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Nematic spectral signatures of the Hund’s metal
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We show, by means of dynamical mean-field theory calculations, that the experimental fingerprints of the
nematic order in iron-based superconductors are intrinsically connected with the electronic correlations in
the Hund’s correlated metallic state and they cannot be accessed via a renormalized quasiparticle picture. In
particular, our results show that (i) in a metal in which correlations are dominated by the Hund’s coupling the
nematic ordering does not produce a rigid energy shift in the photoemission spectra, but a much richer spectral
weight redistribution which mirrors the experimental results, and (ii) the nematic ordering is characterized by an
orbital-selective coherence induced by the Hund’s physics in agreement with the experimental picture.
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Several quantum materials display a large anisotropy in the
electronic properties which has been identified as a signature
of electronic nematic order where the in-plane rotational sym-
metry of the electron fluid is broken making x and y directions
inequivalent. This appears to be an ubiquitous phenomenon in
iron-based superconductors (FeSCs) [1–4].

Among the different experimental probes, a crucial piece of
information can be obtained by angle-resolved photoemission
spectroscopy (ARPES) exploiting different polarizations of
light to selectively probe different iron orbitals. This is par-
ticularly relevant in light of the prominent role of the orbital
degree of freedom in the electronic structure of FeSC [5].
ARPES studies reveal that the band dispersion in the nematic
phase is characterized by a momentum-modulated energy
splitting of the xz and yz orbitals. Early studies mainly focused
on FeSe [6–9] where nematicity emerges in the absence of
long-range magnetic order, but the same pattern has been
later observed in BaFe2As2 [10]. Only recently in-depth in-
vestigations revealed that the nematic order does not only
affect the band dispersion, but also the incoherent spectral
weight redistribution [11–13]. Interestingly, the xz/yz orbital
differentiation appears at high frequencies with an opposite
sign with respect to the orbital splitting of the bands at the
Fermi energy.

A large body of experimental evidence suggests that
the origin of the nematic phase is an electronic instabil-
ity inducing anisotropy in the B2g channel [2,3]. Both Ising
spin-nematic models and orbital-fluctuation-based approaches
have been proposed and extensively discussed in the litera-
ture [1,4]. Regardless of the origin of the nematic instability,
the characterization of the nematic phase of FeSC as emerging
from experiments clearly calls for a theoretical scheme which
includes the sizable electron-electron interactions and the
consequent correlation effects, which are responsible for the
nontrivial redistribution of spectral weight at different energy
scales, as well as the presence of orbital-selective coherence

in the many-body nematic state. The crucial role of electron-
electron interactions does not come as a surprise after several
investigations demonstrating that peculiar, orbital-selective,
correlation effects dominate the normal state of the FeSC [14].

The identification of orbital-selective Mott physics is one
of the outcomes of a theoretical path which has clarified the
central role of the Hund’s coupling in the multiorbital sys-
tems [14–25]. In this framework, the normal phase has been
identified as a Hund’s metal, a strongly correlated bad metallic
state with distinctive correlation properties [14,15,26–41] that
interpolate between a description of incoherent and localized
atomic states at high energy and one of coherent states at low
energy [4,24,42–45] and in which orbital-selective physics
emerges as a consequence of an effective decoupling between
orbitals in a high-spin state [14,36,40,46].

While we have a fairly good understanding of the role
of electronic correlations in the normal state, much less in
known about broken-symmetry phases. The link with the ne-
matic phase has been touched upon in Refs. [47,48] using
slave-spin mean-field theories which describe the low-energy
excitations as Fermi-liquid quasiparticles. The analysis of the
nematic susceptibility in the correlated regime reveals that,
if the symmetry between xz and yz orbitals is explicitly bro-
ken, the nematic order is strongly affected by Hund’s driven
correlations that stabilize configurations with a small occu-
pation imbalance between the xz/yz orbitals [47] such as,
e.g., the sign-change nematic order experimentally observed
in FeSC [6–10].

