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Eight-vertex criticality in the interacting Kitaev chain
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We show that including pairing and repulsion into the description of one-dimensional spinless fermions, as
in the domain wall theory of commensurate melting or the interacting Kitaev chain, leads, for strong enough
repulsion, to a line of critical points in the eight-vertex universality class terminating floating phases with
emergent U (1) symmetry. For nearest-neighbor repulsion and pairing, the variation of the critical exponents
along the line that can be extracted from Baxter’s exact solution of the XY Z chain at Jx = −Jz is fully confirmed
by extensive density matrix renormalization group (DMRG) simulations of the entire phase diagram, and the
qualitative features of the phase diagram are shown to be independent of the precise form of the interactions.
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Models of interacting spinless fermions in one dimension
(1D) have appeared in many contexts over the years [1]. First
used to reformulate and solve spin models in the 1970s thanks
to a Jordan-Wigner transformation [2], they were introduced
and further studied in the 1980s in the domain wall theory
of commensurate melting in 2D, building on the equivalence
of classical 2D systems and quantum 1D models [3]. In that
context, the model is more naturally formulated in terms of
hard-core bosons with a term creating p consecutive particles
for the commensurate melting of a period-p phase, but for
p = 2 the model is strictly equivalent to spinless fermions. In
the early 2000s, Kitaev [4] revisited it as a model of a p-wave
superconductor, and showed that it possesses Majorana edge
states, triggering tremendous experimental activity [5–11]
motivated by their potential use for qubits [12,13]. Later on,
and quite logically since electrons experience repulsion, the
interacting version of the Kitaev chain was studied [14–20].
Finally, the problem of commensurate melting recently resur-
faced in the context of chains of Rydberg atoms, and 1D
models of hard-core bosons including pairing and higher order
creation terms have been investigated in that context [21–29].

In this Letter, we will first focus on a model with
nearest-neighbor pairing and repulsion. In the context of the
domain-wall theory in which it was first introduced, this
model is usually written with the following terms:

HNN =
∑

i

−t (d†
i di+1 + H.c.) − μni

+ λ(d†
i d†

i+1 + H.c.) + V nini+1, (1)

where t is the hopping amplitude, μ is the chemical potential
that controls the band filling, λ is the amplitude of the terms
that create pairs of domain walls, and V describes the nearest-
neighbor repulsion, a term absent from the original Kitaev
model [4]. Due to the pairing term, this model does not have
U (1) symmetry but only a Z2 symmetry corresponding to the

parity of the number of particles. At half filling (μ = V ), it
also has particle-hole symmetry.

In the context of the interacting Kitaev model, slightly dif-
ferent notations are often used, with in particular an explicitly
particle-hole symmetric form of the repulsion term, leading to
the Hamiltonian:

H ′
NN =

∑

i

−t (d†
i di+1 + H.c.) − μ̃ni

+ �(d†
i d†

i+1 + H.c.) + U (2ni − 1)(2ni+1 − 1). (2)

In that formulation, the particle-hole symmetric point always
occurs at μ̃ = 0, but μ̃ is strictly speaking no longer the
chemical potential. Up to a constant, the two models map onto
each other with λ ≡ �, μ ≡ μ̃ + 4U , and V ≡ 4U . We will
mostly use the notations of Eq. (1), but whenever possible the
results will also be shown using those of Eq. (2).

The phase diagram of the model without repulsion is well
known (see Fig. 1, top panel). For λ > 0, it consists of three
phases: Two disordered phases where Z2 is unbroken for
μ/t < −2 and μ/t > 2 (the number of particles in the ground
state has a well defined parity), and a gapped phase with bro-
ken Z2 symmetry for −2 < μ/t < 2. Inside this phase, there
is a disorder line defined by 4λ2 + μ2 = 4t2 below which
correlations are incommensurate [30]. The top of this line cor-
responds to the famous Kitaev point where the Majorana edge
operators are completely decoupled from the bulk [4]. For
λ = 0, the intermediate phase is a noninteracting Luttinger
liquid (K = 1), and the transition into the disordered phase is
Pokrovsky-Talapov [31]. When switching on λ, this transition
immediately turns into an Ising phase transition.

