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We introduce spiral boundary conditions (SBCs) as a useful tool for handling the shape of finite-size
periodic clusters. Using SBCs, a lattice model for more than two dimensions can be exactly projected onto a
one-dimensional (1D) periodic chain with translational invariance. Hence, the existing 1D techniques such as
density-matrix renormalization group (DMRG), bosonization, Jordan-Wigner transformation, etc., can be effec-
tively applied to the projected 1D model. First, we describe the 1D projection scheme for the two-dimensional
(2D) square- and honeycomb-lattice tight-binding models in real and momentum space. Next, we discuss how
the density of states and the ground-state energy approach their thermodynamic limits. Finally, to demonstrate
the utility of SBCs in DMRG simulations, we estimate the magnitude of staggered magnetization of the 2D XXZ
Heisenberg model as a function of XXZ anisotropy.

DOI: 10.1103/PhysRevB.107.L081104

Introduction. In condensed matter physics, theoretical
research is usually carried out based on the statistical mechan-
ical formulation of either lattice or continuum models which
describe the microscopic structure of solids. In general, a
lattice model is a cluster of lattice points corresponding to the
positions of aligned atoms in a crystal [1]. The Hamiltonian
is typically expressed as a countable set of lattice points or
bonds, because finite degrees of freedom such as spin, charge,
hole, etc., are assigned in each lattice point. Therefore, unlike
in the continuum limit with huge degrees of freedom, a lattice
model is rather suitable for computer simulations. Typical
examples of a lattice model are the Hubbard model [2], the
Heisenberg model [3], the Kondo-lattice model [4], and the
Kitaev model [5]. A microscopic starting point to understand
the electronic and/or magnetic properties of solids is provided
by solving those kinds of lattice models analytically or numer-
ically.

When studying such a model in numerical simulations, we
usually put it on a lattice of finite size. Then, an extrapolation
of the result to an infinite system is considered if necessary.
However, since the total degrees of freedom of the system
increases exponentially with lattice size, the geometry of the
cluster can be strongly restricted especially for systems in
more than two dimensions. In such cases, the management of
boundary conditions is crucial to ensure “correct” simulations.
Either periodic boundary conditions (PBCs), open boundary
conditions (OBCs), or a combination of them, such as, e.g.,
a cylinder, are typically used. Nevertheless, a naive choice of
boundary conditions could easily give rise to a situation where
the lowest-energy state with a small cluster is not relevant to
the ground state (GS) in the thermodynamic limit, instead of
systematic errors due to the finite-size effects. This issue could
be addressed for example by the sorting of states with, e.g.,

quantum numbers, momentum, and parity, as explicitly done
in level spectroscopy [6], or by controlling the open edges
for a particular state [7]. However, these approaches are not
always successful.

A simple alternative way to resolve or reduce the above
issue is by the use of spiral boundary conditions (SBCs).
As explained below, SBCs enable us to represent two-
dimensional (2D) lattice sites by a one-dimensional (1D)
array. This method was originally used to optimize the com-
putational cost in Monte Carlo simulations [8] but it also
allows us to efficiently apply existing 1D techniques such
as the density-matrix renormalization group (DMRG) [9],
bosonization [10], and Jordan-Wigner transformation [11],
etc. SBCs have been also introduced for extending the Lieb-
Schultz-Mattis theorem to higher dimensions [12] and for
discussing the GS degeneracy in the thermodynamic limit
[13]. In this Letter, we thus propose SBCs as a useful tool
for handling the shape of finite-size periodic clusters. As
practical examples, we describe the 1D projections of the 2D
square- and honeycomb-lattice tight-binding (TB) models in
real and momentum space. Then, we present how the density
of states (DOS) and the GS energy approach their thermody-
namic limits. Furthermore, in order to demonstrate the utility
of SBCs, we calculate the GS energy of the 2D half-filled
Hubbard model and the magnitude of staggered magnetization
of the 2D XXZ Heisenberg model using the DMRG method.
Their estimations had been longstanding problems and were
only recently settled [14,15]. In our DMRG calculations, we
keep up to 12 000 density-matrix eigenstates and the typical
discarded weight is smaller than ∼10−5. More detailed data
are given in the Supplemental Material [16].