While these slave-particle studies [47,48] provide a reliable
description of the nematic reconstruction of the band disper-
sion, they cannot access other fundamental properties of the
electronic state, such as the spectral weight transfer, which
can involve different energy scales, and the coherence of the
electronic states with different orbital character. Moreover, a
trivial extension of the low-energy results provided by those
studies to higher energies would produce a picture completely
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opposite to what was recently found by ARPES experiments
that revealed an opposite trend in the orbital differentiation
observed close to the Fermi energy with respect to what was
realized at higher frequencies.

This calls for an analysis of the interplay between elec-
tronic correlations and nematic order beyond the Fermi-liquid
picture exploited by slave-particles studies. In this Letter we
address this issue by analyzing the nematic spectral signatures
of the Hund’s metal using a theoretical description that con-
tains the dynamical correlations of the Hund’s metal as treated
within dynamical mean-field theory (DMFT) [49].

Our main result is that the nematic spectral weight transfer
in the Hund’s metal presents a specific feature that differ-
entiates its phenomenology from the nematicity realized in
an ordinary correlated metal characterized by a similar ef-
fective mass and density of states at the Fermi level. In an
ordinary correlated metal the nematic order produces a rigid
symmetric shift of the xz/yz orbital spectral weight around the
Fermi energy. On the contrary, the Hund’s metal experiences
a strong orbital-selective frequency modulation of the spectra
as a result of a nematic symmetry breaking. The frequency
dependence of the orbital anisotropy appears nonmonotonic
and controlled by multiple energy scales, in contrast to what
happens in an ordinary correlated metal in which the char-
acteristic energy of the nematic order dynamic is controlled
uniquely by the screened Coulomb repulsion U . A clear differ-
entiation of the correlation effects encoded in the self-energy
renormalization at low frequencies and high frequencies is at
the origin of the distinctive features of the nematic spectra of
the Hund’s metal.

Our work identifies a clear signatures of Hund’s metal
nematicity that explains the main features of the nontrivial
ARPES spectra recently observed in Refs. [12,13], thereby
proving that the comprehensive experimental picture that
emerges combining the observations of a reconstruction of
band dispersion and the spectral weight transfer on the
nematic phase of FeSC can be fully understand only ac-
counting for the interplay of nematicity and Hund’s metal
physics.

In order to study the effect of electronic correlations at a
reasonable computational cost we consider a minimal model,
already used in Ref. [50], which accounts for the main features
of the electronic structure of FeSC and for the electron-
electron correlations induced by the combined effect of the
Hubbard repulsion U and the Hund’s coupling JH . The kinetic
Hamiltonian is given by a three-orbital tight-binding model
adapted from Ref. [51], H0 = ∑

kσ

∑
μν T μν (k)c†

kμσ ckνσ
,

where μ, ν are orbital indices for the yz, xz, xy orbitals.
c†

kμσ (ckμσ ) is the fermionic operators that create (annihi-
lates) an electron in orbital μ, with momentum k and spin
σ . The set of parameters chosen results in a bare bandwidth
W = 1.6 eV and reproduces qualitatively the shape and the
orbital content of the Fermi surfaces typical of the FeSC
family, namely two holelike pockets composed of yz-xz or-
bitals at the � point and two elliptical electronlike pockets
formed by xy and yz/xz orbitals centered at the X/Y point of
the 1Fe-Brillouin zone [52]. Local electronic interactions are
included considering the multiorbital Kanamori Hamiltonian
which parametrizes the electron-electron interactions in terms
of a Hubbard-like repulsion U and an exchange coupling JH

favoring high-spin states [26].

TABLE I. Quasiparticle renormalization factors extracted by
orbital-dependent DMFT self-energy. Starting from degenerate val-
ues of Zxz/yz in the tetragonal phase, orbital differentiation develops
in the nematic state with the xz orbital remaining more coherent than
the yz.

