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Parametrized quantum circuit for weight-adjustable quantum loop gas
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Motivated by the recent success of realizing the topologically ordered ground state of the exactly solvable
toric code model by a quantum circuit on the real quantum device [Satzinger et al., Science 374, 1237 (2021)],
here we propose a parametrized quantum circuit (PQC) with the same real-device-performable optimal structure
to represent quantum loop gas states with adjustably weighted loop configurations. Combining such a PQC
with the variational quantum eigensolver, we obtain the accurate quantum circuit representation for the toric
code model in an external magnetic field with any field strength, where the system is not exactly solvable. The
topological quantum phase transition in this system is further observed in the optimized circuits by measuring

the magnetization and topological entanglement entropy.
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Introduction. The topologically ordered state, a new cat-
egory of exotic quantum states of matter, has continuously
attracted research interest in recent decades [1-3]. Many novel
properties that emerge from it include the degenerate ground
state with long-range quantum entanglement and the anyonic-
type excitations, which are also deemed essential for the
development of quantum computing [4,5]. However, because
of the existence of the long-range quantum entanglement, it
is challenging to investigate the topologically ordered state.
Except for rare elaborately constructed exactly solvable mod-
els, such as Kitaev’s toric code model [4] and Wen’s plaquette
model [6], it is difficult to verify whether a topologically
ordered phase exists in a certain microscopic quantum many-
body Hamiltonian and to identify its nature, a famous example
being the spin-1/2 antiferromagnetic Heisenberg model on
the kagome lattice [7-10].

On the other hand, rapidly developed synthetic controllable
quantum platforms, both in circuit-based quantum comput-
ers [11,12] and analog quantum simulators [13—15], offer a
new way to explore these long-range-entangled states. These
controllable quantum systems have an intrinsic quantum en-
tangled nature and thus are expected to be able to handle
another quantum entangled system relatively easier. Recently,
this expectation has been partially realized. One can use the
optimal quantum resource to realize the ground state of the
toric code model and accurately probe its properties [16],
demonstrating a huge potential for utilizing quantum comput-
ers to study topologically ordered states.

Many algorithms have been proposed to efficiently use
the quantum resource for solving a generic nonexactly solv-
able quantum many-body problem. Among them, the most
promising one, which is considered to be realizable on current
noisy-intermediate scale quantum (NISQ) devices [17,18],
is the variational quantum eigensolver (VQE) [19-21]. The
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VQE adopts a parametrized quantum circuit (PQC) as the
Ansatz state. This PQC Ansatz is evaluated on a quantum
computer, while its parameters are optimized by a classical
optimizer. Despite considerable efforts, the scalable realiza-
tion of the VQE on NISQ devices is still under extensive
research. This is because proper PQC Ansdtze, which can
faithfully describe the ground state of a given quantum
many-body Hamiltonian and yet can be performed accurately
enough on real devices, are still missing, especially when the
system is close to a phase transition point (for example, see
Ref. [22]).

In this Letter, we address this issue by proposing a PQC,
which has adequate expressibility towards the ground state
of a nonexactly solvable correlated Hamiltonian and at the
same time can be faithfully evaluated on NISQ devices. We
encode a quantum loop gas state with adjustably weighted
loop configurations into a quantum circuit with the optimal
circuit depth. The adjustable weights are controlled by circuit
parameters. Using such a single PQC, we precisely reproduce
the ground state with an energy accuracy better than the order
of 1072 for the toric code model in an external magnetic
field, thus in both topologically ordered and ferromagnetically
ordered phases, by VQE calculations.

