
PHYSICAL REVIEW B 107, L041301 (2023)
Letter

Nonlinear Hall effect of magnetized two-dimensional spin-3
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We identify a sizable nonlinear Hall effect of spin-3/2 heavy holes in zincblende nanostructures, driven by
a quadrupole interaction with the electric field formerly believed to be negligible. The interaction is enabled
by Td -symmetry, reflects inversion breaking, and in two dimensions results in an electric-field correction to the
in-plane g factor. The effect can be observed in state-of-the-art heterostructures, either via magnetic doping or
by using a vector magnet, where even for small perpendicular magnetic fields it is comparable in magnitude to
topological materials.
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Introduction. Recent years have seen a surge in interest
in nonlinear electromagnetic responses motivated by out-
standing advances in topological materials and semiconductor
growth [1–5]. Nonlinear optical responses such as second-
harmonic generation [6–9], shift currents [10–12], the circular
photogalvanic [13], and resonant photovoltaic effects [14] are
being explored for technological applications including AC
to DC conversion, photo-detection, and energy harvesting. At
the same time, nonlinear electrical responses have revealed the
existence of novel physical phenomena such as the anomalous
Hall effect in time-reversal preserving systems [15], which
was recently observed in topological materials [16–18].

Second-order electrical responses require inversion sym-
metry breaking [19–22]. Aside from most topological mate-
rials, which have been at the heart of this effort, tetrahedral
semiconductors likewise break inversion symmetry. This sym-
metry breaking is strong in zincblende crystals such as GaAs,
and is associated with the spin-orbit interaction, which is
particularly large in spin-3/2 hole systems. The effective
spin-3/2 makes holes qualitatively different from spin-1/2
electrons [23–40], endowing them with unconventional prop-
erties such as a density dependent in-plane g factor [41,42],
a strong anisotropy in both of the longitudinal conductivity
and the Hall coefficient RH [43,44], a nonmonotonic Rashba
spin-orbit coupling [45], a planar anomalous Hall effect [46],
and superconductivity [47]. Until recently tetrahedral Td sym-
metry terms were believed to be negligible in hole systems
[25], yet a more careful evaluation has demonstrated their size
to be significant [48], so that sizable second-order electrical
responses should be possible in hole systems.

In this work, we show that tetrahedral symmetry terms
lead to a nonlinear Hall effect in a symmetric hole quantum
well (QW). The effect occurs in the presence of both in-plane
and out-of-plane Zeeman fields, the latter of which can be
produced either by a small magnetic field or by magnetic
impurities in a ferromagnetic semiconductor. The role of the
Td terms can be understood as an electric field induced shear

term in the in-plane g factor. Our main result is summarized
in Figs. 1 and 2. We find a sizable nonlinear Hall current
density along the y axis, accompanied by a much smaller
nonlinear longitudinal current density, not shown. The effect
can be easily measured in readily available hole nanostruc-
tures, which provide a straightforward setup for probing the
existence of tetrahedral-symmetry terms. Based on realistic
parameters we find that the nonlinear Hall effect in spin-3/2
holes can be comparable in magnitude to the values reported
recently in topological materials [18]. Aside from the nov-
elty of identifying a nonlinear electrical response purely due
to holes, as opposed to well-known optical transitions link-
ing the valence and conduction bands, a sizable tetrahedral
contribution beyond the Luttinger model will have important
repercussions for hole-based quantum computing [47,49–65],
enabling strategies for the electrical manipulation of holes.

Hamiltonian. We consider a symmetric hole quantum
well grown in a zincblende heterostructure along the high-
symmetry crystallographic direction (001). The confinement
is along the z axis. For concreteness we consider GaAs with
Luttinger parameters for γ1 = 6.85, γ2 = 2.10, and γ3 = 2.90
[25], and work in the axial approximation, where γ̄ = (γ2 +
γ3)/2. The total Hamiltonian H = H0 + U + HE includes the
band Hamiltonian, the disorder potential, and the applied elec-
tric field. The band Hamiltonian H0 = h̄2k2/2m∗ + HZ where
m∗ = m0/(γ1 + γ̄ ) is the in-plane effective mass, m0 is the
bare electron mass, and HZ is given b y [25,41,66],