Tetragonal Nematic

JH = 0.05U Zxz/yz = 0.38 Zxz = 0.45, Zyz = 0.18
JH = 0.25U Zxz/yz = 0.25 Zxz = 0.35, Zyz = 0.18

We account phenomenologically for the nematic order
by adding to the Hamiltonian a bare nematic perturbation
∼η(nyz − nxz ), η > 0. Rather than looking for a spontaneous
nematic symmetry breaking in our simplified model, or con-
sidering a specific low-energy origin for the same instability,
we focus on the role of the electronic correlations and in par-
ticular on their effect on the spectral properties in the nematic
phase.

We compute the nematic orbital spectral functions using
the full orbital and frequency-dependent DMFT self-energy
�μμ(iωn), where ωn is the nth fermionic Matsubara fre-
quency. The orbital dependence of the self-energy leads to a
self-consistent renormalization of the nematic splitting. The
effect of correlations within a Fermi-liquid quasiparticle pic-
ture, encoded in the quasiparticle weight Zμ, can be extracted
from the DMFT self-energy behavior at low frequency as
Zμ = (1 − ∂ Im �μμ/∂ωn)−1. We use an exact diagonaliza-
tion solver at zero temperature [52–55] at a density of four
electrons in three orbitals per site, that reproduces the low-
energy electronic structure with hole and electron pockets
including the momentum dependence of the nematic split-
ting [47].

One of our main goals is to assess the effects of dynamical
correlations induced by the Hund’s coupling on the spec-
tral properties in the nematic phase. In order to highlight
these effects, we focus on two correlated regimes having
similar values of Zμ ∼ 0.3 in the tetragonal phase (see Ta-
ble I), but characterized by different values of the Hund’s
coupling: JH = 0.05U , U ∼ W define a ordinary correlated
metal, while for JH = 0.25U , U ∼ W we are inside the
Hund’s metal regime. The spectra in the tetragonal state for
both cases are shown in Figs. 1(a) and 1(e). In order to di-
rectly compare the outcome of our calculations with ARPES
experiments [12,13], we plot the spectral function Aμ(k, ω)
integrated between the high-symmetry points �-X/Y of the
1Fe-Brillouin zone, for the yz/xz orbital.

For small JH/U we recover the familiar Mott-like behav-
ior where Hubbard bands develop on an energy scale which
approaches U in the strong-coupling limit. For larger JH/U
we find that the spectral weight reshuffling involves also a
significantly smaller energy scale �U − 3JH , which emerges
as the effective charge-charge repulsion in the Kanamori
model [39].

In what follows we analyze the nematic spectra and show
that the Hund’s metal state is affected by the nematic ordering
in a much more subtle way with respect to the low-JH/U
regime. To some extent, the main difference with respect
to a ordinary correlated metal is that the low-energy scale
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FIG. 1. Spectral function analysis. Orbital spectral function computed using orbital and frequency-dependent DMFT self-energy for U ∼
W (a), (b) in an ordinary correlated metal, JH = 0.05U and (c), (d) in a Hund’s metal, JH = 0.25U . In (a), (c) we report the spectra computed
in the tetragonal phase, using δε = 0 and in (b), (d) the ones for the nematic phase, using δε = 50 meV. The nematic order introduces xz/yz
orbital differentiation both in the low- and high-JH regimes, however, in the ordinary correlated metal (b) this appears as rigid shift of the xz/yz
orbital slightly below/above the Fermi energy, while in the Hund’s metal (d) we find an orbital-selective modulation in frequency with the
xz orbital remaining closer to EF and the yz weight moving at higher energy. (e), (g) Frequency integration of the orbital nematic spectra Aμ

shown in (b), (d) as a function of the cutoff �. (f), (h) Frequency dependence of the nematic parameter φ = Axz − Ayz. φ grows monotonically
up to energy � ∼ U in the low-JH regime. In the Hund’s metal instead it grows rapidly at low frequency reaching its maximum at � ∼ U − JH ,
and it is then suppressed and saturates to a constant value at high frequency. The dashed vertical lines in each panel denote the energy scale
U − 3JH .

where the quasiparticles live is not decoupled from the high-
energy (∼U ) features that evolve into the Hubbard bands.
In the Hund’s metal the spectral weight redistribution due to
local interactions accumulates also in a narrower energy win-
dow around the Fermi energy [16,17,22,38,50]. This feature
emerged already as crucial to boost boson-mediated supercon-
ductivity in Hund’s metal [50] and it is expected to critically
affect the interplay between local electronic interactions and
other low-energy instabilities including the nematic order.

