
PHYSICAL REVIEW B 107, L041108 (2023)
Letter

Gap opening mechanism for correlated Dirac electrons in organic compounds
α-(BEDT-TTF)2I3 and α-(BEDT-TSeF)2I3

Daigo Ohki,1 Kazuyoshi Yoshimi ,2 Akito Kobayashi,1 and Takahiro Misawa 3,*

1Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
2Institute for Solid State Physics, University of Tokyo, Chiba 277-8581, Japan
3Beijing Academy of Quantum Information Sciences, Beijing 100193, China

(Received 12 September 2022; revised 9 January 2023; accepted 10 January 2023; published 25 January 2023;
corrected 6 February 2023)

To determine how electron correlations open a gap in two-dimensional massless Dirac electrons in the organic
compounds α-(BEDT-TTF)2I3 [α-(ET)2I3] and α-(BEDT-TSeF)2I3 [α-(BETS)2I3], we derive and analyze ab
initio low-energy effective Hamiltonians for these two compounds. We find that the horizontal stripe charge
ordering opens a gap in the massless Dirac electrons in α-(ET)2I3, while an insulating phase without explicit
symmetry breaking appears in α-(BETS)2I3. We clarify that a combination of anisotropic transfer integrals
and electron correlations induces a dimensional reduction in the spin correlations, i.e., one-dimensional spin
correlations develop in α-(BETS)2I3. We show that one-dimensional spin correlations open a gap in the massless
Dirac electrons. Our finding paves the way for opening gaps for massless Dirac electrons using strong electron
correlations.
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Introduction. Dirac electrons in solids such as graphene
[1,2], bismuth [3,4], and several organic conductors [5–12]
exhibit many intriguing physical properties such as quantum
conduction associated with universal conductivity [13], large
diamagnetism [4], and anomalous electron correlation effects
[14–18]. In particular, there has been much interest in opening
gaps for massless Dirac electrons, since gap openings with
band inversion can produce topological insulators [19,20].
Even though the insulating phases are topologically trivial,
massive Dirac electrons in solids are expected to be useful
for device applications because of their high mobility [21,22].
Electron correlations, which are always present in solids,
are expected to play an important role in gap openings for
massless Dirac electrons. As a canonical model for studying
how electron correlations can open gaps for massless Dirac
electrons, the Hubbard model on a honeycomb lattice has been
studied [23,24]. In the simple Hubbard model, it has been
shown that antiferromagnetic order opens a gap for massless
Dirac electrons [24].

The organic compounds α-(BEDT-TTF)2I3

[BEDT-TTF=bis(ethylenedithio)tetrathiafulvalene]
(ET) and α-(BEDT-TSeF)2I3 [BEDT-
TSeF=bis(ethylenedithio)tetraselenafulvalene] (BETS) offer
an ideal platform for studying correlated Dirac electrons.
It has been noted that massless Dirac electrons appear
around the Fermi energy in these compounds, owing to
accidental degeneracy in the momentum space [5–12,25–
27]. Both α-(ET)2I3 and α-(BETS)2I3 have four ET and
BETS molecules in a unit cell and inversion symmetry exists
at high temperatures in two-dimensional (2D) conduction
planes composed of ET and BETS molecules. Because of
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their similar crystal structures, the band structures of both
compounds are basically the same [25]. However, they have
rather different insulating phases at low temperatures and this
difference can be induced by strong electron correlations. As
we show later, both α compounds are located in a strongly
correlated region since the on-site Coulomb U is larger than
the bandwidth W (U/W > 1).

In α-(ET)2I3, it has been reported that as the tempera-
ture is reduced, the horizontal stripe charge ordering (HCO)
associated with inversion symmetry breaking induces a gap
for massless Dirac electrons [28–30]. Electron correlations
play important roles in both massless Dirac electrons and
massive Dirac electrons. In the massless Dirac electron phase,
theoretical studies and nuclear magnetic resonance (NMR)
experiments under an in-plane magnetic field have shown
evidence of velocity renormalization, reshaping of the Dirac
cone, and weak ferrimagnetic spin polarization caused by
Coulomb interactions [16–18,31,32]. In the HCO insulator
phase, it has been suggested that the anisotropy of nearest-
neighbor Coulomb interactions in the 2D plane is the origin of
the HCO phase transition of α-(ET)2I3 [28]. In the vicinity of
the phase transition, α-(ET)2I3 exhibits anomalous properties
for the spin gap [14,15] and transport phenomena [33–35].

