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Andreev reflection spectroscopy in strongly paired superconductors
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Motivated by recent experiments on low-carrier-density superconductors, including twisted multilayer
graphene, we study signatures of the BCS-to-BEC evolution in Andreev reflection spectroscopy. We establish
that in a standard quantum point contact geometry, Andreev reflection in a BEC superconductor is unable to
mediate a zero-bias conductance beyond e2/h per lead channel. This bound is shown to result from a mapping
that links the subgap conductance of BCS and BEC superconductors. We then demonstrate that sharp signatures
of BEC superconductivity, including perfect Andreev reflection, can be recovered by tunneling through a suitably
designed potential well. We propose various tunneling spectroscopy setups to experimentally probe this recovery.
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Introduction. The evolution from Bardeen-Cooper-
Schrieffer (BCS) to Bose-Einstein condensate (BEC)
superconductivity has been a recurring theme in the study of
physical systems ranging from cold atomic gases to strongly
correlated materials and neutron stars [1–5]. In the BCS
regime, superconductivity arises from weakly bound Cooper
pairs with a characteristic size ξpair that far exceeds the mean
interparticle spacing d; in the BEC regime, by contrast,
fermions form tightly bound Cooper pairs with size ξpair � d .
BCS- and BEC-type superconductors can be separated either
by a crossover [e.g., for s-wave pairing [6–11]; Fig. 1(a)], a
Lifshitz-type phase transition [e.g., for nodal pairing [12–14];
Fig. 1(b)], or a topological phase transition [15].

Ultracold atoms, where the pairing strength between
fermions can be continuously tuned with the aid of a Feshbach
resonance [16,17], provide a controlled experimental plat-
form for exploring the evolution from weak to strong pairing
in both three [18–23] and two [24–30] spatial dimensions.
While most solid-state superconductors reside firmly in the
BCS regime, certain strongly correlated materials such as
cuprates have been rationalized in terms of the BCS-BEC
paradigm [31] (see, however, Ref. [32]). Further, a new gen-
eration of experiments probing low-carrier-density materials
including iron-based compounds [33–36], LixZrNCl [37–39],
and moiré graphene systems [40–45] has revealed signatures
consistent with proximity to a BEC state—opening a new
experimental frontier for unconventional superconductivity.
Developing probes that can unambiguously identify BEC
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superconductors and distinguish possible competing phases
therefore poses a pressing problem.

In solid-state contexts, BEC superconductivity can man-
ifest in various ways. Saturation of the Ginzburg-Landau
coherence length ξGL at the interparticle spacing [37,40] and
a critical temperature approaching theoretical bounds [46,47]
both constitute indirect evidence for proximity to the strong
pairing regime. Energy-momentum-resolved probes [34] can
also reveal the evolution of the quasiparticle dispersion from
BCS-like to BEC-like [Figs. 1(a) and 1(b)]. Superconductors
with a nodal order parameter exhibit a Lifshitz transition from
a gapless BCS to a gapped BEC phase, which leads to a
predicted divergence in electronic compressibility at the tran-
sition [13] and a gap opening that can be observed, e.g., via
scanning tunneling microscopy (STM) [12,14,42]. In STM it
is, however, difficult to distinguish BEC superconductors from
competing insulators since, unlike their BCS counterparts,
they feature less prominent and particle-hole asymmetric co-
herence peaks [42,48].

Here, we investigate Andreev reflection spectroscopy
across the BCS-BEC evolution and predict striking manifesta-
tions of BEC superconductivity. First, in a standard quantum
point contact (QPC) geometry [49] we find that Andreev re-
flection is suppressed upon passing from the BCS to the BEC
regime, consistent with the analysis of BEC-BEC Josephson
junctions in Ref. [50]. We show that this suppression is a
consequence of a mapping that interchanges the wave func-
tions of BEC and BCS superconductors. Second, we establish
that Andreev reflection can be controllably revived in the
BEC regime by tunneling between the lead and supercon-
ductor through an effective potential well—as opposed to
the barrier employed in conventional treatments [51]. This
feature sharply distinguishes BEC from BCS superconductors
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FIG. 1. (a), (b) Quasiparticle spectra across the BCS-to-BEC
superconductor evolution, which is (a) a crossover for s-wave pairing
but (b) a Lifshitz transition for nodal (e.g., d-wave) pairing. (c) Scat-
tering processes at the normal-superconductor interface included in
the BTK formalism: Andreev (A) and normal (B) reflection, and
direct (C) and band-crossing (D) transmission as a quasiparticle. The
green dashed line denotes the incident electron energy.

and can be probed in experimental setups that we
propose.

