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Effects of scattering on the field-induced Tc enhancement in thin superconducting
films in a parallel magnetic field
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The problem of the normal-superconducting phase boundary for films in a parallel magnetic field, discussed
in the classical paper by Ginzburg and Landau for temperatures close to the critical, is revisited with the help
of the microscopic BCS theory for arbitrary temperatures taking pair-breaking and transport scattering into
account. Although confirming experimental findings of the Tc enhancement by the magnetic field, we find that
the transport scattering pushes the phase transition curve to higher fields and higher temperatures for nearly all
practical scattering rates. Still, the Tc enhancement disappears in the dirty limit. We also consider intriguing
changes, such as reentrant superconductivity, caused to the phase boundary by pair-breaking magnetic ions
spread on one of the film faces. These features await experimental verification.
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I. Introduction. Thin films are major elements of su-
perconducting devices, such as bolometers, superconducting
quantum interference devices, fault-current limiters, and
qubits for quantum computers. Their physical properties in
the superconducting state determine device performance. Un-
expected properties of films in the parallel magnetic field have
been recorded [1]. The enhancement of the critical tempera-
ture Tc above the zero-field Tc in thin superconducting films in
parallel fields is now an established experimental fact [2–4].
A few nontrivial mechanisms for this enhancement were sug-
gested [3,5]. However, the opinion expressed in Ref. [2] leans
toward early work [6,7], which describes this phenomenon
as a consequence of the “bare” classical weak-coupling BCS
theory.

The main point of this interpretation is that at the second-
order phase transition, the order parameter satisfies a linear
equation (as in Helfand and Werthamer treatment of the upper
critical field Hc2(T ) [8])

�2� = k2�, (1)

where � = ∇ + 2π iA/φ0 with the vector potential A and the
flux quantum φ0. In fact, this equation holds at any second-
order transition from the normal to the superconducting (SC)
state away from Hc2, e.g., in proximity systems or at Hc3, pro-
vided k2 = −1/ξ 2 satisfies the self-consistency equation of
the theory [7,9]. It turned out that the coherence length ξ , so
evaluated depends not only on temperature and scattering, but
also on the magnetic field (except in the dirty limit or near
Tc). The field dependence has been confirmed in scanning
tunneling measurements of the length scale of spatial varia-
tion of � [10], in muon spin rotation data [11], and in data
on macroscopic magnetization M(H ) [12] for a number of
materials.

*Corresponding author: Prozorov@ameslab.gov

Solving Eq. (1), one imposes certain boundary conditions
on the order parameter �. In the bulk problem of Hc2, �(r)
should be finite everywhere, in the problem of Hc3 for nucle-
ation of SC at the sample surface one requires ∂x� = 0 at the
surface (x is normal to the surface [13]) for a thin film in the
parallel field this gradient is required to vanish on both film
faces [7].

In this Letter, we extend the earlier treatment [7] by
including pair-breaking scattering having in mind possible
interpretations for experimental results described in Ref. [2].
Besides, we consider the effect of replacement of the con-
dition ∂x� = 0 at one of the film surfaces with � = 0 to
describe the pair breaking by magnetic ions spread at this sur-
face (as described in Ref. [2]). The resulting phase transition
curves have several surprising and unexpected features, which
demonstrate an extreme sensitivity of these curves to the film
environment (i.e., to boundary conditions).

Consider an isotropic material with both magnetic and
nonmagnetic scatterers; τm and τ are the corresponding aver-
age scattering times. The problem of the second-order phase
transition from the normal to SC phases can be addressed on
the basis on Eilenberger quasiclassical version of Gor’kov’s
equations for normal and anomalous Green’s functions g and
f . At the second-order phase transition, g = 1 and we are left
with a linear equation for f [14,15],

(2ω+ + v · �), f = 2�/h̄ + 〈 f 〉/τ−, (2)

ω+ = ω + 1

2τ+ ,
1

τ± = 1

τ
± 1

τm
. (3)

Here, v is the Fermi velocity, �(r) is the order parameter;
Matsubara frequencies are defined by ω = πT (2n + 1) with
an integer n; in the following (except some final results)
we set h̄ = kB = 1; 〈· · · 〉 stand for averages over the Fermi
surface. Solutions f of Eq. (2) along with � should satisfy
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the self-consistency equation,

�

2πT
ln

Tc0

T
=

∑
ω>0

(
�

ω
− 〈 f 〉

)
, (4)

where Tc0 is the critical temperature in the absence of pair-
breaking scattering.

