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Oscillations and confluence in three-magnon scattering of ferromagnetic resonance
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We have performed a time-resolved and phase-sensitive investigation of three-magnon scattering of ferro-
magnetic resonance (FMR) over several orders of magnitude in excitation power. We observe a regime that
hosts transient oscillations of the FMR magnon population, despite higher-order magnon interactions at large
powers. Also at high powers, the scattering generates 180◦ phase shifts of the FMR magnons. These phase
shifts correspond to reversals in the three-magnon scattering direction, between splitting and confluence. These
scattering reversals are most directly observed after removing the microwave excitation, generating coherent
oscillations of the FMR magnon population much larger than its steady-state value during the excitation.
Our model is in strong agreement with these findings. These findings reveal the transient behavior of this
three-magnon scattering process, and the nontrivial interplay between three-magnon scattering and the magnons’
phases.
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Magnons are the quanta of collective spin excitations.
Their phase degree of freedom, highly nonlinear behavior
[1–17], and long lifetimes make them an active subject in
fundamental research [18–21] and research towards next-
generation microwave and information technology [22–29].
A magnon mode’s population (hereafter referred to as its
amplitude) can be excited above a threshold value such that
it becomes unstable, returning to the threshold value through
three-magnon splitting [30]. This nonlinear process is referred
to as the first-order Suhl instability.

The zero-wave-vector magnon mode corresponds to fer-
romagnetic resonance (FMR) and has a dramatically low
threshold amplitude for this instability, particularly in mag-
netic insulators due to their low damping. This allows for
efficient excitation of finite-wave-vector magnons and the
study of nonlinear magnon interactions over a wide power
range. However, little is known about how this instability
evolves in time and the role of the excitation power. Previous
experiments have observed no associated power dependence
[31], or have instead focused on the influence of dipole radia-
tion [32] or of group velocity and proximity to the excitation
antenna [33]. The reverse process of splitting is referred to as
confluence, which also requires further investigation [33]. Its
relationship with splitting is an unresolved question, as is the
relationship between three-magnon scattering processes and
the magnons’ phases.

To this end, we employ time-resolved homodyning spec-
troscopy to examine this instability with phase-sensitivity
over five orders of magnitude in microwave excitation power.
We observe a regime hosting power-dependent transient os-
cillations of the FMR amplitude, where at high powers
the instability induces 180◦ phase shifts of FMR, and that
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these phase shifts correspond to reversals between three-
magnon splitting and confluence. Furthermore, turning off
the microwave excitation stimulates such reversals, gen-
erating prolonged and coherent oscillations of the FMR
amplitude. Our model is in strong agreement with these ob-
servations, and explains the origin of the oscillatory regime
as well as the oscillations after turn-off. The oscillatory
regime persists up to the highest powers employed, being
remarkably robust against the higher-order interactions that
arise.

The FMR mode b0 with a frequency f0 is subject to the
first-order Suhl instability when magnon modes b±ki at f0/2
are available. This occurs at low FMR frequencies for in-
plane magnetized films, due to a minimum in the magnon
dispersion [34,35]; an increase in wave number suppresses the
dynamic demagnetization field. With these modes available,
b0 becomes unstable above a threshold amplitude and under-
goes three-magnon splitting to b±ki . In the reverse process,
confluence, two magnons b±ki combine into a magnon b0

[Fig. 1(a)].
We investigated this instability in the time domain through

homodyning spectroscopy [Fig. 1(b)]. The microwave exci-
tation at the desired FMR frequency f0 is converted to the
desired applied microwave power Pa and to 8 μs pulses using
an attenuator and switch. These pulses enter a wide mi-
crostrip waveguide, generating a spatially uniform microwave
magnetic field of amplitude ha throughout the sample: A
3μm-thick film of yttrium iron garnet (YIG). We resonantly
excite the sample’s FMR mode by matching its FMR fre-
quency with f0, via tuning the static magnetic field H to
H0. We primarily investigated the transient behavior at f0 =
1.5 GHz, with a corresponding resonant field of H0 = 135 Oe.
The sample is inductively coupled to the microstrip, such
that its FMR response b0 induces a corresponding volt-
age in the microstrip [36]. We obtain the envelope of the
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FIG. 1. (a) The magnon dispersion of 3μm YIG films magne-
tized in-plane, in 15◦ increments of the angle between the wave
vector k and the static magnetization M. (b) Schematic diagram of
the experiment. (c) χ ′′

