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Pair breaking in superconductors with strong spin-orbit coupling
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We study the influence of symmetry-breaking perturbations on superconductivity in multiorbital materials,
with a particular focus on an external magnetic field. We introduce the field-fitness function which characterizes
the pair-breaking effects of the perturbation on a given superconducting state. For even-parity superconductors
we find that this field-fitness function for an external magnetic field is one, implying that the paramagnetic
response is controlled only by a generalized effective g factor. For odd-parity superconductors, the interplay of
the effective g factor and the field-fitness function can lead to counterintuitive results. We demonstrate this for
p-wave pairing in the effective j = 3

2 electronic states of the Luttinger-Kohn model.
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Introduction. A diverse variety of superconductors have
recently been found to exhibit critical fields far exceeding the
Pauli limiting field, e.g., UTe2 [1], CeRh2As2 [2], UCoGe [3],
URhGe [3], and YbRh2Si2 [4]. In some of these materials
superconductivity even appears as a re-entrant phase [1,3],
again far above the Pauli field. The origin of this anomalous
high-field behavior has been attributed to spin-triplet super-
conductivity. However, the fermiology of these materials is
complicated, with multiple bands crossing the Fermi surface.
Moreover, spin-orbit coupling is expected to be large due to
the presence of heavy elements. Due to the interplay of the
normal-state band structure, the structure of the odd-parity
pairing potential, and the applied magnetic field, it is not clear
that the established theory for the magnetic response of a
triplet superconductor is applicable [5,6].

Concurrent to these experimental developments, it has
been realized that internal degrees of freedom of the band
electrons, e.g., sublattice or orbital, can profoundly impact
the magnetic response of even-parity superconductors. In par-
ticular, the large critical fields observed in artificial Rashba
heterostructures [7,8], CeRh2As2 [2,9], and WTe2 [10] are
believed to arise from a “hidden” antisymmetric spin-orbit
coupling (ASOC) [11]. This ASOC is odd in momentum and
has opposite signs for internal degrees of freedom that are
related by inversion symmetry (IS). This preserves IS and the
twofold degeneracy of the band electron states. Similar to non-
centrosymmetric materials [12], however, the ASOC reduces
the Zeeman splitting of the band states and so enhances the
Pauli limit [13]. For odd-parity superconductivity, however,
the effect of the ASOC on the critical fields is not as well
explored. However, in one remarkable example, CeRh2As2,
spin-singlet pairing interactions give way to extremely high

*agterber@uwm.edu
†philip.brydon@otago.ac.nz

critical fields due to the formation of an odd-parity supercon-
ducting state that is stabilized by the ASOC [2,14].

There also exist materials where a symmetric spin-orbit
coupling (SSOC), i.e., the spin-orbit coupling is even in
momentum, is important. The influence of this SSOC on
superconductivity has been studied in the context of the
iron pnictides [15], Sr2RuO4 [16,17], half-Heusler materials,
[18,19], and the pyrochlore lattice [20]. The latter two cases
support effective j = 3

2 electronic states which exhibit prop-
erties that are quite different from the more usual j = 1

2 states
[21]. The magnetic response of even-parity superconducting
states in such materials shows similar features to the case
of the ASOC [22]; the response of odd-parity superconduc-
tivity also remains poorly understood. Indeed, one of the
main results of this work is to reveal the counterintuitive
response of odd-parity states in j = 3

2 materials to applied
fields.