Repeating the derivation of Ref. [9], one finds (see the
outline in Appendix),

〈 f 〉 = �
2τ−S

2ω+τ− − S
, (5)

where S is given by a series,

S =
∞∑

j,m=0

(−q2) j

j!(2m + 2 j + 1)

(
(m + j)!

m!

)2(
	+

β+

)2m+2 j

×
m∏

i=1

[k2 + (2i − 1)q2], q2 = 2πH

φ0
, (6)

where,

	+ = vτ+, β+ = 1 + 2ωτ+. (7)

This sum can be transformed to an integral, which is more
amenable for the numerical work [7],

S =
√

π

u

∫ 1

0

dμ (1 + μ2)σ

(1 − μ2)σ+1

[
erfc

μ√
u

− cos(πσ )erfc
1

μ
√

u

]
,

u =
(

q	+

β+

)2

. (8)

Introducing dimensionless quantities,

h = H
2πd2

φ0
= q2d2, P± = h̄

2πTc0τ± = P ± Pm, (9)

and the reduced thickness,

D = d
2πTc0

h̄v
, (10)

one obtains

u = h

D2[P+ + t (2n + 1)]2
. (11)

The parameter σ as defined in Ref. [7] is

σ = 1

2

(
k2

q2
− 1

)
. (12)

This parameter depends on the phase transition in question:
It is easy to see that σ = −1 at Hc2(T ). For Hc3 near Tc of
a half-space sample the result of Saint-James and DeGennes
causes σ = −0.795 [13]; transport scattering leads to the tem-
perature dependence of σ [16,17].

For numerical work we recast the self-consistency relation
(4) combined with Eq. (5) to dimensionless form

− ln t =
∞∑

n=0

[
1

n + 1/2
− 2tS

2t (n + 1/2) + P+ − SP−

]
, (13)

with the reduced temperature t = T/Tc0.
II. Symmetric boundary conditions �′(±d/2) = 0. As

mentioned above, the order parameter at a second-order phase

transition satisfies �2� = k2�. Choose the plane (y, z) paral-
lel to the film and x = 0 in the film middle. Denoting,

s = qx, η = −k2/q2, (14)

we obtain a differential equation,

�′′(s) − s2�(s) = −η�(s), (15)

so −η is the eigenvalue of the linear operator at the left-hand
side. The general solution is as follows:

� = e−s2/2

[
1F1

(
1 − η

4
,

1

2
, s2

)
+ Cs 1F1

(
3 − η

4
,

3

2
, s2

)]
,

(16)

where 1F1’s are confluent hypergeometric functions and C
is an arbitrary constant. The symmetry with respect to the
film middle gives C = 0, and the condition �′(±d/2) = 0
yields

(1 − η) 1F1

(
5 − η

4
,

3

2
,

h

4

)
= 1F1

(
1 − η

4
,

1

2
,

h

4

)
. (17)

Hence, for a given field h, the eigenvalue η can take only a
certain value, the root of this equation.

Given η(h), we evaluate σ = (k2/q2 − 1)/2 = −(η +
1)/2 for this value of h, and, therefore, we can calculate
S(u, σ ) = S(h, t, n) for given P, Pm, and D and solve the
self-consistency equation for t at this h. Scanning h we
recover the whole transition curve curve t (h). In general,
scanning t would not work because h(t ) might happen to be
multivalued.

The numerical results for purely transport scattering are
shown in Fig. 1. It is worth noting that the transport scattering
causes an increase of the Tc enhancement up to P ∼ 10 and
only for strong scattering with P > 10 it suppresses the effect
in agreement with the general theoretical statement that the
effect should disappear in the dirty limit [7,9].

The upper panel of Fig. 2 shows phase boundaries for the
clean case and a set of thicknesses from D = 0.1 to D = 5 at
temperatures close to Tc0. The remarkable feature here is that
for D � 2.8 these boundaries deviate from Tc0 with increasing
parallel field H in a “wrong” direction that results in enhance-
ments of Tc(H ). The phase boundary becomes standard for
thicker films with D � 2.8 (the Ginzburg-Landau (GL) theory
predicts this value to be 2.6 [7]).