∞(Pa )/χ ′′
L predicted from Suhl’s theory (blue)

and that measured through lock-in techniques (green) and time-
resolved measurements (black) at 1.5 GHz. The color-coded regions
correspond to the Linear (L), Nonlinear (N), and Nonlinear Oscil-
latory (NO) regimes. (d) Overview of the transient behavior of the
FMR magnon population c0 in each regime at 2.5 GHz, normalized
to the values of c0 at steady state.

microstrip’s output voltage by mixing it with a phase- and
frequency-matched reference. By subtracting the output volt-
age’s envelope at resonance from that at zero field, we
isolate the envelope of the voltage induced by FMR. When
nonlinearity-induced phase shifts are absent, this envelope
directly corresponds to the FMR amplitude c0(t ) with the
susceptibility χ ′′(t ) = c0(t )/ha ∝ c0(t )/

√
Pa. For additional

experimental details, see Sec. 1 of the Supplemental Material
(SM) [37] and Ref. [38] therein.

To verify our experiment, we compare the measured
steady-state susceptibility χ ′′

∞ with Suhl’s theory [30] around
the instability’s threshold power PS [see Fig. 1(c)]. For Pa <

PS , c0 is in the linear regime, such that its steady-state value is
proportional to ha. For Pa = PS , this value corresponds to cS ,
the threshold amplitude for the (nonlinear) instability regime.
The steady-state value of c0 saturates at cS in the nonlinear
regime, as three-magnon splitting occurs for c0>cS . As such,
as Pa is increased, χ ′′

∞ decreases as χ ′′
∞ ∝ 1/

√
Pa. We compare

this with the experimental results by normalizing χ ′′
∞ to its

value in the linear regime χ ′′
L . The experimentally obtained

saturation from both steady-state (using lock-in techniques)
and time-resolved measurements is in reasonable agreement
with the theoretical prediction.

In our time-resolved measurements [Fig. 1(d)], we find
both the linear and nonlinear regimes as well as their expected
transient behavior: in the linear regime (purple curve) c0 rises
monotonically to its steady-state value, while in the nonlinear
regime (blue curve) it becomes unstable and then relaxes to
cS via three-magnon splitting. However, we observe an addi-
tional regime with a threshold power Posc > PS , in which c0

oscillates at a power-dependent frequency as it relaxes to cS

(red curve).

To understand this regime, we have developed a model for
three-magnon scattering of FMR in thin films, for the case of
resonant excitation by a perpendicular microwave field (see
Sec. 2 of SM [37] for details). We derive the associated equa-
tion of motion for the circularly-polarized magnetization m+
via the Landau-Lifshitz equation. We then perform a plane-
wave expansion of m+ [30] to obtain the equations of motion
of the circularly precessing magnon modes. Afterwards, we
employ a classical Bogoliubov transformation [39] to obtain
the equations of motion of the eigenmodes, the elliptically
precessing magnon modes b(k). We only retain terms up to
second order in the magnon modes, to account for three-
magnon scattering while neglecting higher-order interactions.
We account for linear damping of b(k) through the relax-
ation rate η(k) = ω(k)ε(k)α [40]; ω(k) is the mode’s angular
frequency, ε(k) = 1

γ
(∂ω/∂H )|k,H0 is the ellipticity factor, γ

is the gyromagnetic ratio, and α is the measured Gilbert
damping constant. We only consider the resulting equations of
motion of the FMR mode b0 and the Nk magnon modes bki

of frequency f0/2 in the magnon dispersion. Each of these
half-frequency modes’ equation of motion is distinguished
by ζki , their coupling strength with b0, and their relaxation
rate ηki . However, these distinguishing parameters have weak
variation among the f0/2 modes. Hence, we set ζki and ηki

to their average value over all f0/2 modes, ζ̄ , η̄k . This causes
the equations of motion for each of the half-frequency modes
to be identical, reducing the Nk half-frequency modes to a
single effective mode bk . Note that we also equate bk (t ) and
b−k (t ), as the splitting and confluence processes affect each
mode equally. This reduces our model to the two equations of
motion

ḃ0 = (iω0 − η0)b0 − Nk ζ̄b2
k + νhaei(ω0t−π/2), (1)

ḃk = (iωk − η̄k )bk + ζ̄b∗
kb0. (2)