Setup. We first employ the Blonder-Tinkham-Klapwijk
(BTK) framework, which describes scattering between a
normal lead and a superconductor [51]. Consider a one-
dimensional (1D) setup [Fig. 1(c)] with an interface at
position x = 0 separating a spinful normal lead (at x < 0) with
dispersion ξq = q2

2mL
− μL from a singlet superconductor (at

x > 0) with dispersion ξk = k2

2mSC
− μSC and s-wave pairing

potential �. We take μL > 0 throughout but allow μSC to take
either sign to capture the BCS-BEC crossover that occurs as
μSC crosses zero [52]. A delta-function tunnel barrier λδ(x)
interpolates between the tunneling limit with large λ > 0 and
the QPC limit λ = 0.

Figure 1(c) illustrates the processes available to an incident
electron at the interface: Andreev (A) or normal (B) reflection
to a hole or electron, respectively, and transmission to an
electron- (C) or holelike (D) quasiparticle. The probabilities
for these processes are obtained by matching the wave func-
tions and their first derivatives at the interface and normalizing
by the appropriate group velocities (see Supplemental Ma-
terial [53] for details of the calculation and Ref. [54]). In
the standard BTK formalism applied to weakly paired BCS
superconductors, the limit �, E � μL, μSC combined with
the equal-mass assumption mL = mSC drastically simplifies
the problem, yielding the Andreev approximation in which
qh = qe = k± = qF with qF = √

2mLμL the lead’s Fermi mo-
mentum [55]. To describe the BCS-BEC evolution, we instead
treat the problem in full generality (see Ref. [50] for an
analogous treatment of Josephson junctions). The tunneling
conductance G(E ) = dI/dV at bias energy E = eV is given
in the Landauer-Büttiker formalism by

G(E ) = 2e2

h
[1 + A(E ) − B(E )], (1)

where A(E ) and B(E ) denote the Andreev and normal reflec-
tion probabilities. Maximal conductance of 4e2/h corresponds
to perfect Andreev reflection A(E ) = 1.

Zero-bias conductance. For gapped superconductors, the
absence of transmission processes (C and D) considerably
simplifies the analysis of the subgap conductance: Employ-
ing the normalization condition A(E ) + B(E ) = 1 returns
G(E ) = 4e2

h A(E ). As shown in the Supplemental Mate-
rial [53], the zero-bias Andreev reflection probability A0 ≡
A(E = 0) then reduces to

A0 = 4v2
Lv2

I[
(2vLZ + vR)2 + v2

I + v2
L

]2 , (2)

where Z = λ/vL quantifies the barrier transparency, vL =
qF /mL is the Fermi velocity of the lead, and vR,I = κR,I/mSC

are two characteristic velocities of the superconductor. The
momenta κR,I are defined through

κeiϕ = κR + iκI =
√

2mSC(−μSC + i�), (3)

and the length scales κ−1
R and κ−1

I respectively control the
evanescent and oscillatory behavior of the wave function in
the superconductor at x > 0, ψSC ∼ e−(κR+iκI )x.

Sending μSC → −μSC, which connects the BCS and BEC
regimes, yields ϕ → π/2 − ϕ and hence swaps κR ↔ κI; cf.
Eq. (3). This remarkable property reveals a mapping between
the BCS and BEC superconductor wave functions. As an in-
structive limiting case, deep in either the BEC or BCS regimes
where |μSC|/� � 1, κR,I can be expanded as

κR + iκI ≈
√

sgn(μSC)

(
�

vF
+ i sgn(μSC)kF

)
, (4)

where kF = √
2mSC|μSC| and vF = kF /mSC. In the BCS limit

Eq. (4) aligns with conventional understanding: The wave
function’s oscillatory part is set by the Fermi momentum kF ,
whereas evanescent decay is controlled by �/vF —i.e., the
inverse of the BCS pair coherence length ξpair. The situation
flips in the BEC regime, where kF , which can be interpreted
as the inverse scattering length of the pairing potential [4],
controls the decay length and �/vF dictates the oscillatory
behavior.

This mapping has immediate implications for the con-
ductance. In the QPC limit, Z = 0, the Andreev reflection
probability in Eq. (2) is maximized when the lead Fermi
velocity satisfies vL =

√
v2

R + v2
I , yielding the upper bound

A0 � v2
I /(v2

I + v2
R) valid for any μSC. Near-perfect Andreev

reflection thus requires vR � vI, implying many oscillation
periods over the decaying envelope of the superconductor
wave function. This requirement exactly translates to the BCS
limit, μSC � �, as originally pointed out by Andreev [55].
By contrast, the deep BEC regime is characterized by the
converse inequality vR � vI, and the upper bound above
accordingly reduces to A0 � v2

I /v
2
R = �2/μ2

SC. Physically,
the fast decay of the superconducting wave function rela-
tive to its oscillation period suppresses Andreev reflection
from the plane-wave electrons of the lead. At the “self-dual”
point μSC = 0, the superconductor exhibits a single length
scale, with vR = vI = √