HZ = �1B+k2
+σ− + �2B−k4

+σ− + H.c. + Mσ3, (1)

where �1 and �2 are the g factors, B± = Bx ± iBy repre-
sent the in-plane magnetic field of magnitude B‖, H.c. is
Hermitian conjugate, k± = kx ± iky, while σ± = (1/2) (σx ±
iσy). Without loss of generality we set B‖ = Bx. We have
denoted the Zeeman field in the ẑ direction by M, and
define it so that M has units of energy. The eigenvalues of
H0 are ε

(±)
k = ε

(0)
k ± �k where ε

(0)
k = h̄2k2/2m∗ is kinetic
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FIG. 1. Nonlinear Hall current density ‖ ŷ as a function of the
in-plane magnetic field and driving electric field for a 30 nm GaAs
QW with M = 0.1 meV, �1 = −1 × 10−17 meV m2 T−1, and �2 =
2 × 10−33 meV m4 T−1 [41].

part and energy dispersion is split by �k =
√

M2 + B2
‖k4Gk ,

and Gk = (�1)2 + k4(�2)2 + 2k2�1�2 cos(2θ ). The term ∝
B‖k2 has been known [25], while recent work has identified
an additional term ∝ B‖k4 [41] which has been confirmed
experimentally [66]. The prefactors �1 and �2 are functions
of k and decrease strongly at larger wave vectors [41,66]. In
our work we evaluate the coefficients for the specific carrier
density we have chosen. For a symmetric QW there is no
Rashba spin-orbit interaction [25,67,68]. Likewise, we have
not included the Dresselhaus interaction in the Hamiltonian
H0 because it does not contribute to the nonlinear signal:
we have verified this explicitly. The interaction with a uni-
form electric field E makes two contributions to HE , namely
HE = eE.r̂ + Hλ. The first is the electrostatic potential, while
the second arises from Td symmetry, and, as shown in the
Supplemental Material [69], has the form

Hλ = ieλM(E+k2
−σ+ − E−k2

+σ−), (2)

FIG. 2. Nonlinear Hall current density ‖ ŷ as a function of the
in-plane magnetic field and driving electric field for a 30 nm GaAs
QW (M = 2 meV, other parameters as in Fig. 1.)

in which E± is the in-plane electric field, M is the out-of-plane
Zeeman field which we take to have units of energy, and
λ is a material-specific parameter whose magnitude will be
determined below. We transform Hλ to the eigenstate basis
of H0. Without loss of generality we take E ‖ x̂, yielding
H̃λ = eExk2Mλσ̃y, where the tilde indicates matrices in the
eigenstate basis. Hλ can be understood as an electric-field
correction to the Zeeman Hamiltonian mediated by the Td -
symmetry terms. Thus the nonlinear response we discuss is
traced to a new interaction with the electric field, and has no
equivalent in any studied previously, e.g., it is not related to
the Berry curvature dipole of Ref. [15].

Kinetic equation. To first order in E we have [70]

∂ρE

∂t
+ i

h̄
[H0, 〈ρE 〉] + J (〈ρE 〉) = − i

h̄
[HE , 〈ρ0〉], (3)

where ρ0 and ρE are the equilibrium and first-order density
matrices, respectively. The scattering term in the Born approx-
imation J (〈ρ〉) = 1

h̄2

∫ ∞
0 dt ′〈[U, [e−iH0t ′/h̄UeiH0t ′/h̄, 〈ρ(t )〉]]〉,

with a short-range disorder U (r) = U0
∑

i δ(r − ri ), and
〈U (r)U (r′)〉 = niU 2

0 δ(r − r′) with ni the impurity density.
The disorder potential is responsible for the scattering time τ ,
introduced below, which keeps the Fermi surface near equi-
librium. The driving term has two contributions

DEk = eEx

h̄

{
∂ρ0

∂kx
− i[Rkx , ρ0]

}
− i

h̄
[H̃λ, ρ0] (4)

in which Rkx = 〈uk|(i∂uk/∂kx )〉 is the Berry connection. In
the crystal momentum representation, i.e., |m, k〉 = eik.r|umk〉,
the equilibrium density matrix is f0(ε (m)

k )δmm′
, where f0 de-

notes the Fermi-Dirac distribution. The terms in curly brackets
are the consequences of eE · r̂. The first term in curly bracket
is the Fermi surface response. The remaining two are the
Fermi sea response.