In Figs. 1(b) and 1(d) we show the nematic orbital spectra
for our two choices of parameters: JH = 0.05U (ordinary
correlated metal) and JH = 0.25U (Hund’s metal). In both
regimes, the nematic order does not alter the overall en-
ergy window in which the spectral weight is distributed with
respect to the tetragonal phase, however, it produces a differ-
entiation in the xz/yz orbital coherence. Interestingly, while
the differentiation produced in the quasiparticle renormaliza-
tion factors Zμ, listed in Table I, is similar in the two correlated
regimes, the orbital-dependent spectral weight redistribution
appears quite different. By comparing the spectra of the or-
dinary correlated metal in the tetragonal and nematic phase
[Figs. 1(a) and 1(b)], we find the xz/yz orbital weights are
rigidly and symmetrically shifted around the Fermi energy
EF . In the Hund’s metal instead [Figs. 1(c) and 1(d)], the
orbital weight redistribution is not symmetric and thus the
orbital anisotropy of the spectra is much more pronounced.
The xz spectral weight remains closer to EF than the yz
[see the larger xz peak close to EF in Fig. 1(d)]. The yz
orbital weight is transferred instead to much higher energies
where the Hubbard bands are located. It is worth notic-
ing that this result is due to the dynamic properties of the
Hund’s metal and cannot be inferred by the analysis of the
quasiparticle renormalization factors Zxz/yz. Those can only
account for a rigid shift of the xz/yz orbital spectral weight

around EF , while they cannot reproduce the orbital-selective
behavior at higher frequencies observed in the Hund’s metal
regime.

To better visualize the frequency dependence of the orbital
anisotropy of the spectral weight shown in Figs. 1(b) and 1(d),
we perform a frequency integration over the occupied states of
the spectral function on a window of amplitude �,

A�-X/Y
yz/xz (�) =

∫ 0

−�

dω

∫ X/Y

�

dk Ayz/xz(k, ω), (1)

and analyze the dynamics of the nematic spectra parameter
φ(�) = Axz(�) − Ayz(�). In Figs. 1(e) and 1(f) and Figs. 1(g)
and 1(h) we show respectively Axz/yz(�) and φ(�) for the
low- and high-JH/U regimes. In the ordinary correlated metal
the anisotropy of the Axz/yz spectral functions [Fig. 1(e)] and,
as a consequence, the nematic parameter φ [Fig. 1(f)] grow
monotonically at an essentially constant rate as we increase
the integration window � until it reaches values of order U .
On the other hand, in the Hund’s metal the orbital spectral
functions Axz/yz [Fig. 1(g)] rapidly deviate from each other for
small values of �, but they even get closer at higher energy
due to the orbital frequency modulation visible in Fig. 1(d).
As a consequence, the energy dependence of φ, shown in
Fig. 1(h), is characterized by a fast growth at low energy, while
at frequency � > U − 3JH the nematic order decreases as a
function of � and saturates at higher frequencies to a value
approximately ∼0.75 of the maximum.

To clarify the physical origin of the behavior of the ne-
matic spectral weight in the Hund’s metal we look at the
self-energy on the imaginary Matsubara axis in the two dif-
ferent correlated cases, which allows us to disentangle the
interaction-driven contribution to the single-particle spectra
shown in Figs. 1(b) and 1(d). In Fig. 2 we show the imag-
inary and real parts of the self-energy in the two correlated
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FIG. 2. Matsubara orbital-resolved self-energy in the tetragonal
(solid gray lines) and nematic phase (color dashed lines) for (a),
(b) JH = 0.05U and (c), (d) JH = 0.25U . The slope of the imaginary
part yields the anisotropy of the orbital coherence Zxz > Zyz and
shows the same qualitative behavior regardless of the value of JH .
Instead Re 
�μμ, obtained as the difference between the nematic
and tetragonal self-energies for each orbital, is strongly affected by
the Hund’s coupling. While having always an opposite sign for the
xz and yz orbitals, at JH = 0.05U it has the same sign as the nematic
perturbation and is weakly frequency dependent (i.e., it results in a
nearly rigid shift), while at JH = 0.25U it changes sign between low
and high energies, reflecting the complex spectral weight redistribu-
tion in the Hund’s metal.