The lower panel shows that at T close to zero, the field,

H = h

D2

2πφ0T 2
c0

h̄2v2
(18)

(in common units) is nearly constant for small thicknesses in
the interval 0.1 < D � 1, but it decreases for thicker films.
One should have in mind that the “laminar” structure of �(x)
of thin films with increasing thickness becomes unstable and
gives way to vortices with �(x, y) as had been shown in
Refs. [18,19] within GL theory. Although the large values of
D are irrelevant for the film problem, it is interesting to note
that formally H (0) for large D is close to Hc2(0).

Figure 3 shows that the magnetic scattering, whereas
strongly suppressing the critical temperature, leaves the Tc en-
hancement effect, i.e., (t∗ − tc) nearly unchanged. For curves
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FIG. 1. The upper panel: the phase boundary h(t ) for a set of
different transport scattering rates P indicated. The position of the
maximum enhancement (t∗, h∗) is shown for one curve, P = 15.
The lower panel: the position of the maximum enhancement t∗ (left
axis) and h∗ (right axis) as a function of P. On both panels D = 0.1,
Pm = 0.

Pm = 0 and Pm = 0.13, Tc drops by a factor of 5, whereas
(t∗ − tc) changes by about 30%.

It should be noted that the scattering parameters P and
Pm refer to the bulk properties of the film material. Effects
of magnetic ions on one of the film faces can be taken into
account by the boundary conditions at the surfaces rather than
by the value of Pm, the subject of the next section.

III. Mixed boundary conditions: �′(d/2) = 0 on one sur-
face and �(−d/2) = 0 on the other. These conditions can
be realized in a film on an insulating substrate (�′ = 0) with
magnetic ions spread at the other surface (� = 0). We have
chosen these boundary conditions to demonstrate how sensi-
tive the phase boundary in films placed in the parallel field is
to the film environment. In fact, Saint-James and de Gennes
pointed this out in their seminal work [13].

The boundary conditions of the section title suffice to de-
termine both the arbitrary constant C and the parameter η of

FIG. 2. The upper panel: the clean-limit (P = Pm = 0) phase
boundary h(t ) zoomed at high temperatures for a set of thicknesses
indicated. The Tc enhancement disappears at approximately D =
2.8. The lower panel: the close-to-zero-temperature field h(0)/D2 ∝
H (0) vs D.

the general solution (16). �(−d/2) = 0 yields

C = 2√
h

1F1

(
1 − η

4
,

1

2
,

h

4

)/
1F1

(
3 − η

4
,

3

2
,

h

4

)
. (19)

The condition ∂x�(d/2) = 0 results in,

3C

(
1+ h

4

)
1F1

(
3−η

4
,

3

2
,

h

4

)
+

√
h

2

[
3 1F1

(
1−η

4
,

1

2
,

h

4

)

− 3(1 + η) 1F1

(
1 − η

4
,

3

2
,

h

4

)

−C

√
h

2
(3 + η) 1F1

(
3 − η

4
,

5

2
,

h

4

)]
= 0. (20)

At a given h, Eqs. (19) and (20) can be solved for η nu-
merically [η is needed for the power σ = −(η + 1)/2 in the
integral S].
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FIG. 3. The upper panel: the phase boundary h(t ) for different
magnetic scattering rates Pm at a fixed P = 12. The lower panel: the
maximum tc enhancement, t∗ vs transport scattering rate P for two
fixed Pm. At both panels D = 0.1.

A. Zero-field Tc(d ). The condition �(−d/2) = 0 sup-
presses the film Tc even in the field absence. Evaluation of this
suppression is necessary to interpret various transition curves
h(t ). In zero field, the order parameter at the phase boundary
satisfies �′′ = k2� with the solution � = �0 sin |k|(x + d/2)
with |k| = π/2d . Furthermore, Tc should be found from the
self-consistency Eq. (4) which contains the quantity S via
Eq. (5). The shortest way to get S for H = 0 is to go to the defi-
nition of S as a power series (6) and set in it q2 = 2πH/φ0 = 0
[9,17],

S = 1

μ
tan−1 μ, μ = π

2D

	+

β+ . (21)

The self-consistency equation now reads

− ln tc =
∞∑

n=0

[
1

n + 1/2
− 2tcS

tc(2n + 1) + P+ − SP−

]
, (22)

where tc = Tc/Tc0 and Tc0 is the critical temperature of the
bulk material in the absence of pair-breaking scattering. The

FIG. 4. Zero-field critical temperature tc(D) as a function of
thickness D for the mixed boundary conditions and various combi-
nations of the scattering parameters indicated.

dimensionless parameter μ of Eq. (21) is

μ = π

2D

1

tc(2n + 1) + P+ , D = d
2πTc0

h̄v
, (23)

so that one can solve the self-consistency equation for tc(D)
numerically.