The phase diagram remains qualitatively similar up to
V/t = 2, the intermediate phase of the λ = 0 line becoming a
Luttinger liquid with 1/2 � K � 1. When V/t > 2 however,
the phase diagram becomes much richer, as already pointed
out by several authors [14,19,20], with three new phases: A
period-2 phase in which the translation symmetry is broken,
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FIG. 1. Phase diagram of the Kitaev chain of Eq. (1) in the
noninteracting case V = 0 (top) and with nearest-neighbor repulsion
V/t = 6 (bottom). Orange lines at λ = 0 indicate the critical Lut-
tinger liquid phase. Blue lines are Ising transitions. The Z2 phase has
short-range incommensurate order below the frustration-free disor-
der line (dashed green). For V/t > 2 the phase diagram also contains
a gapped period-2 phase with spontaneously broken translation sym-
metry and a floating phase that separates the period-2 and the Z2

phases everywhere except along the particle-hole symmetry line μ =
V where the transition is direct in the eight-vertex universality class
(yellow star). The floating phase is separated from the period-2 phase
by a commensurate-incommensurate Pokrovsky-Talapov transition
(black circles) and from the Z2 phase by the Kosterlitz-Thouless
transition (red squares).

and two critical floating phases [20] that surround it and
touch at a multicritical point (see Fig. 1, bottom panel). The
appearance of a period-2 phase at V/t = 2 for the model
without pairing is known from Bethe ansatz [32]. At that
point, the Luttinger liquid exponent reaches the value K =
1/2, and Umklapp scattering becomes relevant. For V/t > 2,
the Luttinger liquid exponent reaches the value K = 1/4 at
the transition into the period-2 phase, and the transition is
in the Pokrovsky-Talapov universality class [31]. Since the
pairing term has a scaling dimension 1/K , it is irrelevant as
long as K < 1/2, and the Luttinger liquid phase gives rise
to an extended floating phase when 1/4 < K < 1/2. All the
boundaries in Fig. 1, bottom panel, have been determined

numerically with state-of-the-art density matrix renormaliza-
tion group (DMRG) [33–36] simulations, except the disorder
line that coincides with the frustration-free line [19], which is
known to be given exactly by 4λ2 + (μ − V )2 = (V + 2t )2,
and the multicritical point marked as a star, which sits in
the particle-hole plane at λ = (V − 2t )/2 (see below). The
DMRG simulations were performed using a two-site routine
with open boundary conditions on systems with up to 3001
sites keeping up to 2000 states and discarding all singular
values below 10−8. The boundary between the floating phase
and the Z2 phase was determined as the line K = 1/2, and
that with the period-2 phase as the line where the wave-
ector becomes equal to π (see Supplemental Material [37] for
details). When scanning V/t from 2 to +∞, the multicritical
points at which the floating phases touch build a line. The
universality class of this line of continuous phase transitions is
the main open issue in the 3D (λ/t , μ/t , V/t) phase diagram.

In this Letter, we argue that this line of multicritical points
is in the eight-vertex universality class, and that it is a generic
feature of models with pairing and repulsion. For the model
of Eqs. (1) and (2), this conclusion is based on a mapping on
the integrable point Jx = −Jz of the XY Z model defined by
the Hamiltonian

H =
∑

i

Jxσ
x
i σ x

i+1 + Jyσ
y
i σ

y
i+1 + Jzσ

z
i σ z

i+1 − Bσ z
i , (3)

where σ x, σ y, and σ z are Pauli matrices; it was solved by
Baxter [38,39] in the 1970s, and it is supported by extensive
DMRG simulations that show that the behavior close to the
critical point both in the period-2 phase and in the broken
Z2 phase is controlled by the critical exponents that can be
extracted from Baxter’s solution. We also study a hard-core
boson model with a next-nearest neighbor pairing term for
which there is no exact solution, and we provide strong nu-
merical evidence that the point at which the floating phases
meet is still in the eight-vertex universality class.

Let us start by discussing the nature of the critical point
of the model of Eq. (1). The only piece of information so
far was that its central charge c = 1, a result fully confirmed
by fitting our results for the entanglement entropy [37] with
the Calabrese-Cardy formula [40], hence that it is a Lut-
tinger liquid. However, as we now explain, it is possible to
fully identify the universality class of the transition. Using a
Jordan-Wigner transformation, the model can be mapped on
the model of Eq. (3), the XY Z chain in a field [3], with Jx =
−(t + λ)/2, Jy = −(t − λ)/2, Jz = V/4, and B = (V − μ)/2.
In the particle-hole symmetric plane, the magnetic field van-
ishes, and the model reduces to an XY Z chain. This model
is well known to be integrable when two of the coupling
constants are equal, in which case it is usually referred to as
the XXZ chain [32]. For our model, this is the case for λ = 0.
It can also be solved when one of the coupling constants van-
ishes, which occurs for λ = t (see Miao et al. [41]). A less well
known result due to Baxter is that it is also integrable when
two coupling constants are opposite, e.g., Jx = −Jz. For our
model, this occurs when λ = (V − 2t )/2. Along this line the
model can actually be mapped on the XXZ chain by rotating
the spins by π around z (σ x

i → −σ x
i , σ

y
i → −σ

y
i , σ z

i → σ z
i )

on every other site, which leads to Jx = Jz. Since |Jy| < Jz,
the model is critical (it is in the XY phase of the XXZ model).
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FIG. 2. Exponents in the vicinity of the multicritical point as
a function of V/t : (a) Correlation length exponent extracted from
density-density correlations in the period-2 phase (ν ′, light blue)
and in the Z2 phase (ν, dark blue). (b) Critical exponent β of
the amplitude if local density oscillations in the period-2 phase.
(c) Scaling dimension d extracted from the slope of the separatrix
of Friedel oscillations (blue squares), and estimated from the ratios
β/ν and β/ν ′ (black pluses and crosses respectively). In all cases, the
numerical results (symbols) are compared with the theory predictions
of Eqs. (4) and (6) (magenta lines).

