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Quantum machine learning offers a promising advantage in extracting information about quantum states, e.g.,
phase diagram. However, access to training labels is a major bottleneck for any supervised approach, preventing
getting insights about new physics. In this Letter, using quantum convolutional neural networks, we overcome
this limit by determining the phase diagram of a model where analytical solutions are lacking, by training
only on marginal points of the phase diagram, where integrable models are represented. More specifically, we
consider the axial next-nearest-neighbor Ising Hamiltonian, which possesses a ferromagnetic, paramagnetic, and
antiphase, showing that the whole phase diagram can be reproduced.
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Introduction. Quantum machine learning (QML) [1],
where parametrized quantum circuits [2] act as statistical
models, has attracted much attention recently, with appli-
cations to natural sciences [3–8] or in generative modeling
[9–13]. Even if QML models benefit from high expressivity
[14] and demonstrated superiority over classical models in
some specific cases [15,16], it is still unclear what kind of
advantage could be obtained with quantum computers [17] in
the era of deep neural networks.

Quantum data, on the other hand, could be a natural
paradigm to apply QML, where quantum advantages have
already been demonstrated [18]. There is hope that quantum
data could be collected via quantum sensors [19], and even-
tually directly linked to quantum computers. In this Letter,
we emulate the possibility of working with quantum data by
constructing them directly on a quantum device. We use a
variational ground state solver to obtain approximations of
the true ground states in order to mimic noisy real world
data. Specifically, this Letter addresses the computation of
the phase diagram of the ground states of a Hamiltonian H
using a supervised learning approach. Even if similar prob-
lems have already been explored for the binary case [20,21],
with multiple classes [22] and computed on a superconducting
platform [23], all of these approaches suffer from a limita-
tion by construction, a bottleneck. In fact, since labels are
needed for the training, and because they are computed ana-
lytically or numerically, these techniques can only speed up
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calculations, but cannot extend beyond their validated do-
main. Alternatively, anomaly detection (AD), an unsupervised
learning technique, has been proposed [24,25] as a way to
bypass this bottleneck, by finding structure inside the data set.
However, AD can only obtain qualitative, possibly unstable,
results and the performance can therefore be difficult to assess.
Instead, the proposed approach provides a clear prediction for
the boundaries of the adopted model, with the possibility to
evaluate the performance on a validation set.

This Letter numerically demonstrates that QML can make
predictions to regions where analytical labels do not exist,
after being only trained on easily computable subregions.
Moreover, QML only needs very few training labels to do
so, as already pointed out by [26]. In particular, we make a
step toward an out-of-distribution generalization [28], where
the training and testing set do not belong to the same data
distribution, which is known to be a difficult task [29]. This
drastically changes the perspective, extending QML capabili-
ties to extrapolate and eventually discover new physics when
trained on well-established simpler models.

The model. We consider the axial next-nearest-neighbor
Ising (ANNNI) model

H = J
N∑

i=1

σ i
xσ

i+1
x − κσ i

xσ
i+2
x + hσ i

z , (1)

where σ i
a are the Pauli matrices acting on the ith spin,

a ∈ {x, y, z}, and we assume open boundary conditions. The
energy scale of the Hamiltonian is given by the coupling
constant J (without loss of generality we set J = 1), while
the dimensionless parameters κ and h account for the next-
nearest-neighbor interaction and the transverse magnetic field,
respectively. We restrict ourselves to κ � 0, h � 0, and even
N . The difference of sign between the nearest and next-nearest
interactions, leading to a ferro- or antiferromagnetic exchange
in the system, is responsible for the magnetic frustration.
Thence, the ANNNI model offers the possibility to study
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the competing mechanism of quantum fluctuations due to
the transverse magnetic field and frustration. The phase di-
agram of the quantum model at T = 0 K temperature has
been studied mainly by renormalization group or Monte
Carlo techniques in d dimensions exploiting also the cor-
respondence with the classical analog in d + 1 dimensions
[30–35]. The phase diagram is quite rich and three phases
have been confirmed, separated by two second-order phase
transitions. The first, for low frustration (κ < 0.5) of the Ising
type, separates the ferromagnetic and the paramagnetic phases

along the line hI (κ ) ≈ 1−κ
κ

(1 −
√

1−3κ+4κ2

1−κ
). The other one,

of a commensurate-incommensurate type, appears between
the paramagnetic phase and an antiphase for values of the
field hC (κ ) ≈ 1.05