As Fig. 4 shows, the requirement � = 0 at one of the film
surfaces leads to a progressive reduction of Tc with decreas-
ing thickness. Moreover, Tc turns zero at D = Dc = 2 in the
clean case, so that in zero field SC is completely suppressed
for D < Dc. With increasing transport scattering, the sharp
break of tc(D) at Dc moves to smaller thicknesses. Hence, the
phenomenology of SC films in parallel fields is quite peculiar.
The pair-breaking scattering smears the sharp break in tc(D)
to a smooth crossover, whose position is shifted to thicker
films. Our example of Pm = 0.13 corresponds to a strong pair
breaking and the gapless situation in the bulk (recall that the
critical value of Pm where the bulk Tc(Pm) = 0 is Pm = 0.14,
see, e.g., Ref. [15]).

It is instructive to observe that if D 
 1, the parameter μ is
small, and Eq. (13) is reduced to the Abrikosov-Gor’kov bulk
relation for tc(Pm),

− ln tc = ψ

(
1

2
+ Pm

tc

)
− ψ

(
1

2

)
. (24)

B. Phase boundary. For thicknesses substantially exceeding
Dc (Dc = 2 for the clean limit) the transition curve is of the
type H ∼ √

Tc − T with zero enhancement as shown in Fig. 5.
When D < Dc = 2, Tc = 0 for H = 0. Therefore, the low

end of the transition curve should start at t = 0 as is seen in
Fig. 5 for clean films with D = 1.8 and 2. The equilibrium SC
does not exist at all out of patches bound by these curves. For
SC to exist one should apply field within the area inside these
patches. In particular, such a phase boundary implies that
the magnetoresistance at a fixed temperature t � 0.36 should
have a minimum for D = 2. These examples demonstrate that
thin films in parallel fields complement the list of phenomena
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FIG. 5. The phase boundary h(t ) for the mixed boundary con-
ditions on the order parameter, �′(D/2) = 0 on one surface, and
�(−D/2) = 0 on the other in a clean limit for P = 0, Pm = 0.
The reduced field is h = (2πd2/φ0)H and the reduced temperature
t = T/Tc0. The numbers by the curves are dimensionless thicknesses
D = (2πTc0/h̄v)d .

where the magnetic field “helps” SC instead of suppressing it,
see, e.g., Ref. [5].

Unlike the situation with D < Dc = 2 for D > Dc the zero-
field Tc is not zero, therefore, the low end of the transition
curve starts at Tc > 0, examples are shown in Fig. 5 for
D = 2.2 and larger. In the region of thicknesses adjacent to
Dc, the phase boundary may take a nontrivial shape shown
for D = 2.2, 2.3, and 2.5 where the transition curve h(t ) be-
comes multivalued.

IV. Summary. We have considered thin superconducting
films in a parallel magnetic field. Near Tc, this problem has
been discussed in the classic GL paper [20]. Our approach is
based on the quasiclassical microscopic theory of Eilenberger
[14] that holds for any T .

We have shown that in the presence of impurities, the
magnetic ones included, the model [7,9] developed in the late
1980s still works. We obtained conditions for the remarkable
effect recently observed [2], the enhancement of the in-field
critical temperature Tc(H ) above the zero-field Tc(0).

The formal procedure we employ is the same as that
used for evaluating the surface critical field Hc3 for the half-
space superconductor [13,16]. The film is considered as two
surfaces separated by the film thickness d on the order of
coherence length ξ . Then, the boundary conditions for the
order parameter �(x) impose solutions, Eq. (16), different
from those of Saint-Games and De Gennes. The new ele-
ment in our approach, absent in that of Ref. [13] near Tc,
is that the coherence length ξ (T ) at arbitrary temperatures
calculated within the BCS (Eilenberger) theory turns out to
depend on the magnetic field. Thus, the enhancement of
the phase boundary for a film in parallel field to T ’s larger
than the zero field Tc0 as well as to H larger than the bulk
Hc2 has the same nature as the superconductivity in fields
Hc2 < H < Hc3 of Saint-Games and De Gennes. In other

words, to interpret this enhancement one does not need an
extra mechanism not included in classical BCS.