α-(BETS)2I3 has a distinctly different insulating state from
α-(ET)2I3. It has been reported that dc resistivity becomes
almost constant, related to the universal conductivity, at T >

50 K and sharply increases at T < 50 K [36–38]. This result
suggests that a charge gap opens below 50 K. However, no
signatures of spatial inversion symmetry breaking or changes
in bond length between nearest-neighbor BETS molecules
have been found [25]. These experimental results indicate
that the gap opening mechanism in α-(BETS)2I3 cannot be
attributed to simple charge and/or magnetic ordering. The
ab initio band calculations suggest that the gap can be opened
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by spin-orbit coupling (SOC) in α-(BETS)2I3. However, the
gap estimated by SOC (∼2 meV) [26,27,39] is too small to
account for the insulating behavior below 50 K. Therefore,
the gap opening mechanism has not yet been fully clarified.

In this Letter, to determine the origin of the differences in
the gap opening mechanisms in α-(ET)2I3 and α-(BETS)2I3,
we employ an ab initio method for correlated electron systems
[40], which succeeds in reproducing the electronic structures
of several molecular solids [41–44]. In the method, we first
derive ab initio low-energy effective Hamiltonians. Then, we
solve the effective Hamiltonians using accurate low-energy
solvers such as the many-variable variational Monte Carlo
method (mVMC) [45]. Based on this, it is found that a HCO
insulating state appears in α-(ET)2I3, which is consistent with
experiments and previous studies. However, in α-(BETS)2I3,
we find that an insulating state without any explicit sym-
metry breaking is realized. Because of the frustration in the
interchain magnetic interactions, we find that a dimensional
reduction of the spin correlations occurs, i.e., one-dimensional
spin correlations develop in a certain chain of α-(BETS)2I3.
This result demonstrates that the one-dimensional spin corre-
lation is the main driver inducing the gap in α-(BETS)2I3, as
in the one-dimensional Hubbard model [46]. Our calculation
demonstrates that α-(BETS)2I3 hosts massive Dirac electrons
without symmetry breaking via dimensional reduction.

Ab initio calculations. We perform ab initio calculations
to derive the effective Hamiltonians using the crystal struc-
ture data for α-(ET)2I3 and α-(BETS)2I3 at T = 30 K [25].
QUANTUM ESPRESSO [47,48] with the SG15 optimized norm-
conserving Vanderbilt pseudopotentials [49] is used to obtain
the global band structures by the density functional theory
(DFT) calculations [50]. We construct maximally localized
Wannier functions (MLWFs) using RESPACK [51]. Figures 1(a)
and 1(b) show the schematic crystal structure and real-space
distribution of MLWFs for α-(ET)2I3 and α-(BETS)2I3 at
30 K, respectively. Both α-(ET)2I3 and α-(BETS)2I3 have
four BETS and ET molecules (sites) labeled A, A′, B, and C
in the unit cell. In α-(BETS)2I3, the A and A′ sites are crys-
tallographically equivalent due to inversion symmetry. The
calculation results for the energy bands obtained by the DFT
calculations and MLFWs for α-(ET)2I3 and α-(BETS)2I3 at
30 K are plotted as solid lines and symbols in Figs. 1(c) and
1(d), respectively. The energy origin is set to be the Fermi
energy. We can see that the MLWFs reproduce the original
band structures well.

Using the MLWFs, we evaluate the transfer integrals for
these compounds and the screened Coulomb interactions us-
ing the constrained random phase approximation (cRPA). The
cutoff energy for the dielectric function is set at 5.0 Ry. The
obtained effective Hamiltonian is given by

H =
∑
R,δ

∑
α,β,σ

(
t (δ)
(α,β )c

†
R,α,σ cR+δ,β,σ + H.c.