ν is the coupling of b0 to the microwave field. The magnon
mode’s response bi (i = 0, k) encodes both its amplitude |bi|
and its phase, such that bi(t ) = |bi(t )|ei(ωit+θi+φi (t )). θ0,k =
−π/2,−π/4 are the modes’ phase offsets for the cases of
linearity and weak nonlinearity, as found from numerically
solving Eqs. (1) and (2). φi(t ), discussed later, will correspond
to phase shifts induced by strong nonlinearity. We define
ci(t ) as the mode’s amplitude for φ0,k = 0, such that bi(t ) =
ci(t )ei(ωit+θi ). Inserting this relation into Eqs. (1) and (2) yields
the equations of motion for the magnon mode amplitudes:

ċ0 = −η0c0 − Nk ζ̄c2
k + νha, (3)

ċk = −η̄kck + ζ̄ckc0. (4)

This definition of c0, as in the experiment, corresponds to
the envelope of b0 obtained by mixing it with a frequency-
matched reference signal e−i(ω0t+θ0 ). As such, the experiment
can be directly compared with the numerical solutions of
Eq. (3). For numerically solving our equations of motion, we
set the value of ha such that ha/hS matches the experiment
and simulations; hS is the observed threshold value of ha

for the instability. ηi is calculated as described previously.
All other parameters are set to the values calculated from
our model. See Sec. 2 of SM [37] for their derivations. The
initial values are the thermal amplitudes corresponding to the
Bose-Einstein distribution (see Sec. 3 of SM [37]). For details
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FIG. 2. Comparison of the FMR amplitude’s transient behavior
at 1.5 GHz from (a) the experiment, (b) the numerical solutions
to Eqs. (3),(4), and (c) the micromagnetic simulations. The FMR
amplitude c0 is normalized to χ ′′(t )/χ ′′

L to enable direct comparison
between each approach.

on the simulations and numerical solutions, see Sec. 4 of SM
[37] and Refs. [41–45] therein.

Figure 2 compares the time evolution of c0 from the ex-
periment, the numerical solutions of Eqs. (3),(4), and the
micromagnetic simulations. We normalize to χ ′′(t )/χ ′′

L for
direct comparison between each approach. Each curve color
corresponds to the same relative power Pa/PS . The purple and
blue curves correspond to the linear and nonlinear regimes,
while the green curves correspond to the entrance into the
nonlinear oscillatory regime. As Pa is increased, the oscilla-
tion frequency fosc monotonically increases while the time
scale of the initial transient peak monotonically decreases.
Strong qualitative agreement is observed between each ap-
proach, which is also the case at 2.5 GHz (see Sec. 5 of SM
[37]). The oscillations weaken as one goes from the model
to simulation to experiment, presumably due to increasing
magnon dephasing. In addition to simulations allowing for
other magnon interactions, they include thermal fluctuations
which can lead to dephasing. In the experiment, additional
dephasing may arise from sample and magnetic field inho-
mogeneity.

To analyze the oscillatory regime, we linearize Eqs. (3) and
(4) by Taylor expanding ċ0, ċk about the nonlinear regime’s
fixed point, which corresponds to steady state; this allows us
to treat the second-order terms as negligible. We then impose
a time dependence of the form c0, ck ∝ eλt , and solve for λ.
The transition to the oscillatory regime corresponds to the
nonlinear regime’s fixed point changing from a stable node to
a stable spiral, such that λ becomes complex. This transition
can be thought of as the point where the splitting rate becomes
large enough to produce negative feedback by suppressing
c0 to below cS , where splitting is suppressed. This generates
exchanges in dominance between the splitting and the mi-
crowave excitation terms in Eq. (3), hence the oscillations.
This analysis (see Sec. 6 of SM [37]) yields predicted values
for the oscillation frequency fosc and the threshold value of ha

FIG. 3. Oscillation analysis at f0 = 1.5 GHz. (a), (b) Normalized
and offset frequency spectra of the oscillations in (a) the experiment,
and (b) the simulations, with a 2 dB increment between curves.
(c) The scaling of the oscillation frequency fosc for each approach.
The filled symbols indicate the fitted region and have a spacing
of 1 dB in power. (d) The simulations’ magnon mode amplitudes
c(k) for powers 2 dB (bottom, no broadening) and 25 dB (top, with
broadening) greater than Posc.

for the oscillatory regime, hosc:

fosc = η0

√
ζ̄ ν

8π2
(ha − hosc), (5)

hosc = hS

(
1 + η0

8η̄k

)
. (6)