Toric code model in a magnetic field. The toric code model
[4] is defined by qubits located on the bond centers of a L, x L,
square lattice with N bonds and is given by the following
Hamiltonian:

Hic=—) A;—Y By, ()
s P

where Ay = [[,.,0f and B, = ]_L.Ep of. Here, of (07) is the
Pauli Z (X) operator of qubit i located on the ith bond cen-
ter and s (p) sums over all the vertices (plaquettes) of the
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FIG. 1. (a) Schematic figure of the toric code model in an ex-
ternal magnetic field B applied along the z direction on the 6x5
lattice under OBCs, where qubits (indicated by circles) are located
on each bond of the lattice. Here, the blue cross connecting four blue
circles indicates an A; term and the green square connecting four
green circles denotes a B, term. Note that A, terms are also present at
the corners and edges of the lattice under OBCs, thus involving only
two and three qubits, respectively. The loops (indicated by red) are
formed by local qubit states |1);, while qubits not along any loops
are |0);. (b) Schematic figure of the Ansatz state |W¥(#)) generated
by a parametrized loop gas circuit. In these two figures, the shade
intensity of red for loops represents a weight of the corresponding
loops.

)+

underlying square lattice [see Fig. 1(a)]. The Hamiltonian in
Eq. (1) is exactly solvable and its ground state is a topolog-
ical quantum spin liquid characterized by a Z, topological
order [4,23]. For the toric code model with open boundary
conditions (OBCs) along the two prime directions, its unique
ground state can be constructed as [16]

N, !

1
W) = ]_[ (EH” + EB,,)|00 .- 0), )

p=1

where I, =[], , 1i 1s the identity operator on the pth plaque-
tte (I; being the identity operator at qubit i), N, is the total
number of the plaquettes, and |00---0) = [0);]|0),---|0)n
represents a product of the local states |0); with 67|0); = |0);
and of|1); = —|1);. Equation (2) can be interpreted as gener-
ating an equally weighted superposition of all possible basis
configurations which contain only closed loops formed by
local states |1);, i.e., a quantum loop gas (LG).

An external magnetic field along the z direction can drive
the toric code model away from the exactly solvable point and
leads to a topological quantum phase transition [24,25]. The
corresponding Hamiltonian [also see Fig. 1(a)] is described by

N
Hrem(x) = (1 — x)Hic —x ) _ o7 . 3)

i=1

When x = 0, Hrem(x) returns to the toric code case, while it
has the exact ground state |00 - --0) when x = 1. Extensive

quantum Mount Carlo studies have suggested that Hycwm(x)
goes through a second-order quantum phase transition at x, ~
0.25 from the toric code state to the ferromagnetically ordered
state in the thermodynamic limit [25].

It is quite insightful to understand the ground state of
Hrep(x) using the LG picture and consider the magnetic field
inducing tension to the loops [24]. In the presence of the
magnetic field, the loop with a more extended perimeter costs
more energy and its weight in the ground state should be
lightened to minimize the energy, as schematically illustrated
in Fig. 1(a). Therefore, an LG with adjustable weights for each
loop pattern can be regarded as an appropriate description
of the ground state of Hrcwm(x), especially when the charge
excitation is gapped out and thus closed loop configurations
remain without having open strings. In the rest of this Letter,
we will show how to represent this as a PQC with an optimal
circuit structure.

Parametrized loop gas circuit. Before introducing the PQC
for a weight-adjustable LG, we briefly recall the method to
construct the ground state |Wy) of the pure toric code model
Hrc with an optimal quantum circuit [16,26]. The core steps to
generate |Wo) are to apply a serial of (I, + B,,)/ /2 operators,
which can be realized by applying a Hadamard gate H to
a representative qubit associated with a plaquette and then
applying CNOT gates controlled by the representative qubit
to the other qubits in this plaquette. The circuit depth in this
construction grows linearly with L,, meeting the lower bound
of the information spread in the quantum circuit to construct
a globally entangled quantum state [27]. Furthermore, the
circuit constructed by this method has been realized on the
current NISQ devices with high accuracy [16].