�/mSC, yielding an Andreev reflec-
tion probability upper-bounded by 1/2.
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FIG. 2. Dependence of the BTK zero-bias tunneling conductance on the barrier parameter Z along the BCS-to-BEC crossover for a one-
dimensional s-wave superconductor with vL

√
mSC/� set to (a) 3, (b) 1.5, and (c) 0.5. Black dashed lines trace Z = −vR/2vL, one of the

necessary conditions for perfect Andreev reflection. Incoming electrons tunnel through a potential barrier at Z > 0 but a potential well at
Z < 0. While the conductance in the BCS regime is approximately Z → −Z symmetric, pronounced asymmetry emerges in the BEC regime,
with enhanced Andreev reflection possible at negative Z [see (c)].

Andreev revival. The preceding bound on Andreev reflec-
tion in the BEC regime (μSC < 0) implies that the zero-bias
conductance in the QPC limit cannot exceed the value 2e2/h
characteristic of a perfect metallic contact. According to
Eq. (2), moving away from the QPC limit by adding a tun-
nel barrier modeled by Z > 0 only further suppresses the
Andreev reflection probability A0. Interestingly, however, An-
dreev reflection can be enhanced by exploiting a pronounced
asymmetry in the sign of Z that emerges in the BEC regime.

Writing vI = αvL and vR = βvL, one can reexpress Eq. (2)
as A0 = 1/(1 + 2Z̃2)2 in terms of a renormalized transparency
parameter,

Z̃2 = (Z + β/2)2

α
+ (α − 1)2

4α
, (5)

that incorporates both the intrinsic barrier transparency Z and
velocity mismatch effects (see Supplemental Material [53]
and also Ref. [56]). The linear-in-Z contribution in Eq. (5)
is proportional to the dimensionless parameter β/α = vR/vI

controlling the BEC-to-BCS evolution. In the BCS limit, the
distinction between Z positive and negative—i.e., potential
barriers and wells—is correspondingly negligible since vI �
vR. In the BEC regime, by contrast, vR > vI implies sensitive
dependence on the sign of Z . Indeed, potential wells char-
acterized by Z < 0 can promote Andreev reflection—which
becomes perfect at zero bias even deep within the BEC regime
when Z̃ = 0, i.e., when Z = −vR/(2vL) and vL = vI. These
trends are illustrated in Fig. 2, which plots the zero-bias
conductance versus Z across the BCS-BEC evolution tuned
by μSC/�, for different lead velocities vL in Figs. 2(a)–2(c).
Note that the standard BTK result for a BCS superconductor
is recovered for large vL [Fig. 2(a)].

Effective lead formalism. For complementary insight, we
now examine normal metal-superconductor tunneling via
an effective lead formalism (ELF). Consider a 1D lead at
positions x � 0 with linearized kinetic energy and Fermi ve-
locity vL = qF /mL. At its endpoint, the lead exhibits a local
potential U0δ(x) and couples to a gapped d-dimensional su-
perconductor via electron hopping of strength t ; see Fig. 3.
Focusing on subgap energies, the superconductor’s degrees
of freedom can be safely integrated out—yielding an ef-
fective lead-only Hamiltonian with additional (marginal)
“impurity” perturbations (see Supplemental Material [53] for
details of the calculation and Ref. [57]). Specifically, the

superconductor both shifts the local potential U0 by

USC = t2
∫

dd k
(2π )d

ξk

ξ 2
k + �2

(6)

and generates a local singlet pairing term with amplitude

WSC = t2
∫

dd k
(2π )d

�

ξ 2
k + �2

. (7)

Explicit evaluation of the integrals reveals that, for d = 1,
USC and WSC exactly swap under μSC → −μSC, manifesting
the mapping uncovered above within the BTK formalism.
[We note that Eq. (6) diverges for dimensions d = 2, 3 and
a UV cutoff has to be introduced. For further discussion and
extensions, see Supplemental Material [53].]

Extracting the wave functions from the effective lead-only
Hamiltonian yields a zero-bias Andreev reflection probabil-
ity [53]

AELF
0 = 4v2

L(WSC/2)2

[
(Ueff/2)2 + (WSC/2)2 + v2

L

]2 , (8)

with Ueff = U0 + USC. Equation (8) reproduces Eq. (2) upon
identifying the ELF/BTK correspondence U0/2 ↔ 2vLZ ,
USC/2 ↔ vR, and WSC/2 ↔ vI. Thus negative values of U0

enable the cancellation of the “large” potential USC generated
by BEC superconductors, in turn allowing Andreev processes
mediated by WSC to dominate.

