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Chiral broken symmetry descendants of the kagome lattice chiral spin liquid
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The breaking of chiral and time-reversal symmetries provides a pathway to exotic quantum phenomena and
topological phases. Recent work has extensively explored the resulting emergence of chiral charge orders and
chiral spin liquids (CSLs) on the kagome lattice. Such CSLs are closely tied to bosonic fractional quantum Hall
states with anyonic quasiparticles; however, their connection to nearby ordered states has remained a mystery.
Here, we use spin-wave theory, parton Gutzwiller wave functions, and exact diagonalization to show that two
distinct magnetic orders with uniform scalar chirality—the XYZ umbrella state and the octahedral spin crystal–
emerge as competing orders in close proximity to the CSL. In this letter, we highlight the intimate link between
a topologically ordered liquid and broken symmetry states with nontrivial real-space topology.
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Introduction. Quantum spin liquids (QSLs) are strongly
entangled phases of quantum magnets which exhibit exotic
quasiparticle excitations [1–4]. The classic work of Kalmeyer
and Laughlin [5] revealed a direct relation between a class
of such QSLs, with broken mirror and time-reversal symme-
tries, and gapped fractional quantum Hall states of bosons
with anyon excitations. Important progress was later made
in identifying microscopic models on different lattices for
which such chiral spin liquids (CSLs) are exact [6–8] or
numerically tractable [9–17] ground states. A valuable de-
velopment was the identification of the Kalmeyer-Laughlin
liquid in an SU(2) invariant model with a simple three-spin
scalar chiral exchange coupling on the geometrically frus-
trated kagome lattice [10–13], a network of corner-sharing
triangles reminiscent of a Japanese woven basket [18]. While
the nearest-neighbor kagome lattice Heisenberg model has
been argued to host a Dirac spin liquid [19–23], the inclu-
sion of longer-range couplings has been shown to realize
CSLs [11–13,24] arising from spontaneous breaking of mirror
and time-reversal symmetries. A variety of these competing
phases have been proposed to occur in materials such as Her-
bertsmithite [25,26] and Zn-barlowite [27]. Optical driving
[28], proximity to Mott transitions [16], and twisted moiré
crystals [29] are potential experimental routes to obtain CSLs
and even topological superconductors upon doping [30,31].
More recently, Rydberg atom quantum simulators have shown
the promise to access such topological spin liquids [32].

In parallel with the interest in such CSLs, there has
been great interest in chiral broken symmetry states in geo-
metrically frustrated systems, which can potentially display
nontrivial real-space topology, giving rise to the nascent
field of chiraltronics. The most well-known examples of
these are skyrmion and meron crystals—creating and manip-
ulating such topological textures has important spintronics
and information storage applications [33–38]. More recently,
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chiral density-wave orders have been reported in the metal-
lic kagome materials AV3Sb5 [39–43], and chiral magnetic
orders have been explored in FeGe [44]. How are the topo-
logically ordered states such as CSLs related to chiral broken
symmetry states with nontrivial real-space topology? Histor-
ically, there was an attempt to relate the fractional quantum
Hall liquid to a melted Wigner crystal of electrons driven by
multiparticle exchanges [45]. The analogous question in the
field of QSLs is to ask how they arise from the melting of par-
ent magnetically ordered states. For instance, gapped Z2 QSLs
descend from quantum melting of coplanar magnetic orders
while preserving pointlike topological Z2 vortex defects [46].
Previous exact diagonalization (ED) and density-matrix renor-
malization group (DMRG) calculations have found CSLs and
tetrahedral spin crystals on triangular and honeycomb lattices
[9,15,17,47] and complex noncoplanar orders in kagome lat-
tices with staggered chiral terms which hosts a gapless CSL
[48]. Here, we show that the kagome lattice CSL is in close
proximity to two distinct symmetry-breaking orders which
feature a uniform nonzero scalar spin chirality, a nontriv-
ial real-space topological feature they partially share with
skyrmion crystals [33,34]. The scalar chirality is a source
of Berry fluxes, which can transmute to background gauge
fluxes in an effective gauge theory description of the spin- 1

2
CSL [14,49–51]. Our work links a many-body topologically
ordered state to the quantum melting of proximate chiral
broken symmetry states with nontrivial real-space topology
and shows how both of these ultimately emerge from a highly
degenerate manifold of classical chiral states.