Applying a Hadamard gate to |0); is nothing but creating
the equally weighted superposition between |0); (i.e., vacuum)
and |1); (a precursor of the loop). In order to construct an
LG with differently weighted loop patterns, we need to create
an imbalanced superposition between |0); and |1);, which is
rather straightforward once we notice the relation

H|0); = R, (7t /2)]0);, 4)
where
cos? —sin?
Ry(6) = < - 92) )
sin 3 cos 3

is the rotation-y gate. When 6 deviates from 7 /2, an im-
balanced superposition, cos(8/2)|0); + sin(6/2)|1);, can be
realized. Therefore, a PQC, with N, parameters varying in
the range [0, 27r) to represent a weight-adjustable LG state,
can be constructed simply by replacing the Hadamard gates
with the rotation-y gates in the construction of |Wy) described
above. Furthermore, it is straightforward to show that this
PQC realizes the variational state

Ny
1W(8)) = [ [[cos(8,/2)I + sin(6,/2)B,1100---0),  (6)
p=1

which is restored to |Wy) when 6 = {6?P}N"1 with 6, = /2.

P
For a schematic example of |W(#)), see Fig. 1(b). We call
it the parametrized loop gas circuit (PLGC) since it repre-
sents a LG state with parametrizable weighted loop patterns.
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Although the PLGC cannot cover all the LG with nonuni-
formly weighted loop patterns, we will demonstrate below
that it can accurately represent the ground state of Hycm(x)
with any magnetic field strength.

We should also note here that the performability of the
PLGC on real devices has already been examined in Ref. [16]
since applying a rotation-y gate has the same duration and
error rate as applying a Hadamard gate on Google’s sycamore
quantum processor [11,28]. Furthermore, the PLGC has a
solid potential to be performed on other quantum platforms
where the error-correction surface codes have been realized
[29-31].

VOE calculations for Hrcy(x) using PLGC. To further
verify that this NISQ-device-realizable PLGC can fully char-
acterize the ground state of Hrcwm(x), we perform numerical
simulations of the VQE calculations for this Hamiltonian with
x € [0, 1] using the PLGC on different clusters up to N = 24,
ie., LyxL, = 4x4 with N, = 9, under OBCs. These numeri-
cal simulations are based on the state vector quantum circuit
simulator provided by Qiskit [32]. For each x with a given
system size, the initial parameters 6 in the PLGC are assigned
randomly and these parameters are updated by a simultaneous
perturbation stochastic approximation (SPSA) [33] classical
optimizer to minimize the expectation value of the energy.
Here, the SPSA optimizer is employed simply because fewer
circuit evaluations are required and thus it is suitable for real
quantum device experiments. However, other gradient-based
optimizers are also examined and obtain consistent results.
The same procedure with a different set of random initial pa-
rameters is repeated 10 times to check that the results converge
to the same state |W(f,p,;)) with the optimized parameter 6.
The physical quantities are evaluated using the optimized state
|W(fopt)). For comparison, we also perform the numerically
exact diagonalization (ED) calculations for the same system
using the QuSpin library [34].

First, we find in Fig. 2 that the VQE energy Ej is in excel-
lent agreement with the exact energy Egp obtained by the ED
method for all magnetic field strengths on all different clusters
studied. Confirming that the difference of the ground-state
energy per qubit is always smaller than 1072 (see the inset
of Fig. 2, where the extrapolated values to N — oo are also
indicated), we conclude that the ground state of this nonex-
actly solvable quantum many-body system can be achieved
by the VQE calculations with the PLGC Ansatz, which thus
provides a notable improvement as compared with the recent
results using the Hamiltonian variational Ansatz [22].

Moreover, in order to check whether the PLGC can charac-
terize the topological quantum phase transition induced by the
external magnetic field in Hrcpm(x), we evaluate the expecta-
tion value of the magnetization, i.e.,

1
me) = = D (o) )

where (- - - ) indicates the expectation value over the optimized
PLGC state |W(f,p)) and also the topological entanglement
entropy (TEE) [35,36], which identifies the existence and the
nature of the topological order in |W(f,y)). Here, the TEE
Stopo 1s defined by the residual quantum mutual information in
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FIG. 2. Ground state energy E, obtained by the VQE calcula-
tions as a function of x for Hycm(x) on different clusters, L, xL, =
3x3, 4x3, and 4x4 (indicated by blue circles, green squares, and
red triangles, respectively), which correspond to N (N,) = 12 (4),
17 (6), and 24 (9), respectively (also see the insets of Fig. 4). For
comparison, the ground-state energy Egp obtained by the ED method
are also plotted by solid lines with the same colors. The inset shows
the corresponding energy difference per qubit, Aey = (Ey — Egp)/N,
indicated by the same symbols. The dashed line displays the extrapo-
lated values of Aey to N — oo estimated by fitting Aey for the three
different clusters with a second-order polynomial of 1/N.