SC

Lead Leade
e
h

Impurity
t

e
e
h

FIG. 3. Sketch of the effective lead formalism. A lead tunnels
electrons onto a gapped superconductor (left). Integrating out the
gapped degrees of freedom generates an effective lead-only “impu-
rity” problem (right) featuring a shifted local potential USC and a
local pairing term WSC mediated by the superconductor.
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FIG. 4. Finite-bias tunneling spectroscopy across the BCS-BEC evolution with (a) Z = 0, (b) Z = 1, and (c) Z = −1, assuming an optimal
lead with vL = vI for each μSC value. Black dashed lines at energies E = ±μL show the corresponding optimal lead chemical potential μL,
and green dashed lines denote the quasiparticle gap Egap. (a) The quantum point contact limit Z = 0 exhibits a plateaulike enhancement of
subgap conductance due to the Andreev reflection in the BCS regime, but not in the BEC regime. (b), (c) Tunneling spectra for Z = ±1 are
similar in the BCS regime, showing a gap surrounded by coherence peaks at E = ±�. In the BEC regime, subgap conductance enhancement
occurs only for tunneling through potential wells, as in (c).

Extensions. Figure 4 presents the finite-bias conductance
G(E ) for an s-wave superconductor. Data were obtained
numerically from the full BTK analysis, including quasipar-
ticle transmission channels, for Z = 0 [Fig. 4(a)], (b) Z = 1
[Fig. 4(b)], and Z = −1 [Fig. 4(c)]. To clearly illustrate the
revival of Andreev reflection, the lead Fermi velocity is tuned
such that vL = vI across the BCS-BEC evolution; that is, for
each μSC on the vertical axis we fix the lead chemical potential
to its optimal value (see dashed black curves). In the QPC
limit, Z = 0, Fig. 4(a) shows the familiar subgap conductance
plateau at G(E ) = 4e2/h in the BCS regime [51]. Upon en-
tering the BEC regime, the entire plateau is suppressed in
accordance with the bound on Andreev reflection at zero bias
derived above. In the tunneling limit (Z > 0), the BCS regime
exhibits sharp coherence peaks at the gap edge that similarly
diminish upon entering the BEC regime, as shown in Fig. 4(b).
Finally, negative Z continues to support coherence peaks in
the BCS regime while also significantly enhancing the subgap
conductance in the BEC regime [Fig. 4(c)]. This enhancement
is present within an energy interval about zero bias whose
extent is limited by kinematic constraints imposed by the lead
chemical potential μL (the required backwards propagating
hole state does not exist for |E | > μL).

Our 1D analysis extends to the experimentally relevant
scenario of a multichannel lead normally incident on a 2D
superconductor (see Supplemental Material [53] and also
Ref. [58]). In the limit of many ballistic channels, the total
conductance G(E ) follows from an angular average over the
contributions from all momenta in the plane of the inter-
face [49,53,59,60]. For isotropic s-wave superconductors this
procedure leads to essentially identical results as in our 1D
model. Nodal superconductors also show qualitatively similar
“revival” behavior at negative Z in the BEC regime; the key
distinguishing feature is that subgap conductance generated
by Andreev reflection in the BCS regime acquires an inverted
V shape [59] due to transmission processes that suppress
Andreev reflection away from zero bias [53].

Discussion. The suppression of Andreev reflection in
a quantum point contact geometry, and its recovery by
tunneling through potential wells, clearly differentiates
BEC phenomenology from the familiar properties of BCS
superconductors (and, of course, from insulators). In partic-

ular, the emergence of a pronounced Z → −Z asymmetry
in the subgap conductance provides a striking signature of
BEC superconductivity. This feature stands in stark contrast
to the above-gap conductance G(E � �) that is manifestly
symmetric with respect to the sign of Z [53]. Possible exper-
imental setups for probing the negative-Z regime include (i)
scanning tunneling spectroscopy (STS) measurements using a
tip with an effective quantum well at its end, implemented by
attaching, e.g., a quantum dot (reminiscent of single-electron
transistor probes [61,62]) or an impurity atom, or else by
coating the tip with a layer of material with a smaller work
function and (ii) 2D electronic transport setups where the
normal-superconductor (N-S) interface is tunable, either by
applying a local gate near the junction or by constructing “via
contacts” etched into different encapsulating insulators [63].
The latter experimental geometry is of particular interest as
it allows, in principle, to tune vL in situ and thus realize the
optimal regime for Andreev reflection vL ≈ vI .

Throughout this Letter we focused on superconductivity
arising from a single parabolic band. Extending these ideas
to BEC physics in multiband superconductors, believed to be
important to understanding recent experiments [34], is thus
warranted. The limit of narrow-band superconductivity, where
quantum geometry plays an important role in determining the
superfluid stiffness [43,64–69], is another interesting avenue
for future work with possible applications to moiré materi-
als [40–42]. Finally, self-consistent treatments and extensions
beyond mean field [10,11,70–79] might lead to further in-
sights into BEC superconductors and associated pseudogap
physics at temperatures above Tc.
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