In this Letter we examine the influence of the spin-orbit
coupling on the response of a superconducting state to a per-
turbation which breaks either IS or time-reversal symmetry
(TRS), with a focus on the familiar example of an applied
magnetic field. Within a general minimal model for systems
with both antisymmetric and symmetric spin-orbit coupling,
we show that the response of the superconducting state to
the perturbation is fully determined by two basis-independent
quantities: a generalized effective g factor, and a parameter
that quantifies the pair-breaking due to the field, which we
term the field-fitness function Fh by analogy with the super-
conducting fitness [16,23]. In the case of an external magnetic
field, these quantities also control the spin susceptibility in
the superconducting state. For even-parity superconductors,
Fh = 1, so that the response is given solely by the effec-
tive g factor; in contrast, odd-parity superconducting states
display a complicated interplay of the field-fitness and the
effective g factor. We apply our general theory to odd-parity
superconductivity in j = 3

2 materials, where we find that the
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SSOC leads to a magnetic response very unlike that of j = 1
2

superconductors.
General theory. We consider a system described by the

Bogoliubov–de Gennes Hamiltonian

H =
∑

k

��†
k

(
H0,k �k

�
†
k −HT

0,−k

)
��k, (1)

where ��k = (�ck, �c†
−k ), with �ck representing a spinor of anni-

hilation operators for fermions with four internal degrees of
freedom. In the presence of both TRS and IS, the most general
form of the Hamiltonian matrix H0,k is [24,25]

H0,k = ε0,k14 + �εk · �γ = ε0,k14 + H̄0,k, (2)

where 14 is the 4×4 identity matrix, and �γ =
(γ 1, γ 2, γ 3, γ 4, γ 5) are the mutually anticommuting
Euclidean Dirac matrices with coefficients �εk =
(ε1,k, ε2,k, ε3,k, ε4,k, ε5,k ). The Hamiltonian has doubly
degenerate eigenenergies ξ±,k = ε0,k ± |�εk|, where |�εk| =√∑5

l=1 ε2
l,k. In Eq. (2) we have introduced H̄0,k = �εk · �γ to

denote the part of the Hamiltonian which depends nontrivially
on the internal degrees of freedom.

Hamiltonians with the form of Eq. (2) describe a diverse
range of two-band systems [10,14,15,18,24,26–29], and so the
exact form of the γ matrices depends on the system under
consideration [30]. For spin- 1

2 systems, we generally construct
the γ matrices as Kronecker products of Pauli matrices acting
in the orbital and spin spaces. In this case we choose γ 1 and
γ 2 to be trivial in the spin space, with these contributions to
the Hamiltonian describing purely orbital effects, while the
remaining matrices couple the spin and orbital degrees of free-
dom, accounting for SOC in the system. This parametrization
is also valid for spin- 3

2 systems, even though the underlying
orbital and spin degrees of freedom cannot be factorized.

The pairing potential appearing in Eq. (1) is written �k =
�0�̃kUT , where �0 is the magnitude, �̃k encodes the depen-
dence on the momentum and the internal degrees of freedom,
and UT is the unitary part of the time-reversal operator. The
general form for even- (e) and odd-parity (o) states is

�̃
(e)
k = e0

k14 +
5∑

a=1

ea
kγ

a, (3)

�̃
(o)
k =

4∑
a=1

∑
b>a

oab
k iγ aγ b, (4)

where ea
k and oab

k are normalized form factors. Note that only
when the internal degrees of freedom transform trivially under
inversion are the functions ea

k and oab
k necessarily even and odd

in momentum, respectively. A proof of this general form is
given in the Supplemental Material [31].

Due to the mixing of orbital and spin, the pairing potential
in the band basis typically has both intraband and interband
matrix elements. The intraband gap is particularly important
as it is responsible for the Cooper instability. Assuming that
�0 is small compared to the band separation, the gap in band
a is given by

|�a,k|2 = �2
0

Tr{|{H̄0,k, �̃k}|2Pa,k}
8|�εk|2 , (5)

where {H̄0,k, �̃k}UT is the superconducting fitness as defined
in Refs. [16,23], Pa,k = 1

2 (14 + aH̄0,k/|�ε|) projects onto the
a = ± band, and |O|2 = OO†. The projection operator is
necessary to account for band dependence of the intraband
pairing, which can arise when |�̃k|2 �∝ 14.