a tripartite subsystem,
Stopo = SA + SB + Sc — SaB — Spc — Sac + Sapc,  (8)

where Sx is the entanglement entropy between subsystem X
and the rest of the system, and A, B, and C are the three
subregions in the tripartite subsystem (see the inset of Fig. 4).
Siopo 18 €qual to —1In2 in the toric code state, revealing its
Z, topologically ordered nature [23]. For the numerical simu-
lations, the TEE is easily extracted from the reduced density
matrix. For the real device experiments, it can also be detected
efficiently by recently introduced random measurement meth-
ods [37-39].

Figures 3 and 4 show the results of (m;) and Sipo, Te-
spectively, which are also in good accordance with the ED
results. With increasing the system size, these quantities
exhibit sharper changes near the transition point expected
around x = (.25, implying a phase transition in the thermody-
namic limit. On the other hand, we observe that deviations of
the VQE results from the ED values are most distinguishable
near the transition region (also see the inset of Fig. 2 for
the ground-state energy). However, this does not necessarily
imply that the PLGC loses its expressibility for the phase tran-
sition in larger systems since these small clusters considered
here have relatively strong finite-size effects and thus it is not

L041109-3



SUN, SHIRAKAWA, AND YUNOKI

PHYSICAL REVIEW B 107, L041109 (2023)

1.0

0.8F

0.6

£

04F

0.2F
i —ED @ VQE:3x3

0.0 ——ED W VQE:4x3 |

| —ED A VQE:4x4
0.0 0.2 0.4 0.6 0.8 1.0

x

FIG. 3. Same as Fig. 2 but for the ground-state magnetization
(me).

conclusive how these results converge in the thermodynamics
limit, which is left for future study.

Conclusion and discussion. In summary, we have proposed
a parametrized quantum circuit, PLGC, which can represent
a class of quantum loop gas states with adjustable weights
and maintain the same optimal circuit structure as that for
constructing the ground state of the toric code model. There-
fore, the PLGC can be performed on the current NISQ devices
with high accuracy. Furthermore, using the PLGC, we have
performed the VQE calculations of the toric code model
in the presence of the external magnetic field and demon-
strated that a very accurate ground state can be obtained for
any field strength. Moreover, the topological quantum phase
transition between the Z, topologically ordered state and the
ferromagnetically ordered state is displayed by evaluating the
magnetization and the topological entanglement entropy of
the optimized PLGC, which are also highly compatible with
the numerically exact results.

The dramatic performance improvement of the VQE calcu-
lations provided by the use of the PLGC, as compared with the
VQE calculations using Hamiltonian-variational-type Ansditze
[40], which also includes the quantum alternating operator

I ——ED ® VQE:3x3 1
1.0 ——ED ® VQE:4x3 7
I ——ED A VQE:4><4:
0.8
- 3x3 4 x 3
E 0.6.'
[
<
& I 4 x4
Y 0.4 -
0.2F
0.0
0.0 0.2 0.4 0.6 0.8 1.0

X

FIG. 4. Same as Fig. 2 but for the ground-state TEE Si.p,. The
insets show the subsystems with the tripartition to extract Siop, for
the corresponding systems.

Ansatz [41], is owing to its more precise description of the
low-lying physical Hilbert space. For instance, the imaginary
part of an Ansatz state, which is unnecessary to describe the
ground state of Hycy(x) but is inevitably introduced by time
evolution operations in Hamiltonian-variational-type Ansdtze,
can be perfectly avoided in the PLGC. This insight sheds light
on how to maximally utilize current NISQ devices for solving
quantum many-body problems.