regimes and contrast the nematic results with the tetragonal
ones. The imaginary part [Fig. 2(a) and 2(c)], whose low-
frequency behavior provides an estimate of the quasiparticle
weight Zμ, has the same qualitative behavior in the two cases,
showing a finite value of Zμ which becomes larger for the xz
orbital and smaller for the yz one (see Table I). This effect
recovers what was found within the Fermi-liquid quasiparticle
approximation by previous investigations via slave-particle
methods [47,48]. The real part of the self-energy shows in-
stead a remarkable difference within the two correlated cases.
While for small JH/U , panel [Fig. 2(b)] the orbital-resolved
change of the self-energy follows the nematic perturbation at
every frequency, for sizable JH/U [Fig. 2(d)] there is a change
of sign at some finite frequency, meaning that only the low-
energy part of the spectrum follows the sign of the nematic
perturbation, while the high-energy spectrum moves in the op-
posite direction. This is a clearly nontrivial result that cannot
be deduced from the analysis of the orbital anisotropy of the
quasiparticle weight Zμ, and required instead a proper inclu-
sion of correlations at the DMFT level in order to differentiate

low- and high-frequency behaviors. The frequency modula-
tion characterized by the real part of the self-energy in the
Hund’s metal regime is at the origin of the remarkably dif-
ferent redistribution of the orbital spectral weight in the low-
versus high-JH/U regimes shown in Figs. 1(b) and 1(d).

By comparing our theoretical findings to the recent ARPES
results on the orbital coherence in the nematic phase of
FeSC [12,13] we argue that the experimental spectra show
clear signatures of Hund’s metal nematicity characterized by
an orbital-selective spectral weight redistribution qualitatively
compatible with Fig. 1(d) and a frequency-modulated nematic
order with an intermediate-energy contribution which par-
tially cancels the low-energy signal as shown in Fig. 1(h). The
peculiar behavior of the nematic spectra is traced down to a
frequency-modulated orbital differentiation of the real part of
the self-energy in the Hund’s metal that displays opposite sign
at low versus high frequencies as shown in Fig. 2(d).

In conclusion, we have analyzed the effects of electronic
correlations including the Hund’s exchange coupling on the
nematic phase of a multiorbital model for iron-based super-
conductors. Comparing results for small values of the Hund’s
coupling, which behave as a standard Mott-Hubbard system,
with large values of JH , that drive the system into a Hund’s
metal, we are able to demonstrate that the effects of strong
correlations on the nematic order cannot be described merely
in terms of an orbital-dependent quasiparticle weight reflect-
ing the differentiation between the xz and yz orbitals. Rather,
the full frequency dependence of the interaction effects must
be taken into account.

Our analysis allows us to clearly identify the distinctive
signatures of the nematic spectra of a Hund’s metal char-
acterized by a frequency dependence of the nematic order
originated by an opposite orbital differentiation of the self-
energy at low and high frequencies.

Our results are in excellent agreement with experimental
ARPES spectra that show how the nematic reconstruction
of band dispersion is accompanied by a nontrivial spectral
weight transfer. The ability of our results to reproduce the
complex experimental picture strongly supports the physical
picture where the broken-symmetry phases observed in iron-
based superconductors and other Hund’s correlated metals can
only be understood in terms of instabilities of the Hund’s
metal and a successful theory of these phenomena should
include the dynamical correlation effects characteristic of the
Hund’s metal.
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