√
(κ − 0.5)(κ − 0.1), in the high frustra-

tion sector (κ > 0.5). As usual, the paramagnetic phase is
the disordered one, in contrast with the two ordered phases:
the ferromagnetic and the antiphase one. In particular, they
are different because the former is characterized by all the
spins aligned along the field direction, and the latter has a
four-spin periodicity, composed of repetitions of two pairs
of spins pointing in opposite directions. The point κ = 0.5
represents a multicritical point. We mention here that other
relevant lines have been numerically addressed but not con-
firmed: one signaling an infinite-order phase transition of the
Berezinskii-Kosterlitz-Thouless (BKT) type for hBKT(κ ) ≈
1.05(κ − 0.5), delimiting a floating phase between the para-
magnetic and the antiphase [34], and a disorder line where the
model is exactly solvable, known as the Peschel-Emery (PE)
line hPE(κ ) ≈ 1

4κ
− κ [33,36].

Variational state preparation. The purpose of the vari-
ational quantum eigensolver (VQE) [37] is to calculate
the ground state energy of a Hamiltonian H (κ, h) on a
quantum computer. Using the Rayleigh-Ritz variational prin-
ciple, the VQE minimizes the energy expectation value of
a parametrized wave function and has been successfully
applied in quantum chemistry [38–40], in nuclear physics
[41–43], or in frustrated magnetic systems [44,45]. Here,
we are interested in the final eigenstates, represented by an
ansatz |ψ (θ ; κ, h)〉, to be used as quantum data. Typically,
the ansatz is chosen as a hardware-efficient (HEA) quantum
circuit [38,46], which is built with low connectivity and gates
that can be easily run on noisy intermediate-scale quantum
(NISQ) [47] devices. For instance, we use D = 6(9) repeti-
tions of a layer consisting of free rotations around the y axis
Ry(θ ) = e−iθσy/2 and controlled-NOT (CNOT) gates with linear
connectivity CXi,i+1 for 0 � i < N [48], for N = 6(12) spin
systems. The optimization is performed using the gradient-
descent-based ADAM algorithm [49], with an initial learning
rate of 0.3 and a parameter recycling scheme to improve the
convergence [50]. Moreover, we note that the VQE can also
be used to recursively compute excited states [51], which we
used to show that the ground states of the ANNNI model
are only degenerate at the boundaries in the phase diagram,
where the ground states corresponding to the different phases
are competing, excluding the bit flip symmetry at h = 0.
Finally, we assess the accuracy of the VQE states by com-
paring with the exact energy and observe that the relative
error ratio is always below 1%. Moreover, it seems that the
energy accuracy distribution is able to reveal the Peschel-

FIG. 1. Circuit architecture: VQE states (blue) are the input of
the quantum convolutional neural network composed of free rota-
tions R (yellow), convolutions C (light green), pooling P (red), and a
fully connected layer F (dark green).

Emery line, since the predicted energy values are more
accurate along it. More details about the implementation,
optimization, degeneracy, and accuracy can be found in the
Supplemental Material [52].

Quantum convolutional neural networks (QCNNs). QCNNs
are a class of quantum circuits, inspired by classical convolu-
tional neural networks (CNNs) [53], originally proposed in
Ref. [20]. The QCNN is trained to detect quantum phase tran-
sitions, effectively learning an observable O(θ ) that linearly
separates two states |ψA〉 and |ψB〉 from two different phases
A and B, such that 〈ψA|O(θ )|ψA〉 < 0 < 〈ψB|O(θ )|ψB〉 [54],
which exist since the phases in the ANNNI model are not
topological. Intuitively, nontopological phases of matter ex-
hibit macroscopic differences, which can be captured by the
variational observable O(θ ). In principle, quantum phase de-
tection could be performed by measuring different string order
parameters (SOPs) [20]. However, the SOP vanishes near the
phase transition, thus requiring exponentially many samples
for the classification. On the other hand, the QCNN output is
much sharper, therefore reducing the sample complexity. This
changes quantum phase detection to the task of designing and
training an appropriate ansatz.