Acknowledgments. We are grateful to K. Nagao for help-
ful discussions. Parts of numerical simulations have been
done on the HOKUSALI supercomputer at RIKEN (Project
ID No. Q22577) and the supercomputer Fugaku installed in
RIKEN R-CCS (Project ID No. hp220217). This work is
supported by Grant-in-Aid for Scientific Research (A) (No.
JP21HO04446) and Grant-in-Aid for Scientific Research (C)
(No. JP22K03479) from MEXT, Japan, and also by JST COI-
NEXT (Grant No. JPMJPF2221). This work is also supported
in part by the COE research grant in computational science
from Hyogo Prefecture and Kobe City through the Foundation
for Computational Science.

[1] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett.
48, 1559 (1982).

[2] X.-G. Wen, Int. J. Mod. Phys. B 04, 239 (1990).

[3] X.-G. Wen, Rev. Mod. Phys. 89, 041004 (2017).

[4] A. Kitaev, Ann. Phys. (NY) 303, 2 (2003).

[5] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Rev. Mod. Phys. 80, 1083 (2008).

[6] X.-G. Wen, Phys. Rev. Lett. 90, 016803 (2003).

[7] G. Evenbly and G. Vidal, Phys. Rev. Lett. 104, 187203 (2010).
[8] S. Yan, D. A. Huse, and S. R. White, Science 332, 1173 (2011).
[9] Y.-C. He, M. P. Zaletel, M. Oshikawa, and F. Pollmann,
Phys. Rev. X 7, 031020 (2017).
[10] R.-Y. Sun, H.-K. Jin, H.-H. Tu, and Y. Zhou, arXiv:2203.07321.
[11] FE. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R.
Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell
et al., Nature (London) 574, 505 (2019).

L041109-4


https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1142/S0217979290000139
https://doi.org/10.1103/RevModPhys.89.041004
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/PhysRevLett.90.016803
https://doi.org/10.1103/PhysRevLett.104.187203
https://doi.org/10.1126/science.1201080
https://doi.org/10.1103/PhysRevX.7.031020
http://arxiv.org/abs/arXiv:2203.07321
https://doi.org/10.1038/s41586-019-1666-5

PARAMETRIZED QUANTUM CIRCUIT ...

PHYSICAL REVIEW B 107, L041109 (2023)

[12] I. Pogorelov, T. Feldker, C. D. Marciniak, L. Postler, G. Jacob,
O. Krieglsteiner, V. Podlesnic, M. Meth, V. Negnevitsky, M.
Stadler, B. Hofer, C. Wichter, K. Lakhmanskiy, R. Blatt, P.
Schindler, and T. Monz, PRX Quantum 2, 020343 (2021).

[13] C. Gross and 1. Bloch, Science 357, 995 (2017).

[14] F. Schifer, T. Fukuhara, S. Sugawa, Y. Takasu, and Y.
Takahashi, Nat. Rev. Phys. 2, 411 (2020).

[15] Y. Takahashi, Proc. Jpn. Acad., Ser. B 98, 141 (2022).

[16] K. J. Satzinger, Y.-J. Liu, A. Smith, C. Knapp, M. Newman, C.
Jones, Z. Chen, C. Quintana, X. Mi, A. Dunsworth, C. Gidney,
I. Aleiner, F. Arute, K. Arya, J. Atalaya, R. Babbush, J. C.
Bardin, R. Barends, J. Basso, A. Bengtsson et al., Science 374,
1237 (2021).

[17] J. Preskill, Quantum 2, 79 (2018).

[18] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-
Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T.
Menke, W.-K. Mok, S. Sim, L.-C. Kwek, and A. Aspuru-Guzik,
Rev. Mod. Phys. 94, 015004 (2022).

[19] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou,
P. J. Love, A. Aspuru-Guzik, and J. L. O’brien, Nat. Commun.
5,4213 (2014).

[20] M.-H. Yung, J. Casanova, A. Mezzacapo, J. Mcclean, L.
Lamata, A. Aspuru-Guzik, and E. Solano, Sci. Rep. 4, 3589
(2014).

[21] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo,
K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and
P. J.Coles, Nat. Rev. Phys. 3, 625 (2021).

[22] K. N. Okada, K. Osaki, K. Mitarai, and K. Fujii,
arXiv:2202.02909.