)

+
∑
R,α

UαnR,α,↑nR,α,↓ +
∑
R,δ

∑
α,β

V (δ)
(α,β )NR,αNR+δ,β ,

where R denotes the unit cell coordinate, and the orbital
and spin indices are indicated by α, β (A, A′, B,C), and
σ (+1 : ↑,−1 :↓), respectively. The transfer integrals from
(β, σ ) to (α, σ ) separated by δ are represented by t (δ)

(α,β ). The
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FIG. 1. Crystal structures and real-space distribution of MLWFs
for (a) α-(ET)2I3 and (b) α-(BETS)2I3 at 30 K drawn by VESTA [52].
Four ET (BETS) molecules (labeled by A, A′, B, and C sites) exist in
the unit cell indicated by the black lines. The A and A′ are crystallo-
graphically equivalent. Energy band structures for (c) α-(ET)2I3 and
(d) α-(BETS)2I3 at 30 K. The solid lines are obtained by DFT calcu-
lations, while the squares are obtained from the MLFWs. Here, we
define � ≡ (0, 0, 0), M ′ ≡ (−π, π, 0), Y ≡ (0, π, 0), X ≡ (π, 0, 0).
The bandwidth for the four bands of α-(ET)2I3 is approximately 3/4
times smaller than that of α-(BETS)2I3.

creation and annihilation operators are denoted by c†
R,α,σ1

and cR,α,σ1 , respectively. The number operators are defined
as nR,α,σ = c†

R,α,σ cR,α,σ and NR,α = nR,α,↑ + nR,α,↓. To reflect
the two dimensionality of the effective Hamiltonians, we
subtract a constant value �DDF from the on-site and off-site
Coulomb interactions. Following a previous study, we take
�DDF = 0.20 eV for both compounds [53]. We confirm that
the value of the constant shift does not change the result
significantly.

Figure 2 shows schematic diagrams of the 2D conduction
plane of α-(ET)2I3 [Fig. 2(a)] and α-(BETS)2I3 [Fig. 2(b)],
showing the networks of transfer integrals and Coulomb in-
teractions between the nearest-neighbor sites. We provide the
values of the transfer integrals and the Coulomb interactions
in the Supplemental Material [54] and the raw data in the
repository [55]. In both materials, the b-axis direction transfer
integrals tb1 and tb2 are approximately ten times larger than the
others and make a strong transfer chain along the b-axis direc-
tion. We note that in α-(BETS)2I3, the strength of the transfer
integral for b1 bond (A′-C, tb1 = 138.1 meV) is comparable to
that for b2 bond (A′-B, tb2 = 158.7 meV). This indicates that
the magnetic interactions between the A-A′ chain and the B-C
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FIG. 2. Schematic diagrams of α-type organic conductors for
(a) α-(ET)2I3 and (b) α-(BETS)2I3 at 30 K. Transfer integrals
and Coulomb interactions for the nearest-neighbor sites are also
shown. The shaded pink parallelogram shows a unit cell. We also
show a schematic picture of the ground state obtained by mVMC
for (a) α-(ET)2I3: Horizontal stripe charge order (HCO) with spin
dimer on strong transfer tb2, and (b) α-(BETS)2I3: One-dimensional
antiferromagnetism (AFM) correlations develop in the A-A′ chain.
Molecules surrounded by shaded purple and green rectangles indi-
cate bonds with a strong spin singlet correlation, and molecules with
a shaded yellow circle are electron-rich sites.

chain are frustrated. This geometrical frustration induces a di-
mensional reduction in the spin correlations as we show later.
We can also see that the Coulomb interactions in α-(ET)2I3

are around 1.25 times larger than those in α-(BETS)2I3.
mVMC analysis. To investigate the ground states of the

effective Hamiltonians, we use the many-variable variational
Monte Carlo (mVMC) method [45]. The trial wave function
used in this study is given by

|ψ〉 = PGPJLS|φpair〉, (1)

where LS represents the total spin projector and we use the
spin singlet projection for the ground states. The Gutzwiller
factor PG and the Jastrow factor PJ are defined by

PG = exp

[∑
i

gini,↑ni,↓

]
, (2)

PJ = exp

⎡
⎣1

2

∑
i �= j

vi jNiNj

⎤
⎦, (3)

where we denote the combination of the unit cell coordinate
and the orbital index as i = (R, α). The pair product part of

the wave function |φpair〉 is defined as

|φpair〉 =
⎡
⎣Nsite∑

i, j

fi jc
†
i,↑c†

j,↓

⎤
⎦

Ne/2

|0〉, (4)

where Nsite and Ne represent the total number of sites and
electrons, respectively. All variational parameters in the wave
function are simultaneously optimized using the stochastic
reconfiguration method [56]. We perform calculations for L =
4, 6, 8, 10, 12 (Nsite = 4 × L2) with periodic boundary condi-
tions. In the actual calculations, we impose a 2 × 2 sublattice
structure for the variational parameters. We take hopping pa-
rameters up to R = (±2,±2) and Coulomb interactions up
to the nearest-neighbor bonds shown in Fig. 2(a). We also
employ a particle-hole transformation to reduce the numerical
cost.