Model Hamiltonian and Classical Orders. We consider the
kagome lattice model Hamiltonian:

(1)

Figure 1(a) shows the chiral three-spin interaction Jχ acting on
triangular plaquettes (with spins [i jk] ordered anticlockwise),
and the J3 Heisenberg term coupling farther spins on kagome
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FIG. 1. Kagome lattice. (a) The chiral three-spin interactions and
further neighbor two-spin couplings in the model Hspin. (b) Proposed
phase diagram of the model Hspin as we tune J3 and the strength
of quantum fluctuations via 1/S where S is the spin length. For
spin S = 1

2 , the extensively degenerate classical point evolves into
an emergent chiral spin liquid, bounded by noncoplanar magnetic
orders. The light blue region indicates where spin-wave fluctuations
can destabilize the noncoplanar orders, hinting at a quantum spin
liquid. (c) The classical limit XYZ ordering pattern, indicating spins
pointing along x, y, z. The XYZ umbrella order has the same symme-
tries as the classical XYZ order but has an opening angle between the
three spins on the triangle which lies between the orthogonal XYZ
triad and coplanar 120◦ order. (d) Octahedral magnetic order with
quadrupled unit cell and spins pointing along (x, x̄), (y, ȳ), (z, z̄),
where x̄ ≡ −x.

bow ties. Without loss of generality, we fix Jχ = 1. Our pro-
posed phase diagram for this model is depicted in Fig. 1(b),
as we tune J3 and the spin length S which controls the degree
of quantum fluctuations. It prominently features two distinct
chiral broken symmetry orders and the CSL in the spin- 1

2
limit.

When J3 = 0 in Eq. (1), minimizing the energy amounts
to maximizing the scalar spin chirality. In the classical limit,
where we treat spins as classical unit vectors, this implies
that each triangle has spins which must form an orthonormal
triad, e.g., going anticlockwise around a triangle, we may have
spins pointing along {x, y, z}. As shown in recent work on the
kagome lattice [52], there can be many choices for how to
place these triads on adjacent triangles, so that the number
of classical ground states scales as � ∼ 2N/3, where N is the
number of kagome sites.

However, we see that any nonzero J3 < 0 completely
breaks this degeneracy, selecting a ground state with XYZ
order, as shown in Fig. 1(c). This XYZ state is a specific
member of the family of Q = 0 umbrella states which have the
same unit cell as the original kagome lattice; see Supplemental
Material (SM) [53]. In the opposite limit, when Jχ = 0, the
kagome lattice decouples into three rhombic sublattices, each
of which individually supports ferromagnetic order driven by
J3 < 0. In this limit, introducing an infinitesimal Jχ couples
the three sublattices, again leading to XYZ order. The XYZ
state can thus be shown to be the unique classical ground state

of H for any J3 < 0 since it separately minimizes each term
in the Hamiltonian. A similar analysis indicates that J3 > 0
leads to antiferromagnetically coupled rhombic sublattices.
This selects octahedral order shown in Fig. 1(d) (see also SM
[53]), with a 12-site unit cell and zero net magnetization, as
the unique classical ground state. Spins in the XYZ state sub-
tend a solid angle π/2 over elementary triangular plaquettes
and trace out −π over hexagons. With octahedral order, spins
subtend a solid angle π/2 over triangular plaquettes and trace
out +π over hexagons; it may be viewed as a dense crystal
of baby skyrmions. The XYZ and octahedral states are reg-
ular magnetic orders [54], where lattice symmetries are only
broken due to broken spin rotation symmetries; restoring spin
rotation symmetry via quantum fluctuations is thus expected
to result in symmetric QSLs.

Quantum Fluctuations. Leading-order quantum fluctua-
tions in spin models may be treated using linear spin wave
theory (SWT) which is exact to O(1/S). To formally treat our
model Hamiltonian within SWT, we rescale Jχ → Jχ/(2S)
in Eq. (1), which leaves the spin- 1

2 model unchanged but
allows the two- and three-spin terms to compete in the S → ∞
limit. We then treat the small fluctuations around the XYZ
and octahedral orders by deriving and solving the bosonic
Bogoliubov–de Gennes SWT Hamiltonian directly in real
space; see Supplemental Material (SM) [53]. Using this ap-
proach, we find that the octahedral state spectrum admits three
exact zero modes, consistent with the expected number of
Nambu-Goldstone modes of the fully broken spin rotational
symmetry, while the XYZ order admits two zero modes due
to the nonzero net magnetization [55]. As J3 → 0, many
spin-wave modes descend and merge with the zero modes,
reflecting the extensive degeneracy of the classical ground
states at J3 = 0 [52].