We compare the predicted scaling from Eq. (5) with our re-
sults by extracting, via a Fourier transform, the oscillations’
frequency spectra from each approach [Figs. 3(a) and 3(b)].
We define fosc at each power as the characteristic peak in
the oscillations’ frequency spectra and hosc as the value of
ha just below where low-frequency structure is observed in
the spectra. For more details, see Sec. 7 of SM [37]. The
linearized model’s predicted scaling fosc ∝ h̃0.5, where h̃ =
(ha − hosc)/hosc, is compared to the scaling obtained from
each approach [Fig. 3(c)]. We normalize ha − hosc by hosc to
directly compare each approach. The model’s results are from
the numerical solutions of Eqs. (3) and (4). The filled symbols
are those included in the scaling fit (dashed lines) such that
quantitative agreement with Eq. (5) is observed. The range of
agreement for each approach is several orders of magnitude
in Pa. This is also the case for f0 = 2.5 GHz (see Sec. 5 of
SM [37]). The oscillation frequencies in the experiment and
simulations show good agreement, but they are larger than
those from our model. This is likely due to an incomplete
treatment of damping and/or an underestimation of ζ̄ , as we
neglect the full Gilbert damping term and spatial variation of
the longitudinal magnetization component.

As the relative power 10 log10(Pa/Posc) increases to 14 dB,
the oscillations’ frequency spectra broaden in the experiment
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FIG. 4. (a), (b) The experimental results for c0(t ) at high powers
when turning on and off the microwave excitation at 1.5 GHz. Each
curve is normalized to the peak amplitude at turn-on for the relative
power of 46 dB. (c), (d) The magnon amplitudes c0, |bk |, with each
time color-coded for the corresponding value of |ψ0|. Note that c0

at turn-off is instead normalized to the peak amplitude at turn-on for
the relative power of 56 dB. (e), (f) The corresponding phase shifts
|φ0,k |.

and simulations [Figs. 3(a) and 3(b)]. To investigate this, we
compare the simulations’ magnon mode amplitudes c(k) [46]
at the relative powers of 2 dB (no broadening) and 25 dB
(pronounced broadening) [Fig. 3(d)]. At 2 dB, only the f0/2
modes with the largest coupling strengths ζki are excited. Note
that the coupling is strongest for the modes with wave vectors
most misaligned with the static magnetization M. At 25 dB,
the weaker-coupled f0/2 modes are also excited, with some
even exceeding the amplitude of the strongest-coupled modes.
The excited modes also exhibit a wider frequency distribution
about f0/2, which may generate the observed broadening.
The most straightforward explanation for this transition is
the onset of four-magnon scattering of f0/2, opposite-wave-
vector pairs of magnons at the strongest-coupled modes to
such pairs at weaker-coupled modes, which conserves energy
and momentum.

At the highest powers, the splitting becomes pronounced
enough to introduce negative values of c0 [Figs. 4(a) and 4(b)].
As c0 is phase sensitive, being obtained by mixing b0 with a
reference signal, this corresponds to b0 undergoing a phase
shift φ0 ∼ 180◦. Phase shifts for the mode bi arise when its
response is dominated by its scattering term [see Eqs. (1) and
(2)], such that it is strongly nonlinear. At these powers, we
also observe pronounced oscillations of c0 after turning off the
microwave excitation. Notably, these oscillations’ amplitudes
greatly exceed the steady-state value of c0 during excitation
and they persist for roughly 600 ns. Each curve in Figs. 4(a)
and 4(b) is normalized to the turn-on peak at the highest
power, showing the oscillations at excitation turn-on and
turn-off to be comparable in size. To understand these ob-
servations, we examine the case of strong nonlinearity in our

model by numerically solving Eqs. (1),(2), which provides the
evolution of the modes’ amplitudes as well as their phases. We
calculate the modes’ phase shifts φi(t ) by using our general
definition bi(t ) = |bi(t )|ei(ωit+θi+φi (t )):

φi(t ) = 1

i
ln

(
bi(t )

|bi(t )|e−i(ωit+θi )

)
. (7)

