28)

To go further, we note that changing the hole quantization axis
from z to K, renders diagonal the above matrix elements. So,
we end with (see Eq. (S80) in SM [19])

�
(HL)
K;J ′

K,JK
= δJ ′

K,JK

h̄2γ ∗ 2
h K2

2mHL

(δJK,± 3
2
−δJK,± 1

2
) (29)

For different hole masses, the exciton center-of-mass en-
ergy thus splits into a heavy branch JK = ±3/2 and a light
branch JK = ±1/2, as said in Eq. (4), the energy difference
being more significant for light electron, me � m∗

h . Note that
these heavy and light exciton masses differs from the naïve
(me + mH ) and (me + mL ) values the excitons would have if
they were simply made of heavy or light hole.

Experimental consequences
(i) The most direct way to evidence this exciton split-

ting would be to see two distinct absorption lines associated
with the two exciton branches. This appears difficult in the
case of GaAs because the exciton linewidth in usual samples
(�320μeV in [21]) is large compared with the E (±)

K difference
(�117μeV in Table I), the photocreated exciton wave vector
being very small as it is equal to the photon wave vector; so,
h̄(c/nr )|K| � Egap where nr is the semiconductor refractive
index. As a result, the heavy and light exciton lines would
appear as a single broad line.

(ii) Another idea is to note that due to their energy dif-
ferences, the thermal populations of heavy and light excitons
evolve differently

N (±)
K,T = NK,∞ exp(−EK(1 ± r)/kB T ) ∝ exp(±rTK/T )

(30)

for TK = EK/kB � 1.4 K. Since heavy excitons have a lower
energy, they contribute to the low-energy side of the ab-
sorption line, with a number that is not only larger than the
light exciton number but that also increases faster when T
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decreases; so, the shape of the absorption line should show
an enhancement on the low-energy side.

Another way to quantify the difference in the heavy and
light exciton populations, is through the total weight of the
photoluminescence line as a function of temperature: being
an overlap of two lines with amplitudes that vary differently,
the exp(2rTK/T ) difference should show up in a Log plot
of the temperature evolution in the sub-Kelvin temperature
range.

(iii) Such temperature dependencies can be directly com-
pared to the predicted exciton splitting driven by heavy-light
hole Coulomb couplings, provided that there is no extrinsic ef-
fect associated with residual crystal strain [22–24]. Regarding
this point, it has been shown [25] that epitaxial GaAs samples
on a Si substrate are essentially strain-free beyond a critical
thickness �2.3μm.

Another major problem is that, for such low temperatures,
bright excitons are going to mostly condense into dark states
[26,29], making their observation quite stringent.

Conclusions. We here study the consequences of valence
holes having two different masses (mH , mL ) on the exci-
ton energy, due to their nondiagonal intraband Coulomb
coupling [27].

We show that for zero center-of-mass wave vector, the
ground-state exciton stays (2×4)-fold degenerate, its binding
energy reading in terms of a single hole mass that is close
to the commonly-used average value m∗

h given in Eq. (1). We
expect this conclusion, mathematically proved up to second
order in hole mass difference, to stay valid up to any order for
a fundamental reason: In the absence of exciton wave vector,
there is no symmetry-breaking axis to possibly split the ex-
citon degeneracy. This strong argument leads us to anticipate
that, when included, the valence band warping will not split
the exciton energy [28].

By contrast, a nonzero center-of-mass wave vector K
splits the exciton degeneracy into a heavy branch and a light
branch, with (±3/2) and (±1/2) indices quantized along
the symmetry-breaking axis K. The associated center-of-mass
masses depend on the (mH − mL ) difference and the electron
mass me as given in Eq. (4).

This splitting raises fundamental questions that deserve
further investigation on using a unique hole mass for many-
body effects in which excitons with finite wave vector play a
key role, like the exciton Bose-Einstein condensation [29–31],
the two-component condensates [32,33], and the BEC-BCS
crossover [34,35].
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