Dropping the exact zero modes on finite-sized systems, we
have computed the SWT correction to the classical octahedral
and XYZ order parameters and extrapolated the result to the
thermodynamic limit [53]. We respectively denote these as
M± for J3 > 0 and J3 < 0. These order parameters take the
form M± = S − α±(J3), where the correction term α± de-
pends on J3 but is independent of S. For small values of |J3|,
these are well fit by the expressions α±(J3) = c± ln(1/|J3|),
where c+ ≈ 0.068 and c− ≈ 0.053; this logarithmic diver-
gence as J3 → 0± is consistent with the absence of long-range
order at J3 = 0.

We identify the critical spin value Sc where these non-
coplanar orders melt for a given J3 using an analog of the
well-known Lindemann criterion for melting of crystals. For
the magnetic order to melt, we demand that α±(J3) > f S,
where f is a constant. This is equivalent to demanding that the
fluctuations exceed a sizable fraction of the classical ordered
moment. Using this, we obtain 1/S(±)

c = ( f /c±)/ ln(1/|J3|).
For f = 0.4, we find for spin S = 1

2 that this leads to loss
of octahedral order for 0 < J3 � 0.05 and a breakdown of
the XYZ order in the regime −0.02 � J3 < 0. In the S = 1

2
model, we will see below that this (approximate) window
around J3 = 0 gets replaced by the CSL. Plotting the melt-
ing curve for all S leads to the phase boundaries marked in
Fig. 1(b), which reveals a spin-liquid fan emanating from the
extensively degenerate classical chiral point.
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Parton Mean-Field Theory. To study the phase diagram
of this model in the quantum limit of S = 1

2 , we begin
with a Schwinger fermion representation of the spin Si =
f †
iασαβ fiβ/2, with an implicit sum on repeated (Greek) spin

indices. Previous DMRG and ED calculations [10] on the
pure chiral model with J3 = 0 have shown that it supports a
Kalmeyer-Laughlin CSL ground state. At mean-field level,
this CSL may be described as a topological band insulator
of f partons, with total Chern number C = 2 [49]. To study
the impact of small J3, we recast the spin model in terms of
partons:

(2)

Here, the first term is a kagome Hofstadter model which cap-
tures the mean-field description of the CSL at J3 = 0 [19,56].
The complex hoppings ti j are fixed to have equal magnitude
|ti j | = t on all nearest-neighbor bonds and phases chosen such
that the partons experience π/2-flux around elementary trian-
gular plaquettes and zero-flux around hexagonal plaquettes.
This supports Chern bands with total Chern number C = 2
(counting both spin-↑ and spin-↓) at half-filling, providing the
correct starting point for the low-energy U(1)2 Chern-Simons
gauge theory description of the CSL [49]. The mean-field
spin gap in this insulator is equal to its insulating band gap
�m f ≈ 1.46t . Matching this to the ED result for the spin
gap � ≈ 0.05Jχ of the pure chiral model (see Ref. [10] and
Fig. 4 below) fixes t = 0.034Jχ . The second term in Eq. (2) is
obtained by rewriting the J3 spin interaction in Eq. (1) in terms
of partons. This Hamiltonian supplemented by a mean-field
constraint 〈 f †

iα fiα〉 = 1 at each site.
To examine the impact of nonzero J3, we treat the four-

fermion terms using a spatially inhomogeneous and unbiased
mean-field theory, with an independent Weiss field on every
site, and allowing for complex hoppings across the bow ties
of the kagome (i.e., sites connected by J3). We then perform
a variational mean-field theory analysis on system sizes up to
108 sites [53]. We find that the complex hopping across the
bow ties ends up being vanishingly small at the global vari-
ational minimum and hence can be safely ignored. For small
|J3|, the gapped Chern insulator is stable to four-fermion inter-
actions. Beyond a critical coupling, the internal Weiss fields
become nonzero, with a uniform strength B and directions
which are spatially modulated, signifying magnetic symmetry
breaking. For J3 > 0.092Jχ , we find that the converged broken
symmetry pattern shows a clear pattern of octahedral order
with a reconstructed 12-site unit cell (2 × 2 kagome unit cell).
For J3 < −0.077Jχ , the solution converges to XYZ umbrella
order, i.e., an umbrella state which shares all symmetries of
the XYZ order, but is intermediate between the XYZ state and
the Q = 0 coplanar 120◦ state. [Given that Hp in Eq. (2) builds
upon the mean-field CSL state at J3 = 0, the parton results
are only valid for J3/Jχ � 1.] The resulting phase diagram
is shown in Fig. 2, including the total Chern number of the
occupied bands [57] as we tune J3 [53]. Beyond mean-field
theory, the broken symmetry insulators are expected to have
trivial many-body topology.