As shown in Ref. [44] we can account for orbital magnetic
field effects by first replacing the driving term in (3) with

DBk = e

2h̄

{
v × B,

∂ρE

∂k

}
, (5)

and subsequently taking ρ0 → ρE and ρE → ρE ,B, where ρE ,B

density matrix to first order in both E and B. Here v =
∂H0/∂k − i[R, H0] is the velocity operator. Note that, for an
in-plane magnetic field the coupling of orbital terms to higher
order states is already included in the Hamiltonian through
�1 and �2 [25]. Furthermore, since the system is 2D for an
in-plane magnetic field the driving term DBk is trivially zero.
However, the orbital effect of an out-of-plane magnetic field,
if present, is nontrivial and will produce a correction to our
results. Since a full treatment of an out-of-plane magnetic field
would require an intensive calculation, it is not considered in
detail in our main setup. An estimation of the correction by
an out-of-plane field is provided in the Supplemental Material
[69].

Second-order electrical response. To determine ρE we
solve Eq. (3) to linear order in E. Then, to find the second-
order density matrix ρE2, we repeat the procedure, substituting
ρ0 → ρE and ρE → ρE2. We analytically derive the con-
ductivity with �2 set to zero. For pedagogical purposes we
perform an analytical calculation first, using a simplified
model. Gk becomes simply �2

1 if we neglect �2. The term
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FIG. 3. The nonlinear Hall effect is a nonmonotonic function of
the in-plane magnetic field, shown here for two different values of
the out-of-plane Zeeman field: M = 2 meV and M = 0.1 meV. The
electric field is Ex = 30 kV/m.

�k is function of both k and θ if we take into account both g
factors. But if we only consider �1, the dispersion is isotropic.
To second order in the electric field jx = χxxxE2

x and jy =
χyxxE2

x , where

χxxx = 2e3B3
x�

3
1k6

F mM2λ

π h̄3�4
F

,

χyxx = 2e3λmMτBx�1k2
F

(
�2

F + M2
)

π h̄4�2
F

, (6)

where �F =
√

M2 + B2
x�

2
1k4

F , kF is the Fermi wave vector,

and the momentum relaxation time τ = h̄3/(niU 2m). Numer-
ically we extend our results for the general case where �2 is
taken into account. The transverse nonlinear current density,
shown in Figs. 1–4, is larger than its longitudinal counterpart
(not shown) by several orders of magnitude. In both cases,
in the presence of �2, the behavior of the current density is
nonmonotonic in terms of the magnetic field, but in general
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FIG. 4. The nonlinear Hall current is approximately linear in the
magnetization M. Here Ex = 30 kV/m.

| jy| increases linearly in terms of the magnetic field while
the magnetic field is larger compared to magnetization. As
we expect, the current density in second order behaves as an
increasing parabolic function in terms of electric field (Figs. 1
and 2). In Fig. 4 we can see that in the range of values set
for magnetic and electric fields, the current density behaves
almost linearly as a function of magnetization. On the other
hand, in Fig. 3 the change in the direction of the current
reflects a competition between the in-plane Zeeman terms
when �1 and �2 are both present. Whereas the contribu-
tions ∝ �2

1,�
2
2 have the same sign, the contribution ∝ �1�2

has the opposite sign, and depends on M. While there is
no analytical expression for this case, the overall shape is
the same: for M = 2 meV the current will likewise reach a
maximum and then decrease, only this decrease will occur at
much larger values of B‖. For comparison we have provided a
version of Figs. 1–3 without �2 in the Supplemental Material
[69].