In our implementation, the QCNN starts with a free
rotation layer around the y axis, followed by blocks con-
sisting of convolutions, free rotations, and pooling layers
that halve the number of qubits to k until k = �log2 (K )�,
where K it the total number of quantum phases. Finally,
a fully connected layer and measurement are performed in
the computational basis. An example with N = 6 qubits is
shown in Fig. 1 where we have free y-axis rotations (yellow),
R(	θ ) = ⊗N

i=1 Ry(	θi ), two-qubit convolutions (light green)
C(θ ) = ⊗2

i=1 Ry(θ ), pooling (red) P(	θ, φ, b) = Ry(	θb)Rx(φ)
with b ∈ {0, 1} the value of the measured qubit, and a
two-qubit fully connected (dark green) gate F (	θ (1), 	θ (2) ) =
[
⊗2

i=1 Ry(	θ (i)
1 )Rx(	θ (i)

2 )Ry(	θ (i)
3 )]CX1,2.

QCNNs have been shown to be resistant to barren plateaus
[55] due to their distance from low T 2 design and are
therefore good candidates for any quantum learning tasks.
The analogy with CNN holds in the quantum settings since
convolution and pooling layers are functions of shared pa-
rameters and the reduction of the circuit’s dimension is
guaranteed by the intermediate measurement. The whole al-
gorithm flow starts with the QCNN taking as input ground
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FIG. 2. Fidelity between the ground states of the ANNNI model
at h = 0.3 and N = 12. We observe three different clusters, cor-
responding to the ferromagnetic, paramagnetic, and antiphase,
respectively.

states |ψ (θ ; κ, h)〉 from the Hamiltonian family H (κ, h),
obtained through the VQE. The quantum network then out-
puts the probability pj (κ, h) of being in one of the K = 3
phases (ferromagnetic, paramagnetic, or antiphase), where
p j (κ, h) is computed as the probability of measuring the state
|01〉, |10〉, |11〉 on the two output qubits. Since the phase di-
agram of the ANNNI model only contains three phases, the
state |00〉 is interpreted as a garbage class.

Generalization. The main contribution of this Letter is to
demonstrate the ability of QCNN to work in a partial super-
vised approach and thus get closer to an out-of-distribution
generalization by training on a set of easily available labels.
We first argue that this generalization is expected to hold
according to Ref. [27] if the ground states of the ANNNI
model are clustered, i.e., if the fidelity between states in the
same phase is high [56–58], while being low between dif-
ferent phases. This is indeed the case as shown in Fig. 2
along the line h = 0.3 for the N = 12 spin case. Even if
the requirements of the generalization results from Ref. [26]
do not hold since the training data are only located on the
boundaries, and specifically not independent and identically
distributed (i.i.d.), we observe a numerical agreement with the
generalization error’s scaling behavior predicted in Ref. [26],

i.e., O(
√

T
n ), where T is the number of parameters and n the

number of training points. Since the QCNN is composed of
T = O[log (N )] parameters [20], we can control the expected
risk by training on n = O[log (N )] points.

Training set. The training data set consists of the com-
position of points from two analytical models derived from
the simplification of the physical model used. Specifically,
we consider the integrable Ising model in a transverse field
in the case κ = 0 and the quasiclassical model when h =
0, where quantum fluctuations no longer exist. We demon-
strate that QCNNs extend their prediction to the all phase
diagram when only trained on the marginal model given
by Sn

X ⊆ {(κ, h) ∈ {0} × [0, 2]} ∪ {(κ, h) ∈ [0, 1] × {0}}. We
consider three types of subsets X ∈ {GC, G2,U }, Sn

GC
where n training points are sampled normally around

each critical point {(0, 1), (0.5, 0)}, Sn
G2 where n training

points are sampled normally at the middle of each phase
{(0, 1.5), (0, 0.5), (0.25, 0), (0.75, 0)}, and Sn

U where n data
points are drawn uniformly on both axes. The QCNN is
trained using the cross entropy L loss,

L = − 1∣∣Sn
X

∣∣
∑

(κ,h)∈Sn
X

K∑
j=1

y j (κ, h) log [p j (κ, h)], (2)

between the one-hot classical labels y j (κ, h) and the predic-
tions on the training region Sn

X of the phase space.
Results. Once we have introduced the problem and defined

the techniques used, we can analyze the quality of the results
obtained under ideal conditions with a quantum simulator.