We find that transport scattering amplifies this effect if the
scattering parameter P ∼ ξ0/	 � 10 (	 is the mean free path
and ξ0 is the BCS zero-T coherence length). For larger P,
the Tc enhancement is suppressed to disappear in the dirty
limit [7,9]. This new insight clarifies the role of the transport
scattering bringing it in line with the general theory prediction
of absent Tc enhancement in the dirty limit. On the other
hand, this improves the chances to observe the effect [2,3]
because the transport scattering in thin films is usually strong.
For example, the experiment [2] registered Tc enhancements
in amorphous Pb films with the estimated mean free path
	 ≈ 1 nm whereas estimates of ξ0 in Pb range between ≈230
and 300 nm. In general, whereas in many modern supercon-
ductors, such as high-Tc cuprates or is iron pnictides, ξ0 is
so short that makes it challenging to make such films, in
technologically—important Nb it is quite feasible with ξ0 ≈
40 nm.

It should be noted that the effect of magnetic impurities
per se on the Tc enhancement turned out relatively weak, the
standard Tc suppression notwithstanding, see Fig. 3.

The properties of thin films in a parallel magnetic field
are very sensitive to physical conditions on their faces. If, for
example, pair-breaking magnetic ions are spread over one of
the faces whereas the opposite face is on an insulating sub-
strate, then more realistic boundary conditions for the order
parameter would be � = 0 on one face and ∂x�(x) = 0 at the
other. This arrangement was, in fact, tested in experiment [2].

The major consequence of the condition � = 0 on one of
the faces is that it makes the critical temperature thickness
dependent. We find that for P = Pm = 0, the surface pair
breaking kills the SC in zero-field for thicknesses D < 2 (in
units h̄v/2πTc0). But as Fig. 5 shows, even for D < 2, ap-
plication of the magnetic field may cause the SC reentrance
at a finite field interval. Hence, the film magnetoresistance at
T = const should have a dip in this interval.

For 2 < D � 3, the competition of reentrance and finite Tc

causes the phase transition curve to acquire a nontrivial shape
so that h(t ) becomes multivalued, see Fig. 5.
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APPENDIX: THE SUM S IN THE PRESENCE
OF MAGNETIC IMPURITIES

The solution f of Eq. (2) can be written as

f = (2ω+ + v�)−1(F/τ− + 2�)

=
∫ ∞

0
dρ e−ρ(2ω++v�)(F/τ− + 2�). (A1)

L020501-5



V. G. KOGAN AND R. PROZOROV PHYSICAL REVIEW B 107, L020501 (2023)

Taking the Fermi-surface average we get

F = 1

τ−

∫ ∞

0
dρ e−2ω+ρ〈e−ρv�〉(F + 2�τ−). (A2)

The term 〈· · · 〉 does not contain the scattering parameters,
hence, it is the same as that calculated in Refs. [6,7,9] for the
clean case,

〈e−ρv�F̃ 〉 =
∑
m, j

(−q2) j

(m!)2 j!

(2μ)!!

(2μ + 1)!!

(ρv

2

)2μ

�+m
�−m

F̃ . (A3)

Here F̃ = F + 2�τ−, μ = m + j, and �± = �x ± i�y. Af-
ter integrating over ρ, one obtains from Eq. (A2),

F = 1

2ω+τ−
∑
m, j

(−q2) j

j!(2μ + 1)

(
μ!

m!

)2(
	+

β+

)2μ

�+m
�−m

F̃

	+ = vτ+, β+ = 1 + 2ωτ+. (A4)

One can check that if no magnetic impurities are involved, this
reduces to Eq. (12) of Ref. [9]. Using commutation properties
of operators �± in uniform field, one manipulates

�+m
�−m

F̃ = F̃
m∏

i=1

[k2 + (2i − 1)q2] (A5)

and obtains

F = �
2τ−S

2ω+τ− − S
, (A6)

with

S =
∑
m, j

(−q2) j

j!(2μ + 1)

(
μ!

m!

)2(
	+

β+

)2μ m∏
i=1

[k2 + (2i − 1)q2].

(A7)
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