Figures 2(a) and 2(b) also show the schematic charge con-
figurations and spin correlations in real space for the ground
states for α-(ET)2I3 and α-(BETS)2I3. In α-(ET)2I3, the HCO
insulator state is the ground state. The electron densities for
L = 12 at each site are 〈nA〉 = 1.58, 〈nA′ 〉 = 1.44, 〈nB〉 =
1.47, and 〈nC〉 = 1.51. Statistical errors in Monte Carlo sam-
pling for the electron densities are on the order of 10−4. We
confirm that the system size dependence of local physical
quantities such as electron density and spin correlation is
small, and thus in the following we show the result for L = 12.
In the HCO state, the spin correlation for the b2-1 bond
becomes large 〈SA′ · SB〉b2-1 = −0.148(3), while the spin cor-
relation for the b3-2 bond becomes small, 〈SB · SA′ 〉b3-2 =
−0.016(1). The parentheses denote the error bars in the last
digit. Because of the HCO, the spin correlations between
charge rich sites become small. For example, although the
transfer integral of b1-1 is comparable to that of b2-1 (tb1-1 =
97.48 meV and tb2-1 = 136.2 meV), the spin correlation of the
b1-1 bond is suppressed as 〈SA · SC〉b1-1 = −0.034(1). These
results indicate that the singlet dimer state associated with the
emergence of HCO appears for the b2-1 bond as shown in
Fig. 2(a), which is consistent with the results of the NMR
experiment and a previous theoretical study [14,15]. By ana-
lyzing the effective Hamiltonians for the 150-K structure, we
find that the Coulomb interactions induce instability toward
the HCO state, although lattice distortion is important for
stabilizing the HCO state. Details are shown in S. 2 in the
Supplemental Material [54].

For α-(BETS)2I3, we cannot find any clear signature of
the charge ordering. The electron densities at each site are
given by 〈nA〉 = 1.49, 〈nA′ 〉 = 1.49, 〈nB〉 = 1.50, and 〈nC〉 =
1.52. Statistical errors in the Monte Carlo sampling are in
order of 10−4. nA = nA′ indicates that inversion symmetry
is not broken. We find that the spin correlations become
strong for the a2, b1, and b2 bonds. The spin correlations
for these bonds are given by 〈SA · SA′ 〉a3 = −0.0694(3), 〈SA′ ·
SC〉b1 = −0.0735(6), and 〈SA′ · SB〉b2 = −0.087(2). These
antiferromagnetic spin correlations are schematically shown
in Fig. 2(b). This result indicates that the magnetic interactions
between A-A′ and B-C chains are frustrated. Because of the
interchain frustration, long-range antiferromagnetic order is
absent in α-(BETS)2I3.
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FIG. 3. Spin structure factors for (a) α-(ET)2I3 and (b) α-
(BETS)2I3. We map the lattice structures into 2L × 2L square
lattices. The superposition of the (π, 0) and (π, π ) spin structures
is consistent with the schematic images in Fig. 2. (c) System size de-
pendence of peak values of spin structure factors. The dashed curves
show the results of fitting using the function a(1/L) + b(1/L)2.

Figures 3(a) and 3(b) show the spin structure factors de-
fined as

S(q) = 1

Ns

∑
i, j

〈Si · S j〉eiq(ri−r j ), (5)

where we map the lattice structures to the 2L × 2L square
lattice (the directions of the x and y axes are shown in Fig. 2).
In the actual calculation, we limit the summation of one in-
dex to within the unit cell to reduce the numerical cost. For
α-(ET)2I3, we find no significant peaks in the spin structure
factors. This broad spin structure factor is consistent with the
one-dimensional spin dimer structures in the A′-B chain, as
shown in Fig. 2(a).

We find that peaks appear at q = (π, 0) and (π, π ) in α-
(BETS)2I3. The superposition of the (π, 0) and (π, π ) order
indicates the emergence of the antiferromagnetic chain in the
A-A′ chain. Thus, the spin structure factor is consistent with
the real space configuration in Fig. 2(b). However, the peak
values become zero in the thermodynamic limit, as shown
in Fig. 3(c). This result indicates that the one dimension-
ality of the spin correlations prohibits long-range magnetic
order even at zero temperature. Nevertheless, as we show
below, the charge gap is finite due to the one-dimensional spin
correlations.