To investigate the effect of symmetry breaking, we intro-
duce the perturbation Hamiltonian

δH =
∑

k

��T
k

(
Hh,k 0

0 −HT
h,−k

)
��k. (6)

We adopt a general form of Hh,k,

Hh,k =
4∑

α=1

∑
β>α

hαβ,kiγ αγ β. (7)

The perturbation lifts the twofold degeneracy of the normal-
state spectrum: For sufficiently well-separated bands, the
perturbed energies of band a are ξa,±,k ≈ ξa,k ± g̃a,khk, where
h2

k = ∑
α,β h2

αβ,k = Tr{|Hh,k|2}/4, and the effective g factor in
band a is

g̃2
a,k = Tr{{H̄0,k,Hh,k}2Pa,k}

8|�εk|2h2
k

. (8)

Equation (8) resembles the expression for the intraband su-
perconducting gap Eq. (5), and can be similarly interpreted
as giving the splitting of the bands due to the projection of
the perturbation onto band a. When H2

h,k ∝ 14 the splitting
of the energy spectrum is independent of the band index,
i.e., ga,k = gk; more generally, when H2

h,k �∝ 14 the effective
g factors are different in each band, which is accounted for by
the projection operator in Eq. (8).

Pair breaking. The lifting of the twofold degeneracy of
the band states by the perturbation generally suppresses the
superconductivity. The central result of our work is that the
pair-breaking effects of the perturbation in band a can be
quantified by the field-fitness function; in the case of a TRS-
breaking perturbation this is

F̃ (a)
h,k = Tr{|{{H̄0,k, �̃k}, {H̄0,k,Hh,k}}|2Pa,k}

2Tr{{H̄0,k,Hh,k}2Pa,k}Tr{|{H̄0,k, �̃k}|2Pa,k}
. (9)

The field-fitness function ranges in value from zero to 1. For
F̃ (a)

h,k = 0, the states at k and −k involved in the intraband
pairing remain degenerate, and so there is no pair-breaking
effect. On the other hand, the perturbation is maximally pair
breaking for F̃ (a)

h,k = 1, i.e., the states paired by the intraband
pairing potential are split by the perturbation. An interme-
diate value 0 < F̃ (a)

h,k < 1 indicates that the intraband pairing
potential pairs electrons in a superposition of the perturbed
states, and there will be some pair-breaking effect. Inserting
Eq. (3) into Eq. (9), we find that for any even-parity state
the field fitness F̃ (a)

h,k = 1, as the numerator can be factored
to give the denominator. Since even-parity superconductors
always pair time-reversed partners within the same band, any
TRS-breaking perturbation is maximally pair breaking. On the
other hand, odd-parity superconducting states do not necessar-
ily pair time-reversed states in the same band, and so they may
experience less or no pair breaking due to broken TRS, i.e.,
0 � F̃ (a)

h � 1. The results for perturbations which break IS but

L060504-2



PAIR BREAKING IN SUPERCONDUCTORS WITH STRONG … PHYSICAL REVIEW B 107, L060504 (2023)

preserve TRS are similar and provided in the Supplemental
Material [31].

Solving the linearized gap equation in the presence of the
TRS-breaking perturbation gives the critical temperature Tc in
terms of the unperturbed value Tc,0,

ln

(
Tc

Tc,0

)
=

∑
a=±

〈[ Da,k|�a,k|2∑
a′=±〈Da′,k′ |�a′,k′ |2〉a′

]

× F̃ (a)
h,k Re

{
ψ

(
1

2

)
− ψ

(
1

2
+ i

g̃a,khk

2πkBTc

)}〉
a

,

(10)

where ψ (x) is the digamma function, 〈· · · 〉a indicates the
average over the Fermi surface of band a, Da,k = | �∇kξa,k|−1,
and the factor in the square brackets defines the fraction of
the total condensation energy due to the gap on each band.
The suppression of the critical temperature by a TRS-breaking
perturbation is controlled by both the field fitness function and
the effective g factor, which tune the degree of pair break-
ing and the magnitude of the band splitting, respectively. A
brief derivation of Eq. (10) is presented in the Supplemental
Material [31].