Away from this line the model does not map to a simple exten-
sion of the XXZ chain, but Baxter managed to show that the
critical behavior in the vicinity of the critical line is governed
by the universality class of the eight-vertex model [39]. More
precisely, he showed that the critical exponents depend on a
single parameter that he called μ, and to which we will refer
to as ρ to avoid confusion with the chemical potential. For
|Jy| < |Jx|, this parameter is given by cos ρ = Jy/Jx. In terms
of this parameter, the critical exponents of the correlation
length and of the order parameter [42] are given by

ν = π/(2ρ), β = (π − ρ)/(4ρ), (4)

This very special relation between these two critical exponents
4β = 2ν − 1 formally defines the eight-vertex universality
class [43]. From the mapping of Eq. (1) to the XY Z model
[3], Jy/Jx is of the form (1 − λ)/(1 + λ), leading to

ρ = acos[(1 − λ)/(1 + λ)]. (5)

In order to check these predictions, we have calculated the
density-density correlation length both above and below the
transition [37], from which we extracted the exponents ν and
ν ′, and the dimerization in the period-2 phase as defined by
the amplitude of the local density oscillations in the middle
of a chain [37], from which we have extracted the exponent β.
The results are plotted as a function of V/t and compared with
Baxter’s prediction in Figs. 2(b) and 2(c). The agreement with
the analytical result is excellent, with only a slight deviation
for ν ′ due to severe finite-size effects for small values of the
repulsion V .

As a cross-check, we have also looked at the Friedel
oscillations [37] which, in chains with open and fixed
boundary conditions, have the profile |n j − n j+1| ∝
1/[(N/π ) sin(π j/N )]d , where the scaling dimension d is
equal to the ratio of the two critical exponents d = β/ν. From
Baxter’s results, the scaling dimension d is thus expected to
be given by

d = (π − ρ)/(2π ), (6)

The results are compared to this prediction in Fig. 2(a). The
agreement is excellent. Note that Eq. (6) can also be obtained
through the mapping on the XXZ chain. Indeed, the scaling
dimension of the σ z component in our model corresponds to
the scaling dimension of one of the transverse components,
say Sx, in the XXZ model. This scaling dimension is given by
d = 1/(4K ), where K , the Luttinger liquid parameter of the
XXZ chain, is known analytically from the Bethe ansatz and
is given by K = π/2(π − ρ) in terms of Baxter’s parameter
ρ, leading again to Eq. (6).

Note that, when going from V/t = 2 to +∞, the parameter
ρ changes from 0 to π , i.e., it describes all the possible interval
of the eight-vertex model. Accordingly, the critical exponents
change rather dramatically. This is most remarkable for β,
which covers all the range from 0 to ∞. It becomes infinite
at the opening of the period-2 phase, implying a very smooth
development of the dimerization in that limit, while it goes to
zero when V → ∞, approaching a steplike behavior in that
limit. This is logical since, when V is infinite, the pairing
term cannot induce fluctuations in the ground state. ν is also
infinite at the opening of the period-2 phase, in agreement
with the Kosterlitz-Thouless [44] nature of the transition, and
decreases to 1/2 when V → ∞, a value typical of mean field.
But the transition is definitely not mean field since β goes to
zero, and not 1/2. In the limit V/t = 2, the Luttinger liquid
parameter of the multicritical point takes the value 1/2, as it
should since, at that point, it must be equal to the value of
the Luttinger liquid parameter at which the gap opens when
λ = 0. However, away from that limit, the Luttinger liquid
parameter of the multicritical point K = π/2(π − ρ) is larger
than 1/2 while that of the adjacent floating phases is always
between 1/4 and 1/2, demonstrating that this multicritical
point is not controlled by the adjacent floating phases.

To investigate how universal this property might be, we
look next at a model where the pairing term is between
next-nearest neighbors, for which there is to the best of our
knowledge no exact solution. In terms of hard-core bosons,
this model is defined by the Hamiltonian

HNNN =
∑

i

−t (d†
i di+1 + H.c.) − μni

+ λ2(d†
i d†

i+2 + H.c.) + V nini+1. (7)

In terms of fermions, the pairing term would have an extra
factor (−1)ni+1 due to the Jordan-Wigner transformation.