Projection of 2D cluster onto 1D chain using SBCs. SBCs
are a variation of the idea of PBCs. They provide a way to
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FIG. 1. (a) 2D square-lattice cluster with 4 × 4 sites, where the
region framed by the red line is the original cluster. (b) 1D repre-
sentation of the cluster (a) by numbering sites along the green line.
This is a periodic chain, and an open chain is created by cutting
Lx bonds between two sites (dotted line). (c) Lx dependence of the
energy dispersion ε(K ), where the limit Ly → ∞ is taken.

map lattice models for more than two dimensions onto 1D
periodic chains with translation symmetry. As an illustration,
let us consider the TB model on a square lattice with Lx × Ly

sites. When a PBC is applied to its finite-size system, we
usually use a rectangular cluster and sites on one edge of the
cluster are assumed to be neighbors of the corresponding sites
on the opposite edge. However, this choice may be arbitrarily
deformed as long as the boundaries have the correct topology
of state. Thus, we now make a particular choice of boundaries
shown in Fig. 1(a), where all sites are traced along the dashed
line in a spiral manner. In this way, the original 2D cluster can
be exactly reproduced as a 1D chain with nearest- and (Lx −
1)th-neighbor hopping integrals [Fig. 1(b)], where the trans-
lational symmetry is preserved. The Hamiltonian is written
as Hsq,0 = −t

∑
σ

∑LxLy

i=1 (c†
i,σ ci+1,σ + c†

i,σ ci+(Lx−1),σ + H.c.),
where ci,σ is an annihilation operator of an electron with spin
σ at site i, and t is the nearest-neighbor hopping integral in
the original 2D model. Its Fourier transform leads to Hsq,K =
−2t

∑
K,σ [cos K + cos(Lx − 1)K]c†

K,σ cK,σ , where K is the
momentum defined along the projected 1D periodic chain and
cK,σ = (1/

√
LxLy)

∑
i exp(iKri )ci,σ . Since the sites are or-

dered along a “snakelike” path shown in Fig. 1(a), the original
2D momenta (kx, ky) = ( 2π

Lx
nx,

2π
Ly

ny) (nx = 0, 1, . . . , Lx − 1;
ny = 0, 1, . . . , Ly − 1) are transferred to the 1D momentum
K = 2π

LxLy
n with n = nx + Lxny = 0, 1, . . . , LxLy − 1.

The Lx dependence of the energy dispersion ε(K ) =
−2t[cos K + cos(Lx − 1)K] is shown in Fig. 1(c), where the
limit Ly → ∞ is taken to obtain a continuous dispersion with
K . Reflecting the snakelike order of sites in the original 2D
cluster, the dispersion is oscillating as a function of K . In the

large Lx limit it turns out to be a beltlike dispersion relation
which is interpreted as the projected band structure of the
square-lattice TB model onto a Cartesian axis, i.e., x or y. The
original 2D Fermi surface is represented as a “Fermi line.”
For example, when the Fermi level is set at 0 < εF < 4, two
separate unoccupied regions correspond to the hole pockets.

Let us see the case of half filling. The dispersion is particle-
hole symmetric and there are 2Lx − 2 Fermi points. The GS
energy E0 can be calculated by carrying out the single-particle
energy summation over the Lx − 1 regions with ε(K ) < 0,

E0

LxLy
= − 4

π

∫
ε(K )<0

(cos K + cos[(Lx − 1)K])dK (1)

= − 4

π

Lx/2∑
j=1

[
sin K + sin[(Lx − 1)K]

Lx − 1

]b

a

−→
Lx,Ly→∞

− 16

π2
, (2)

where a = min(0,
2 j−3
Lx−2 π ) and b = 2 j−1

Lx
π . This energy coin-

cides with that of the infinite-size system. Therefore, we can
confirm that the finite-size systems under SBCs are adiabati-
cally connected to the thermodynamic limit. More details are
given in the Supplemental Material [16].

Note that the way of 1D projection using SBCs is not
unique. This means that the modulation of the wave function
can be controlled more flexibly than PBCs [17]. In other
words, a periodic system consistent with an arbitrary com-
mensurate ordering vector can be created by tuning the shape
of the finite-size cluster and its alignment. Similar boundary
conditions have been used in some numerical calculations to
manage a limited periodicity of small clusters [18,19]. Other
examples of SBC usage are given in the Supplemental Mate-
rial [16].

Honeycomb-lattice TB model under SBCs. Another in-
teresting example is the honeycomb-lattice TB model.
The choice of spiral boundaries and the correspond-
ing projected 1D chain are shown in Figs. 2(a) and
2(b), respectively. The Hamiltonian of the projected 1D
chain is written as Hhon,0 = −t

∑LxLy

i=1

∑
σ (c†

2i−1,σ c2i,σ +
c†

2i,σ c2i+1,σ + c†
2i,σ c2i+(2Lx−1),σ + H.c.). For the limit of

Ly → ∞ the energy dispersion is written as ε(K ) =
±t

√
1 + 4 cos2 K

2 + 4 cos K
2 cos (2Lx−1)K

2 . The Lx dependence
of ε(K ) is shown in Fig. 2(c). The upper and lower bands are
degenerate at K = ± 2