Magnetic susceptibility. We now turn to the important case
where the perturbation is an applied magnetic field, which
couples to the electron states via the Zeeman effect. A key
experimental quantity is the magnetic susceptibility, which in
a multiband system can be divided into components due to
intraband (“Pauli”) and interband (“van Vleck”) transitions.
The latter is negligibly affected by superconductivity, as the
pairing potential is typically much smaller than the band
separation. On the other hand, the Pauli contribution carries
clear signatures of the pair-breaking effect. For a field applied
along the i axis, the Pauli susceptibility below the critical
temperature is given by

χii =
∑
a=±

〈
2μ2

BDa,kg̃(i) 2
a,k

{
1 + F̃ (a)

i,k [Ya(k̂, T ) − 1]
}〉

a, (11)

where g̃(i)
a,k is the effective g factor for an i-axis field, and

Ya(k̂, T ) is the angle-dependent Yosida function for the intra-
band gap Eq. (5). Explicit expressions for the susceptibility in
both the normal and superconducting states are provided in the
Supplemental Material [31]. For even-parity gaps F̃ (a)

h,k = 1,
and the pairing suppresses the Pauli susceptibility, with it van-
ishing at zero temperature. On the other hand, an odd-parity
state typically gives only a partial suppression of the Pauli
susceptibility; in the extreme case F̃ (a)

h,k = 0 the susceptibility
is unaffected by the superconductivity.

Three and more bands. Our theory can be generalized to
systems with more than two bands. Specifically, for a normal-
state Hamiltonian H0,k with doubly degenerate eigenvalues
{εa,k}a=1,...,N , the gap magnitude and the effective g factor in
band a are given by

|�a,k|2 = 1
2�2

0Tr{�̃kPa,k�̃
†
kPa,k}, (12)

g̃2
a,k = 1

2 Tr{(Hh,kPa,k)2}, (13)

and the field fitness is

F̃ (a)
h,k = Tr{|{Hh,kPa,k, �̃kPa,k}|2Pa,k}

8Tr{(Hh,kPa,k)2}Tr{�̃kPa,k�̃
†
kPa,k}

, (14)

where Pa,k = ∏
b�=a(H0,k − εb,k)/(εa,k − εb,k) projects onto

band a. These results allow us to apply the formulas Eqs. (10)
and (11) to an arbitrary multiband system, requiring only
knowledge of the normal-state band energies. An application
of these formulas to a three-band model of Sr2RuO4 is pre-
sented in the Supplemental Material [31].

j = 3
2 superconductors. As a concrete application of our

approach we consider a system of electrons with an effec-
tive j = 3

2 . A minimal model is given by the Luttinger-Kohn
Hamiltonian

H0,k = (α|k|2 − μ)14 + β1

∑
i

k2
i J2

i + β2

∑
i′ �=i

kiki′JiJi′ ,

(15)

where Ji are the spin- 3
2 matrices and the indices i, i′ run over

Cartesian coordinates. The Hamiltonian can be cast into the
form of Eq. (2) by defining the γ matrices �γ= ( 1√

3
[J2

x − J2
y ],

1
3 [2J2

z − J2
x − J2

y ], 1√
3
{Jy, Jz}, 1√

3
{Jx, Jy}, 1√

3
{Jx, Jz}), with

corresponding coefficients �ε = [
√

3β1(k2
x − k2

y )/2,√
3β1 (3k2

z − |k|2)/2,
√

3β2kykz,
√

3β2kxky,
√

3β2kxkz]. The
strong SOC in the Luttinger-Kohn model leads to a
pronounced spin-momentum locking. This is most clearly
observed in the limit β1 = β2, where the model has full
spherical symmetry and the quantity k · J commutes with
the Hamiltonian, i.e., the projection of the spin along k is
a good quantum number. The eigenstates are classified by
the “helical” index σ such that k̂ · J|σ 〉k = σ |σ 〉k, defining
a spin- 3

2 band (σ = ± 3
2 ) and spin- 1

2 band (σ = ± 1
2 ). This

argument remains valid along high-symmetry directions in
the presence of cubic anisotropy, allowing us to identify
spin- 1

2 and - 3
2 bands when β1 �= β2. As we will show below,

compared to the spin- 1
2 band, the spin- 3

2 band exhibits
counterintuitive properties.