To obtain λ we apply the Schrieffer-Wolff transforma-
tion to the Luttinger Hamiltonian combined with the electric
dipole and Zeeman Hamiltonians to project the system to
the HH subspace [69], finding λ = (3aBξ )/(8γ̄ 〈k2

z 〉2μ), in
which aB is the Bohr radius, and ξ controls the strength
of electric-dipole terms. For the following values, ξ =
0.2, μ = h̄2/m0, γ̄ = 2.5, kz = (π/30 nm), we obtain λ =
1.08 × 10−6 ms2kg−1. The size of Hλ may be quantified as
eλMk2

F E , while the electrostatic potential is ≈ eE/kF . The
ratio of the two is λMk3

F . Estimating M ≈ 1 meV and kF ≈
108 m−1, the ratio is 10−4. In a realistic 2D semiconductor kF

is never above 5 × 108 m−1, yielding a ratio of 10−2.
Discussion. The second-order response is directly propor-

tional to λ, and our expression for λ is proportional to the
size of the QW. Therefore, we expect this effect will be
pronounced in larger wells, thus the effect will be stronger
in, e.g., a 30 nm well than in a 10 nm well. However, here
λ is derived using a SW transformation to leading order
in perturbation theory, its accuracy depends on the energy
gap between the lowest heavy hole and light hole subbands.
As the confinement becomes weaker the perturbation the-
ory will have to be extended to second and then higher
orders, at which point we no longer expect the trend we
find here to apply. Naturally, as the well becomes wider
at around 60 nm, perturbation theory becomes inapplicable
altogether.

It is easy to see that the second-order response is thor-
oughly dependent on ξ , meaning that at ξ = 0 (for crystals
with a center of inversion symmetry) the second-order re-
sponse vanishes. Marcellina et al. [44] shows that in spin-3/2
system with two different g factors (each have different
winding numbers), there appears a sizable anisotropy in con-
ductivities and Hall coefficients. We have shown that in the
similar system a sizable nonlinear response can be probed us-
ing Hλ [Eq. (2)]. Note that, although the nonlinear Hall effect
is stronger in higher mobility systems, the ratio j (2)/σxx is in-
dependent of the mobility, playing the role of a nonlinear Hall
coefficient.

In the absence of �2 the absolute value of the current den-
sity increases monotonically as a function of the out-of-plane
Zeeman energy and in-plane magnetic field. When either
quantity, i.e., M or Bx, dominates, | jy| becomes linear in that
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FIG. 5. Schematic of one potential experimental setup. The ef-
fect can be detected by measuring the Hall voltage.

quantity. On the other hand, when �2, which has a different
sign from �1, is accounted for in the Hamiltonian, | jy| is
nonmonotonic as a function of Bx in the range of M(meV) ∈
[0, 2] but it still behaves monotonically as a function of M in
the range of Bx(T ) ∈ [0, 2]. Nevertheless, the current density
behaves linearly at comparatively large (small) values of M
and small (large) values of Bx. One can also see from Fig. 3
that the first derivative of jy changes signs depending on the
size of the magnetization.

Experimental observation. There is considerable flexibility
in regard to experimental observation, with one possibility
illustrated in Fig. 5. One requires a low-frequency alternat-
ing field, which can be generated by an oscillator with a
frequency of the order of ω/(2π ) ∼ 100 Hz. The Hall volt-
age at 2ω can then be read out. In general ωτ � 1, hence
our DC calculation is appropriate. The perpendicular Zeeman
field can be attained either via a magnetic doping, as in fer-
romagnetic semiconductors, or by applying a perpendicular
magnetic field. We discuss each in turn. To facilitate com-
parison with topological materials we use the sample size in
Ref. [18].

The easiest way is using an unmagnetized GaAs sample
together with a vector magnet generating an arbitrary mag-
netic field. The out-of-plane magnetic field can be set so that
the Zeeman energy is M ≈ 0.1 meV. To determine the Hall
voltage we start with the relationship between the resistivity
and conductivity tensors

(
ρxx ρxy

ρyx ρyy

)
= 1

σ 2
xx + σ 2

yx

(
σxx −σxy

σxy σxx

)
. (7)

The induced nonlinear Hall electric field takes the form

E (2)
y ≈ χyxx

σxx
E2

x , (8)

as outlined in the Supplemental Material [69]. Assuming
M = 0.1 meV, using Fig. 1 we take the current density
0.96 µA/m corresponding to the magnetic field, electric
field, and magnetization provided at Bx = 2 T , Ex = 30 kV/m,
and M = 0.1 meV. To find the conductivity we consider a
relaxation time τ = 1 ps. The hole carrier density is taken to

be 1.86 × 1015 m−2. The heavy hole in-plane mass is m∗ =
m0/(γ1 + γ̄ ), yielding

σxx = ne2τ

m∗ ≈ 12.7
e2

h
, (9)

hence the induced nonlinear Hall electric field E (2)
y ≈ 2 ×

10−3 V/m and a corresponding nonlinear Hall voltage V (2)
y =

E (2)
y d = 18 nV.