3π only when 2Lx − 1 = 3M, where M
is an integer. In the limit of Lx, Ly → ∞, the band structure
is equivalent to the projected one of 2D graphene onto a
zigzag axis. Accordingly, the Dirac points of the original 2D
graphene are reproduced at K = ± 2

3π .
Approach to the thermodynamic limit. It is informative to

see how the DOS and the GS energy approach their ther-
modynamic limits. For simplicity, hereafter we consider the
case of Lx = Ly = L. The evolution of the DOS with L for
the square- and honeycomb-lattice TB models is shown in
Figs. 3(a) and 3(b), respectively. With increasing L, they are
smoothly connected to the thermodynamic limit ones. Also,
the overall shape including the van Hove singularity can be
approximately reproduced even with a relatively small cluster.
It is because the degeneracy of the energy levels in a finite-
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FIG. 2. (a) 2D honeycomb-lattice cluster with 3 × 3 unit cells,
where a region framed by the red line is the original cluster. (b) 1D
representation of the cluster (a) by numbering sites along the green
line. (c) Lx dependence of the energy dispersion ε(K ), where the limit
Ly → ∞ is taken. The upper and lower bands are degenerate at K =
± 2

3 π when 2Lx − 1 = 3M (M: integer).

size PBC cluster is lifted due to the partial breaking of its
rotation symmetry by SBCs. For a square-lattice cluster with
L × L sites, the number of independent momenta is L2

2 + 1
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FIG. 3. L dependence of the density of states for (a) square-
and (b) honeycomb-lattice TB models, where a broadening of the δ

peak 1.6/L and 0.8/L is introduced, respectively. Finite-size scaling
analysis of the ground-state energy for the half-filled square-lattice
Hubbard model at (c) U = 0 and (d) U/t = 8. Solid and open circles
denote the energy per two bonds and per site calculated with open
chains, respectively. Crosses denote the energy per site calculated
with periodic chains.

under SBCs and L2

8 + 3L
4 + 1 under PBCs. More details are

discussed in the Supplemental Material [16].
In Fig. 3(c) a finite-size scaling analysis of the GS energy

for the half-filled square-lattice TB model with the projected
1D periodic chains is shown. The data points are analytically
obtained. As expected, the energy per site (e0) quadratically
approaches − 16

π2 as a function of 1
L . It is also interesting to

see the scaling behavior when open chains are used. An open
chain is created by cutting L bonds between two neighboring
sites of the periodic chain [see Fig. 1(b)]. Note though that the
number of missing bonds is reduced from 2L in the original
2D PBC cluster to L. Nevertheless, since the ratio of the
number of bonds per site deviates from 2 due to the missing
bonds for finite-size open chains, it is convenient to estimate
the GS energy in two different ways: One is the energy per site
and the other is that per two bonds. As shown in Fig. 3(c), both
of them are extrapolated almost linearly to the thermodynamic
limit. One of them is extrapolated from the higher-energy side
with decreasing 1

L and the other from the lower-energy side, so
that this makes the scaling analysis more reliable. Eventually,
the scaling behavior with open chains seems to be even more
simple than that with periodic chains.

Application of SBCs in DMRG calculations. In DMRG
simulations for a 2D system, it is not easy to obtain physical
quantities in the thermodynamic limit because not only are
their implementations challenging even with finite-size clus-
ters, but also the finite-size scaling analysis must be performed
along two orientations, e.g., the x and y directions. This issue
can be somewhat alleviated by applying the above 1D projec-
tion scheme. In order to demonstrate this, we here present two
examples of DMRG simulations for a 2D system.

The first example is the GS energy of the 2D half-filled
Hubbard model on a square lattice, whose Hamiltonian is
H = Hsq,0 + U

∑
i ni,↑ni,↓, where ni,σ = c†

i,σ ci,σ . In Fig. 3(d)
the finite-size scaling of GS energy for U = 8 is performed.
As is the case in the TB model, open chains are used, so
that the extrapolation to the thermodynamic limit seems to
be straightforward. It leads to e0 = −0.5228 by linear fitting.
This energy is only slightly higher than e0 = −0.5241 esti-
mated by DMRG calculations with infinite-length cylinders
[14]. Perhaps the extrapolation in the circumferential direction
may contain some uncertainty due to the unsettled scaling
function with several data points.