The phase diagram of this model is shown in Fig. 3 for
V/t = 10. It is qualitatively similar to that of the nearest-
neighbor pairing model, with the same phases and similar
boundaries. The only qualitative difference appears for very
large V , where the floating phase develops a re-entrant behav-
ior upon approaching the λ2 = 0 line [37].

As long as V < +∞, there are two floating phases that are
found numerically to end up at a multicritical point [45]. To
study the properties of this multicritical point, we have again
calculated the exponents ν, ν ′, β, and d . This time, we do not
have any prediction for the dependence of ρ on the parameters
of the model, so, in order to check if the multicritical point
is still eight-vertex, we have eliminated ρ from Eqs. (4) and
(6), leading to expressions for ν and β as a function of d .
These expressions are checked in Fig. 4. The error bars are
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FIG. 3. Phase diagram of the model of Eq. (7) with nearest-
neighbor repulsion V/t = 10 as a function of the next-nearest pairing
term λ2 and chemical potential μ. Red and black solid lines stand for
Kosterlitz-Thouless and Pokrovsky-Talapov transitions respectively.
The blue lines are Ising transitions to the disordered phases. The
system has particle-hole symmetry along the μ = V (= 10t ) line,
and the phase diagram is mirror symmetric with respect to it. Along
this line the transition between the period-2 and Z2 phases is direct
through a multicritical point (yellow star). Inside the Z2 phase, short-
range correlations are incommensurate between the two disorder
lines.

larger than for the model with nearest-neighbor pairing, in
part because the critical value of λ is not known exactly,
but the results clearly support the eight-vertex universality
class. Note that the values reached in the limit V → +∞
do no longer correspond to ρ = π . The exponents seem to
saturate from above at d � 0.23, ν � 0.8, and β � 0.22, cor-
responding to ρ � 0.54π . The difference regarding β with
the nearest-neighbor model can be traced back to the pos-
sibility of inducing quantum fluctuations in the ground state
with the next-nearest neighbor pairing term even in the limit
V → +∞.

Let us now briefly compare our results with recent litera-
ture on the interacting Kitaev chain. Sela et al. [14] studied the
full phase diagram, but they could not decide if the floating
phases extend up to the particle-hole symmetric plane, and
accordingly they did not discuss the multicritical line at which
they touch. Their focus was the fate of the Majorana edge
states. Miao et al. [41] also studied an integrable line in the
particle-hole symmetric plane, but a different one given by
λ = t in our notation. For small V/t , this line is in the Z2

phase. It crosses our line at the point where the period-2
phase opens, V/t = 2, and it lies in the period-2 phase for
larger V/t , in full agreement with our phase diagram. Hassler
and Schuricht [46] looked at another cut in the 3D parameter
space (λ/t , μ/t , V/t), namely λ = t , and not V/t = cst , as we
did. Again their results are fully consistent with ours. They

FIG. 4. Exponents of the model with next-nearest neighbor pair-
ing [Eq. (7)] in the vicinity of the critical point: (a) Scaling dimension
d as a function of the repulsion strength V/t . Inset: Location of
the critical point as a function of V/t . (b)–(c) Exponents ν and β

compared with their values predicted by the eight-vertex universality
class in terms of the scaling dimension d of panel (a) (red lines).

spotted the multicritical point at V/t = 4 but did not identify
its universality class beyond the fact that it has a central charge
c = 1. More recently, Verresen et al. [20] revisited the λ = t
plane and emphasized the emergent U (1) symmetry in the
floating phase.

The present results also have strong connections with
the physics of 2D classical models. The eight-vertex model
has been introduced and solved in the context of 2D
ice-type models where different Boltzmann weights are at-
tributed to different arrow configurations around a vertex,
and the paradigmatic model of 2D frustrated magnetism—
the anisotropic next-nearest neighbor Ising (ANNNI) model
[47–49]—has a phase diagram similar to ours, with a multi-
critical point in Baxter’s eight-vertex universality class.

Finally, the standard model of Rydberg atoms is related to
that of Eq. (1) by duality [28]. The period-2 phase of Rydberg
chains corresponds to the Z2 phase of HNN, and the Ising tran-
sition that surrounds it is equivalent to the Ising transition into
the disordered phase. The equivalent of the period-2 phase of
HNN should be a Z2 broken phase, but, in the standard setting,
the model of Rydberg chains contains single-particle creation
and annihilation operators and does not have Z2 symmetry.
However, it should be possible to directly program the models
of Eq. (1) or Eq. (7) in optical cavities with individual control
over trapped atoms. In any case, it will be rewarding to see
if the eight-vertex universality class can be experimentally
identified in 1D quantum systems.
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