The spin-momentum locking produces a highly anisotropic
Zeeman splitting of the bands by an applied magnetic field
Hh = gμBh · J. Although the general result using Eq. (8) is
complicated, in the rotationally symmetric limit the effec-

tive g factors take the compact forms g̃1/2 =
√

1 − 3|ĥ · k̂|2/4

and g̃3/2 = 3|ĥ · k̂|/2 in the spin- 1
2 and - 3

2 bands, re-
spectively; these effective g factors remain approximately
valid in the general case. Note that there is no splitting
of the spin- 3

2 band in the direction perpendicular to the
field, whereas the splitting of the spin- 1

2 states is maxi-
mal in this plane. To understand this, we introduce the
momentum-dependent angular momentum operators Jk

z =
k̂ · J, and raising and lowering operators Jk

± which satisfy
[Jk

z , Jk
±] = ±Jk

±. The band states are eigenstates of Jk
z , i.e.,

Jk
z |σ 〉k = σ |σ 〉k, and the action of the raising and lowering

operators is Jk
±|σ 〉k =

√
( 3

2 ∓ σ )( 3
2 ± σ + 1)|σ ± 1〉k. Ex-

pressing the Zeeman Hamiltonian in terms of these operators
we have Hh = gμB(h · k̂Jk

z + hk
+Jk

+ + hk
−Jk

−); the functions
hk

± = −h−k
± are vanishing for k̂ ‖ h and take maximal
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FIG. 1. Comparison of A1u and A2u states. (a), (b) Normalized field fitness F̃ (a)
h on the spin- 3

2 (black solid line, μ = −20 meV) and spin- 1
2

(blue dashed line, μ = 20 meV) band Fermi surface for A1u (a) and A2u (b) pairing. (c), (d) Pauli susceptibility as a function of temperature
at β2 = β1 for A1u (c) and A2u (d) pairing. (e), (f) Upper critical field excluding orbital effects for each band at β2 = β1 for A1u (e) and A2u (f)
pairing. In all plots we take α = 20(a/π )2 eV, β1 = −15(a/π )2 eV.

magnitude in the plane perpendicular to k; explicit expres-
sions are given in the Supplemental Material [31]. Since the
raising and lowering operators do not couple the σ = ± 3

2
states, this immediately explains why there is no splitting
for k ⊥ h in the spin- 3

2 band; conversely, the larger matrix
elements for the raising and lowering operators compared to
the z-spin operator gives a maximum of the Zeeman splitting
for the spin- 1

2 band in this plane.
The spin-momentum locking also profoundly influences

the superconducting gap structure, which we illustrate by two
odd-parity states: the fully gapped p-wave triplet A1u state
with �̃1u = 2√

5
(k · J)UT , and a nodal p-wave septet A2u state

�̃2u = 1√
3
(k · T)UT , where Ti = {Ji, J2

i+1 − J2
i+2} for i defined

cyclically (e.g., Jy+2 = Jx). These two states are the leading
p-wave instabilities in the spin- 3

2 band in the rotationally sym-
metric limit [40]. Using Eq. (5) we find that the gaps opened
by these pairing states have nontrivial band dependence. This
is most apparent in the A2u case, which in the spin- 1

2 band
has fourteen nodes along the (100) and (111) and equivalent
directions, whereas in the spin- 3

2 band it only has six nodes
along the the (100) directions [21]. These nodes result from

the spin-momentum locking: along the (100) directions the
A2u state pairs electrons with helicity differing by ±2 which
cannot be satisfied in either band, and hence implies purely
interband pairing and a node in the intraband gap. On the other
hand, along the (111) direction the A2u state pairs electrons
with helicity differing by ±3, and so it only opens a gap
in the spin- 3

2 band. In contrast, the A1u state pairs electrons
with the same helicity, and hence it opens a full gap in both
bands. Further details on these pairing states are provided in
the Supplemental Material [31].