The second example is the spontaneous staggered magne-
tization of the 2D XXZ Heisenberg model on a square lattice,
whose Hamiltonian is H = ∑

〈i, j〉(S
x
i Sx

j + Sy
i Sy

j + �Sz
i Sz

j ),

where Sγ
i are the spin- 1

2 operators associated with site i, �

is the anisotropy parameter, and the sum 〈i, j〉 runs over
all nearest-neighbor pairs. We here use periodic chains.
As sketched in Fig. 4(a), the z components of spins at
sites i and i + 1 are fixed to 1

2 and − 1
2 , respectively, and

the spin moments at the farthest two sites from the fixed
spins are measured: mst

z = −〈Sz
i+1+ N

2
〉 = 〈Sz

i+ N
2
〉. Several

examples of the finite-size scaling analysis are shown in
Fig. 4(b), where the spin moments are calculated using
periodic chains with lengths up to N = L2 = 100 sites. For
the isotropic case (� = 1), we obtain mst

z = 0.3071 ± 0.0005
in the thermodynamic limit. This value is reasonably
close to the previous DMRG (mst

z = 0.3067) [20] and
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FIG. 4. (a) Schematic picture of the 1D periodic chain used for
the DMRG calculations of staggered magnetization mst

z . (b) Finite-
size scaling analysis of mst

z . Solid symbols denote the data points
estimated with spin rotation symmetry breaking, and open triangles
denote those estimated from the static structure factor (see text). (c),
(d) Extrapolated values of mst

z in the thermodynamic limit. Insets:
Enlarged views near � = 1 and 1/� = 0, respectively. The solid line
in the inset of (d) shows a fitting by a polynomial function with 1/�.

quantum Monte Carlo (mst
z = 0.307 43) [15] estimations.

The magnetization increases with increasing �. The
extrapolated values of mst

z are plotted as a function of �

in Fig. 4(c). The overall behavior is basically consistent
with the previous studies [21–24]. However, a singularity
near � = 1, mst

z = ∑∞
n=0 μn(1 − �−2)n/2, predicted by

the spin-wave theory [21,25,26] is not confirmed in
our results. This is consistent with results from the
coupled cluster method [24]. A more detailed analysis
is given in Ref. [27]. On the other hand, as shown in
Fig. 4(d), our data in the large-� region (0 � 1/� � 0.05)
can be fitted by 2mst

z = 1 + m2/�
2 + m4/�

4 + m6/�
6

with m2 = −0.222 222 225, m4 = −0.035 554 273 6,
and m6 = −0.018 966 381 0. This agrees well with the
series expansions 2mst

z = 1 − (2/9)/�2 − (8/225)/�4 −
0.018 942 58/�6 + O(1/�8) (2/9 = 0.222 222 22 . . . ,
8/225 = 0.035 555 5 . . . ) [21].

Finally, we present another option to calculate the stag-
gered magnetization. In the above estimations, the spin
rotation symmetry is broken by design. Although it makes the
DMRG calculations more stable, an equally precise estima-

tion of mst
z is also possible without such explicit symmetry

breaking. Using open chains, we can accurately estimate
the staggered magnetization from the static structure factor
(mst

z )2 = limL→∞(1/L2)
∑

i j (−1)i− j〈Si · S j〉, where the sum
is taken over the open chain. The finite-size scaling analy-
sis using the chains with lengths up to 12 × 12 is given in
Fig. 4(b). We obtain mst

z = 0.307 62 ± 0.0032 in the thermo-
dynamic limit.

Summary. Applying SBCs, lattice models for more than
two dimensions can be exactly projected onto 1D periodic
chains with translational invariance. In the projected 1D chain,
each lattice site is indexed by a single coordinate instead of
two coordinates in the original 2D PBC cluster, so that we
only have to perform a finite-size scaling analysis along the
chain direction to obtain a physical quantity in the thermody-
namic limit. As practical examples, we first explained how the
2D square- and honeycomb-lattice TB models are expressed
as 1D periodic systems in both real and momentum space.
Then, the evolution of the DOS with increasing cluster size
as well as a finite-size scaling analysis of the GS energy
to the thermodynamic limit was shown. Finally, in order to
demonstrate the utility of this 1D projection scheme in DMRG
simulations, we calculated the magnitude of staggered magne-
tization in the 2D XXZ Heisenberg model on a square lattice.

The 1D projection scheme using SBCs can be extended
to further research. Since the projected 1D chain has trans-
lational symmetry, all of the so-called (local) A tensors are
set to be equivalent in a matrix product state. As a result,
quantum entanglement is uniformly distributed over the pro-
jected 1D chain. It is also important that the distance of the
longest bonds is minimized. These conditions enable us to
optimally perform DMRG calculations, and also allow us
to use the existing techniques such as infinite DMRG and
transfer-matrix renormalization group. Though only two kinds
of 2D lattices are considered in this Letter, a similar 1D pro-
jection is possible for any periodic lattices in more than two
dimensions [8]. Moreover, in most cases SBCs are expected
to practically give an easier finite-size scaling analysis than
the cylinder and PBCs. To clarify the advantages of SBCs
in DMRG simulations, the comparison of performance with
other boundary conditions is discussed in the Supplemental
Material [16].
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