A class of state-of-art samples that can be used to study
nonlinear effects are magnetic semiconductors, such as GaM-
nAs [71–78]. The magnetization easy axis in GaMnAs can be
either in the plane or out of the plane [79], and the orientation
can be tailored by means of strain. We focus on the latter case
in this example and assume a larger value of M ≈ 2 meV.
From Fig. 2 we take the current density to be 0.25 mA/m,
corresponding to a magnetic field and electric field of Bx =
2 T and E = 30 kV/m, respectively. Using the same carrier
density and relaxation time as above we find the same value
for σxx, whereupon the induced nonlinear Hall electric field
E (2)

y ≈ 0.5 V/m, and, in a sample of width 9.2 µm as in [18],
we find a Hall voltage V (2)

y ≈ 5 µV, which is comparable in
size to Ref. [18].

The effect depends to some extent on the QW shape due to
the difference in confinement energies. The physics is driven
by the coupling between the lowest heavy-hole and light-hole
sub-bands, HH1 and LH1. For a square well the HH1-LH1
splitting is 2γ̄ h̄2π2/(m0d2). In a parabolic well ranging from
−d/2 to d/2, the HH1-LH1 splitting is 8γ h̄2/(m0d2). Thus
one expects the effect to be larger in a parabolic well than
in a square well of equivalent width. Based on Eq. (5),
the effect will be 2.5 times larger both at large M and
small M.

For the main calculation, orbital effects of an out-of-plane
magnetic field were not considered. We have carried out a
simple approximation of the corrections from an out-of-plane
magnetic field in which we used a scattering time approxima-
tion (J (ρE ) = ρE

τ
) and simplified the Hamiltonian by setting

�2 = 0. We find that an out-of plane magnetic field can give
rise to significant corrections both to the second order longi-
tudinal and Hall currents. The corrections are at lowest order
∝ B2, the nonlinear Hall current correction will be negligi-
ble for out-of-plane magnetic fields on the order of 100 mT
and will become significant for larger fields. For a system
with both in-plane and out-of-plane fields of 1T, we find the
correction enhances or suppresses the nonlinear Hall current
by ≈50% depending on the field’s orientation. Importantly,
even with these corrections the nonlinear Hall effect still
remains entirely dependent on the Zeeman and quadrupole
terms, since the Hamiltonian does not break inversion
symmetry.

Summary. We have shown that in a symmetric quasi-
2D hole system a sizable nonlinear Hall effect is present,
driven by tetrahedral symmetry terms that go beyond the
Luttinger model. The effect is measurable either in a con-
ventional GaAs sample using a vector magnet, or in a
sample of ferromagnetic GaAs in a magnetic field, where
the magnetic field orientation is chosen depending on the
direction of the magnetization. The effect can be as strong in
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semiconductors as in topological materials suggesting that
spin-3/2 hole systems are ideal candidates for observing
nonlinear electromagnetic responses, in particular since their
mobilities are typically orders of magnitude larger than those
of topological materials.

Acknowledgments. This work is supported by the
Australian Research Council Centre of Excellence in
Future Low-Energy Electronics Technologies (Project No.
CE170100039). This project was supported by an Australian
Government Research Training Program (RTP) Scholarship.

[1] R. W. Boyd, Nonlinear Optics (Academic, 2020).
[2] T. Morimoto and N. Nagaosa, Sci. Adv. 2, e1501524 (2016).
[3] H. Watanabe and Y. Yanase, Phys. Rev. X 11, 011001 (2021).
[4] D. Culcer, A. C. Keser, Y. Li, and G. Tkachov, 2D Mater. 7,

022007 (2020).
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