The response of the superconductivity to an applied Zee-
man field displays major differences between the two bands.
For a field applied along the z axis, the averaged field-fitness
function F̃ (a)

h = 〈F̃ (a)
h,k 〉a is plotted in Figs. 1(a) and 1(b) as

a function of β2/β1 for the A1u and A2u states, respectively.
In the spin- 1

2 band, the nonzero value of F̃ (a)
h indicates that

a magnetic field is partially pair breaking for both states; in
the spin- 3

2 band, however, the field is almost completely pair
breaking for the A1u state, whereas the A2u state is almost
insensitive to its effects. These results are only weakly de-
pendent upon the ratio β2/β1 and the orientation of the field;
they become exact and valid for all field directions in the
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rotationally symmetric limit. This behavior is reflected in the
susceptibility, as shown in Figs. 1(c) and 1(d): in the spin- 3

2
band the Pauli contribution to the susceptibility is completely
suppressed for the A1u state, whereas we see no change in the
susceptibility for the A2u state. In contrast, in both cases there
is moderate suppression of the susceptibility in the spin- 1

2
band. Likewise, as shown in Figs. 1(e) and 1(f), in the spin- 3

2
band the A1u state is Pauli limited whereas the A2u state is only
limited by orbital effects.

The remarkable response to a magnetic field can be un-
derstood in the rotationally symmetric limit in terms of the
helicity quantum number. Projected onto the spin- 3

2 band, the
A1u state pairs electrons with the same helicity whereas the A2u

state pairs electrons with opposite helicity. In the projection of
the Zeeman Hamiltonian only the Jz

k operator has nonzero ma-
trix elements, and so the energy shift of the state |σ 〉k is σh · k̂.
Since the A2u state pairs electrons which have the same Zee-
man shift, it does not experience pair breaking; in contrast, the
A1u state pairs electrons with opposite Zeeman shift, and the
pair breaking is maximal. The situation in the spin- 1

2 band is
more complicated, since helicity is not a good quantum num-
ber for the projected Zeeman Hamiltonian, and the A2u state
has both equal- and opposite-helicity pairing matrix elements.
This gives the intermediate values of F̃ (a)

h for the spin- 1
2 band.

Although this argument is only rigorously valid in the rota-
tionally symmetric limit, the plot of F̃ (a)

h in Figs. 1(a) and 1(b)
indicates that it remains valid more generally.

Conclusions. In this Letter we have developed a basis-
independent framework to understand the interplay of su-
perconductivity and symmetry-breaking perturbations in a
multiband system. Using a generic minimal model, we have
shown that coupling of orbital and spin degrees of free-
dom typically reduces the effect of the perturbation via
the appearance of an effective g factor, Eq. (8). Moreover,
the pair-breaking effect of this perturbation can be formu-
lated in terms of the field-fitness function Eq. (9). Together,
these quantities control the suppression of the critical tem-
perature by the perturbation, and in the case of a Zeeman
field determine the magnetic susceptibility below the critical
temperature. To illustrate these effects, we have examined
p-wave pairing of effective spin- 3

2 electrons with normal
state described by the Luttinger-Kohn model. The charac-
teristic spin-momentum locking in this model leads to the
remarkable result that in the spin- 3

2 band the triplet A1u

state is strongly suppressed by a Zeeman field, whereas the
septet A2u state is largely immune to it, giving dramatically
different behavior in the upper critical field and the spin
susceptibility.
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