[23] A. Kitaev, Ann. Phys. (NY) 321, 2 (2006).

[24] S. Trebst, P. Werner, M. Troyer, K. Shtengel, and C. Nayak,
Phys. Rev. Lett. 98, 070602 (2007).

[25] F. Wu, Y. Deng, and N. Prokof’ev, Phys. Rev. B 85, 195104
(2012).

[26] Y.-J. Liu, K. Shtengel, A. Smith, and F. Pollmann,
PRX Quantum 3, 040315 (2022).

[27] S. Bravyi, M. B. Hastings, and F. Verstraete, Phys. Rev. Lett.
97, 050401 (2006).

[28] T. I. Andersen, Y. D. Lensky, K. Kechedzhi, 1. Drozdov, A.
Bengtsson, S. Hong, A. Morvan, X. Mi, A. Opremcak, R.
Acharya et al., arXiv:2210.10255.

[29] S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois, C.
Leroux, C. Hellings, S. Lazar, F. Swiadek, J. Herrmann et al.,
Nature (London) 605, 669 (2022).

[30] Y. Zhao, Y. Ye, H.-L. Huang, Y. Zhang, D. Wu, H. Guan, Q.
Zhu, Z. Wei, T. He, S. Cao, F. Chen, T.-H. Chung, H. Deng,
D. Fan, M. Gong, C. Guo, S. Guo, L. Han, N. Li, S. Li et al.,
Phys. Rev. Lett. 129, 030501 (2022).

[31] N. Sundaresan, T. J. Yoder, Y. Kim, M. Li, E. H. Chen, G.
Harper, T. Thorbeck, A. W. Cross, A. D. Cércoles, and M.
Takita, arXiv:2203.07205.

[32] Qiskit, https://www.qiskit.org/

[33] J. Spall, IEEE Trans. Autom. Control 37, 332 (1992).

[34] P. Weinberg and M. Bukov, SciPost Phys. 2, 003 (2017).

[35] A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404
(2000).

[36] M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006).

[37] S. J. van Enk and C. W. J. Beenakker, Phys. Rev. Lett. 108,
110503 (2012).

[38] A. Elben, B. Vermersch, M. Dalmonte, J. I. Cirac, and P. Zoller,
Phys. Rev. Lett. 120, 050406 (2018).

[39] T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier, B. P.
Lanyon, P. Zoller, R. Blatt, and C. F. Roos, Science 364, 260
(2019).

[40] D. Wecker, M. B. Hastings, and M. Troyer, Phys. Rev. A 92,
042303 (2015).

[41] S. Hadfield, Z. Wang, B. O’Gorman, E. G. Rieffel, D.
Venturelli, and R. Biswas, Algorithms 12, 34 (2019).

L041109-5


https://doi.org/10.1103/PRXQuantum.2.020343
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1038/s42254-020-0195-3
https://doi.org/10.2183/pjab.98.010
https://doi.org/10.1126/science.abi8378
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/srep03589
https://doi.org/10.1038/s42254-021-00348-9
http://arxiv.org/abs/arXiv:2202.02909
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/PhysRevLett.98.070602
https://doi.org/10.1103/PhysRevB.85.195104
https://doi.org/10.1103/PRXQuantum.3.040315
https://doi.org/10.1103/PhysRevLett.97.050401
http://arxiv.org/abs/arXiv:2210.10255
https://doi.org/10.1038/s41586-022-04566-8
https://doi.org/10.1103/PhysRevLett.129.030501
http://arxiv.org/abs/arXiv:2203.07205
https://www.qiskit.org/
https://doi.org/10.1109/9.119632
https://doi.org/10.21468/SciPostPhys.2.1.003
https://doi.org/10.1103/PhysRevLett.96.110404
https://doi.org/10.1103/PhysRevLett.96.110405
https://doi.org/10.1103/PhysRevLett.108.110503
https://doi.org/10.1103/PhysRevLett.120.050406
https://doi.org/10.1126/science.aau4963
https://doi.org/10.1103/PhysRevA.92.042303
https://doi.org/10.3390/a12020034