The evolution of the amplitudes and phase shifts is shown in
Figs. 4(c) and 4(d) and Figs. 4(e) and 4(f); we utilize |φi(t )|
for simplicity. For consistency with the experiment, we plot c0

instead of |b0|, taking c0(t ) = Re(b0(t )e−i(ω0t+θ0 ) ).
After turning on the excitation [Figs. 4(c) and 4(e)], we

find π phase shifts of φ0 at c0 = 0, with these phase shifts
triggering variation in φk . We first examine the influence of
the π phase shift on the amplitudes’ equations of motion.
Whereas ci(t ) is the mode’s amplitude for φ0,k = 0, 0, we
define c′

i(t ) as the mode’s amplitude for φ′
0,k = π, 0. Substi-

tuting bi(t ) = c′
i(t )ei(ωit+θi+φ′

i ) into Eqs. (1) and (2) yields the
amplitudes’ new equations of motion given the π phase shift:

ċ′
0 = −η0c′

0 + Nk ζ̄c′2
k − νha, (8)

ċ′
k = −η̄kc′

k − ζ̄c′
kc′

0. (9)

Comparison with Eqs. (3) and (4) shows that the π phase
shift switches the sign of both the microwave field term νha

and the three-magnon scattering terms ∼ζ̄ . From the latter,
it is evident that these phase shifts correspond to reversals in
the three-magnon scattering direction between splitting and
confluence. These reversals explain why the phase shifts cause
|bk (t )| to switch between growing and decaying with time,
and why |c0(t )| increases with time for c0<0 despite being
out-of-phase with (and hence, damped by) the microwave field
[Figs. 4(a) and 4(c)]. Furthermore, the reversals explain the
variation of φk: with |bk (t )| being suppressed by confluence,
its three-magnon scattering term dominates over its linear
terms such that bk enters the strong nonlinearity regime.

These reversals are more directly evident after turning
off the microwave excitation, where |c0(t )| undergoes a pro-
nounced increase in time despite the absence of the excitation
field. Furthermore, without the microwave field to drive φ0

back to 0◦, the variations of φk evolve into 90◦ phase shifts of
bk , generating additional reversals [Figs. 4(d) and 4(f)]. The
180◦, 90◦ phase shifts of b0, bk are those required to reverse
the scattering direction, with the factor-of-two difference be-
ing due to the same factor difference in their frequencies.
These reversals explain both the pronounced oscillations of c0

at turn-off and the oscillations’ enhancement with microwave
power: the scattering at turn-off, and hence the reversals, are
driven by the steady-state values of c0, ck during turn-on,
where ck ∝ √

ha − hS at steady state [see Eq. 51 in the SM
[37]]. The model’s turn-off oscillations of c0 are much weaker
than those in the experiment, hence the use of the higher
relative power of 56 dB. This may be because of our use of
a linear damping term −ηibi, which is insensitive to phase
shifts, instead of the full Gilbert damping term.

To determine how the scattering direction evolves in time,
we consider the relative phase |ψi(t )| between bi and the
three-magnon scattering term in its equation of motion. As
with the linear damping term −ηibi, the damping of bi

by scattering corresponds to the scattering term being π
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out-of-phase with bi. Conversely, the scattering term drives bi

when it is in-phase with bi. As such, |ψ0| = 0, π corresponds
to confluence and splitting, respectively, and we can calculate
|ψ0(t )| to determine the evolution of the scattering direction.
Note that |ψ0(t )| and |ψk (t )| are found to mirror each other
about π/2 as expected, such that one mode is being driven
by scattering while the other mode is being damped. From
Eq. (1), ψ0(t ) takes the form

ψ0(t ) = 1

i
ln

(
b0(t )/|b0(t )|
b2

k (t )/|b2
k (t )|

)
. (10)

|ψ0(t )| corresponds to the color-coding in Figs. 4(c)–4(f). The
switching of |ψ0(t )| between 0, π aligns with the phase shifts
and the transitions between growth and decay of |bk (t )| as
expected, verifying that the relative phase |ψi(t )| indicates the
three-magnon scattering direction.

In summary, for three-magnon scattering of ferromagnetic
resonance, we observe a regime that hosts transient oscilla-
tions of the magnon populations, with the transient behavior
being highly dependent on the excitation power. At high
excitation powers, we find that the scattering generates sig-

nificant phase shifts of the magnons and that these phase
shifts correspond to reversals between three-magnon splitting
and confluence. Such reversals also occur upon turning off
the excitation, generating prolonged and coherent oscillations.
Our model captures these behaviors. These findings shed light
on the transient behavior of this instability, and reveal the
nontrivial interplay between three-magnon scattering and the
magnons’ phases.
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