We study our ability to reconstruct the phase diagram of
the ANNNI model, characterized by a nontrivial disordered
paramagnetic phase, the ordered ferromagnetic phase, and the
antiphase one. To test the stability of the proposed approach,
we consider the model with an increasing number of spins
N = 6, 12 and sampling a different number of points 0 <

n � 100 used for the training. By virtue of the quality of the
results, we evaluated the influence of different sampling of the
training points corresponding to the two physical models that
could affect the quality of the classification. A summary of the
results can be qualitatively seen in Fig. 3, while more quanti-
tative results for the QCNN are displayed in the Supplemental
Material [52]. In the first row, we have the phase diagram
reconstruction for the ANNNI model with six spins, where the
black lines represent the analytical transition explained above
in the model section. The second line in the figure shows the
same for a system with N = 12 spins.

The first column shows the accuracy, computed on the
whole phase space, as a function of the number of train-
ing points n, for the Gaussian centered around the critical
points X = GC (blue), around the middle of each phase X =
G2 (black), and the uniform X = U (red) sampling scheme,
where the error bars correspond to one standard deviation
from ten independent runs. We observe that the accuracy
quickly increases with n, before saturating for n � 20, as
argued in Ref. [26], and that the sampling strategy does not
play a major role. More importantly, sampling away from
the critical points is enough. The second column displays
the phase diagram obtained with the QCNN trained on n =
40 points. Color shades represent the continuous probability
distribution of the QCNN for our multiclass classifier as a
probability mixture (blue, green, and yellow times the rele-
vant probability), while the red lines represent the predicted
boundaries. The individual probabilities of each phases pre-
dicted by the QCNN are shown in the Supplemental Material
[52]. The last column instead shows the comparison to the
unsupervised learning approach inspired from Ref. [25] where
the autoencoder is trained to compress the single red cross
|ψ〉, and tested on the remaining points. In a nutshell, the
autoencoder is expected to perform poorly if the states are
far away in the Hilbert space, i.e., if they belong to different
phases, thus leading to a high compression score. The color
scale shows the compression loss of each state. Additional
details about the implementation of the anomaly detection
can be found in the Supplemental Material [52]. It is worth
noting that although only one training point is sufficient to
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FIG. 3. Quantum phase classification. (a) shows the classification accuracy of the QCNN as a function of the number of training points
n, for the Gaussian centered around the critical points (GC blue), Gaussian centered around the middle of each phase (G2 black), and
uniform sampling (red). (b) displays the phase diagram predicted by the QCNN trained on S40

G2 (red dots) where the color represents the
probability mixture of being in one of the three phases and the red lines the predicted boundaries, while (c) shows the anomaly score
for N = 6 spin systems trained on the initial state |ψ〉 (red cross). (d)–(f) are similar but for N = 12 spins. The black lines are hI (κ )
for κ < 0.5 and hC (κ ) for κ > 0.5.

obtain a qualitatively good phase diagram, only QCNNs allow
a quantitative prediction for the phase. Moreover, while the
QCNNs are stable when changing the training set, it is easy to
find initial states where AD performs poorly, for instance, by
starting in the paramagnetic phase. The relatively good per-
formance of AD can be explained by the product state nature
of the training point. Hence, the product state can be easily
compressed with the autoencoder, while states corresponding
to a high magnetic field cannot.

Conclusions. This Letter addresses the computation of the
phase diagram of a nonintegrable model, by training a QCNN
on the limiting integrable regions of the considered ANNNI
model. We provide numerical evidence that the QCNNs are
able to generalize from non-i.i.d. training data, which is a
challenging task in general. The numerical simulations sug-
gest that QCNNs can carry this task with more than 97%
accuracy, using only n = 20 quantum data points distributed
on the two integrable axes of the phase space. Moreover, the
data points do not need to be close to the critical points.
The accuracy of the QCNN quickly increases to reach its
maximum as a function of the number of training points,
suggesting that QCNNs can generalize from a few data points.
Being a supervised method, the QCNN is not able to detect
phases that are not present in the training set Sn

X , i.e., the
boundaries, such as the BKT phase transition and the PE

line. Nevertheless, AD is also not able to reveal them and
is limited to qualitative predictions, while a supervised ap-
proach gives quantitative results whose quality can be easily
evaluated on the validation set. Moreover, by approaching
out-of-distribution generalization, we propose a solution to
the bottleneck of needing training labels, that are generally
challenging to obtain. Consequently, we make a step into
extending the reach of QML to useful applications in physics.
Future work should be performed to detect phases not present
in the training set, such as the floating phase or the PE line,
by either affording O(1) training points inside these unrep-
resented phases or mixing the QCNN with the unsupervised
approach.

The code used to generate the data set and the figures of
the present Letter is publicly available [59].
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