FIG. 2. Parton theory phase diagram. Mean-field phase diagram
of the S = 1

2 parton theory of Eq. (2) as we vary J3/Jχ . For J3 >

0.092Jχ , we find a phase transition from the mean-field chiral spin
liquid (CSL) into the octahedral state, while for J3 < −0.077Jχ , we
find an instability into the XYZ umbrella order, a state with the same
symmetries as the XYZ state. The top line depicts the total Chern
number of the half-filled parton bands in various phases as we tune
J3/Jχ .

Gutzwiller Projected Wave Functions. To go beyond par-
ton mean-field theory and strictly implement the Gutzwiller
projection constraint (i.e., exactly one fermion per site), we
next turn to a Monte Carlo study of the projected parton
wave function [58] to optimize its parameters and study its
properties. We consider a parton state |� f 〉 which is ob-
tained as the Slater determinant ground state of a variational
Hamiltonian which includes complex nearest-neighbor hop-
ping eiθi j and next-neighbor hopping γ eiφi j [58], with phases
chosen to enclose uniform fluxes �, through elementary
and large triangular plaquettes, as in Fig. 3(a). To account for
magnetic symmetry-breaking orders, we include variational
Weiss fields bi via −∑

i bi · f †
iασαβ fiβ/2, limiting ourselves to

J3 > 0 octahedral order; the bi are thus chosen to have an oc-
tahedral pattern, as indicated in Fig. 3(a), as motivated by our
classical and parton mean-field theory results, with a spatially
uniform magnitude |bi| = Boct. We explore the variational

ansatz where PG

denotes Gutzwiller projection to one electron per site. The
Gutzwiller wave function PG|� f 〉 is supplemented with a
product Jastrow correlation factor acting on every kagome
bow tie, as shown in Fig. 3(a), where g is the strength of the
Jastrow factor, and denotes the total Sz on the bow
tie excluding the central site. The set of variational parameters
explored in our study are {γ ,�,, g,Boct} [53]. (We have
checked that an optimized variational third-neighbor hopping
across sites connected by J3 is negligible; the main effect of
J3 is to induce symmetry-breaking Weiss fields.)

For small J3/Jχ of interest, we obtain reasonable varia-
tional energies by fixing � = π/2 and γ = 0.2 and setting
the Jastrow strength to g = 0.045. We then vary ,Boct to
explore the variational space for different values of J3 (with
Jχ = 1). For the pure chiral model (J3 = 0), our wave func-
tion on an 8 × 8 kagome lattice (192 spins) yields an energy
per site −0.151(1)Jχ ; this is somewhat higher than ED
(≈−0.1729Jχ , N = 36) and an infinite projected entangled-
pair state study [59] which yielded ≈−0.1715Jχ . Figure 3(b)
shows the variational energy as a function of Boct for various
values of J3, where we have optimized with respect to 

at each point. For J3 = 0, we find that the CSL is stable
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(a)

(b)

FIG. 3. Gutzwiller wave function study. (a) Variational pa-
rameters used in our kagome wave function ansatz include a
second-neighbor hopping of strength γ , fluxes �,  through elemen-
tary and large triangular plaquettes (shaded), a local Jastrow factor
which suppresses the total Sz on bow ties (excluding the central site),
and a Weiss field Boct which induces octahedral order; field directions
are depicted on the sites. (b) Variational energy vs Boct for an 8 × 8
lattice for different J3, showing a stable chiral spin liquid (CSL) state
for J3 = 0 and an instability to octahedral order for J3 � 0.02. The
inset shows the order parameter Moct which becomes nonzero in the
ordered phase.

toward octahedral order but with an apparent metastable min-
imum at nonzero Btot. With increasing J3, this metastable
minimum rapidly comes down in energy, becoming the true
minimum for J3/Jχ � 0.02, signalling a first-order transition
into the octahedral state. As shown in the inset to Fig. 3(b), the
octahedral order parameter Moct = (1/N )

∑
i mi · b̂i jumps at

this transition. A better CSL wave function at J3 = 0 will have
lower energy, rendering the CSL more stable and increasing
the critical value of J3 for the octahedral instability.