Here, we discuss the charge and spin gap in α-(ET)2I3 and
α-(BETS)2I3. In Figs. 4(a) and 4(b), we plot the chemical po-
tential μ(N + 1) = [E (N + 2) − E (N )]/2 [E (N ) is the total
energy for N-electron systems] as a function of the doping
rate δ = N/Ns − 1.5. From this plot, we estimate the charge
gap to be �c ∼ 0.1 eV (�c ∼ 0.07 eV) for α-(ET)2I3 [α-
(BETS)2I3]. The amplitude of the charge gap in α-(ET)2I3 is
consistent with the experimental charge gap (�c ∼ 0.07 eV)
estimated from the optical conductivity [57]. In α-(ET)2I3,
the existence of the charge gap is natural since the HCO
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FIG. 4. Doping dependence of chemical potential for (a) α-
(ET)2I3 and (b) α-(BETS)2I3, where μ0 = [μ(N0 + 1) − μ(N0 −
1)]/2 and N0/Ns = 1.5. For α-(ET)2I3 and α-(BETS)2I3, the
estimated charge gap is �c ∼ 0.1 eV and �c ∼ 0.07 eV. For com-
parison, we plot the chemical potential for noninteracting systems
for L = 12 (brown crosses). (c) Size dependence of the spin gap. We
fit the data for L � 8 using the linear function a + b(1/L) to reduce
the finite-size effects.

and associated inversion symmetry breaking can open a
gap for the massless Dirac electrons. However, the charge
gap in α-(BETS)2I3 cannot be explained by simple symme-
try breaking since there is no clear signature of spin and
charge ordering. This result indicates that the one-dimensional
antiferromagnetic correlations developed in the A-A′ bonds
induce the gap for massless Dirac electrons. We note that the
amplitude of the charge gap is sufficiently larger than that of
the finite-size gap, which is about 0.01 eV. This indicates that
the finite charge gap obtained by the mVMC calculations is
not an artifact due to the finite system size.

Figure 4(c) shows the size dependence of the spin gap,
defined as �s = E (S = 1) − E (S = 0). Using the total spin
projection, we obtain the energy of the triplet (S = 1) ex-
cited state. Although the size dependence is not smooth, it
is likely that the spin gap is finite in the thermodynamic
limit for α-(ET)2I3. This is consistent with the existence of
a spin dimer chain in A′-B bonds. The amplitude of the spin
gap, �s ∼ 0.05 eV, is also consistent with the experimental
result [15]. For α-(BETS)2I3, the spin gap monotonically
decreases except for L = 6. A size extrapolation using
data for L � 8 indicates that the spin gap almost vanishes
in the thermodynamic limit. From the present calculation,
although it is difficult to accurately estimate the spin gap in
the thermodynamic limit, it is reasonable to conclude that
the spin gap in α-(BETS)2I3 is significantly smaller than that
in α-(ET)2I3.
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Summary and discussion. In this Letter, to determine
the origin of gap opening for massless Dirac electrons
in α-(ET)2I3 and α-(BETS)2I3, we derive the low-energy
effective Hamiltonians and solve them using the mVMC
method [45]. We find that the HCO insulator state appears
in α-(ET)2I3 while no clear symmetry breaking occurs in
α-(BETS)2I3. Nevertheless, we find that a charge gap opens in
α-(BETS)2I3 due to the development of one-dimensional spin
correlations in the A-A′ chain. We note that the recently ob-
served increase in 1/(T1T ) of NMR below 20 K is consistent
with the development of the one-dimensional spin correlations
[58]. We also note that weak but finite three dimensionality,
which is not included in this study, can induce long-range
magnetic order at low temperatures since the one-dimensional
spin correlations are already developed in the conducting
layer. Thus, the recently discovered antiferromagnetic order
at low temperatures is consistent with our results [59]. Lastly,
we consider the effects of spin-orbit coupling. Although spin-
orbit coupling alone cannot explain the amplitude of the
charge gap in α-(BETS)2I3, the combination of the Coulomb
interactions and spin-orbit coupling is intriguing since it can

enhance the SOC effectively and stabilize the quantum spin
Hall insulating phase [60,61] or the three-dimensional topo-
logical insulator [62]. To examine such effects, it is necessary
to derive and solve ab initio Hamiltonians with SOC. This is
an intriguing challenging issue but is left for future studies.

The input and output files of the ab initio and the mVMC
calculations are available at the repository [55].
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