Exact Diagonalization Results. ED is a powerful unbiased
tool to study frustrated kagome quantum magnets [10,60–62].
To corroborate our results from the preceding sections, we
have carried out ED calculations for the spin Hamiltonian
in Eq. (1) on various finite-sized kagome clusters, ranging
in size from N = 12 to 36 (shown in SM [53]). The largest
clusters are studied using a fully parallelized Lanczos code
that is most optimally used only with the total Sz

T as a quantum
number [63]. A full symmetry analysis can be performed on
the smaller clusters (see SM [53]). Our results for the spin
gaps to the lowest-lying states in each Sz

T sector are shown
in Fig. 4(a) vs J3. Two transitions are visible, indicated by
the shaded red regions. For J3 � Jc

XYZ ≈ −0.03Jχ , the ground
state transitions away from a singlet [64], and the system
becomes ferromagnetic, consistent with the appearance of the
XYZ umbrella state. In the vicinity of J3 = Jc

oct ≈ 0.06Jχ , the
spin gap appears to close, signaling a second-order transition
within ED [65] to a different state. These values of Jc

3 compare
favorably with the estimates obtained in our previous analysis.
In the CSL regime for Jc

XYZ < J3 < Jc
oct, our results are con-

sistent with a finite spin gap to the first S = 1 state above two
S = 0 states.

To identify the magnetically ordered states adjoining the
CSL phase, we apply a finite hXYZ and hoct to a single
triangle [shown in shaded red in Figs. 4(b) and 4(c)] for
the largest N = 36 cluster and study the induced ordering
at the other sites. This applied field breaks all Hamiltonian
symmetries, necessitating a diagonalization in the full 236-
dimensional Hilbert space. The results are shown in Figs. 4(b)
and 4(c) for hXYZ, hoct = 0.4 at J3 = −0.5 and J3 = 0.15,
respectively. The observed patterns are clearly consistent with
the XYZ umbrella and octahedral ordering, with only lim-
ited decrease in the overlap as one moves away from the
triangle where the field is applied (shaded red). We calculate
the induced Moct = 0.311 at J3 = 0.15Jχ , in good agreement
with the Gutzwiller wave function result, and MXYZ = 0.443
at J3 = −0.5Jχ . Our ED results unequivocally point to the
presence of octahedral and XYZ umbrella orders adjacent to
the CSL.

For J3 < 0, the destabilization of the CSL first occurs
via a higher spin state becoming the ground state; this oc-
curs at J3/Jχ ≈ −0.04 for N = 12 (see SM [53]) as well
as N = 24 (see Fig. 4). However, we can also identify a

(a) (b)

(c)

(d) (e)

FIG. 4. Exact diagonalization results. (a) Gaps to the lowest-lying Sz
T = 0, . . . 7 states for the 36-site cluster. (b) The induced 〈Sα〉 for the

36-site cluster with a Zeeman field hXYZ applied to a single triangle (shaded) at J3 = −0.5, and (c) with a hoct applied to a single triangle
(shaded) at J3 = 0.1. The radius of the points are proportional to the overlap with the expected XYZ or octahedral ordering direction at each
site. (d) 〈Sα〉 on adjacent sites taken anticlockwise on any given single up triangle for the 24Rh-site cluster in a uniform hXYZ field with
J3 = −1.4. (e) 〈Sα〉 on adjacent sites on a single triangle for the 24-site cluster in a uniform hoct field with J3 = 0.15.
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second transition in the spectrum at even higher |J3| where
a maximal spin ground state is achieved—this appears to
signal that the CSL first undergoes a transition into an
XYZ umbrella state which then reaches an endpoint where
it transitions into perfect XYZ order. However, this sec-
ond transition point shifts significantly with system size:
from J3/Jχ ≈ −0.15 for N = 12 (with Smax = 3) to J3/Jχ ≈
−1.13 for N = 24 (with Smax = 7); see SM [53]. It is thus
plausible that, with increasing N , the XYZ umbrella or-
der only becomes the perfectly orthogonal XYZ state for
|J3|/Jχ → ∞.

To further study the induced orders for J3 < 0, we apply
a Zeeman field of the form −∑

� hα
XYZSα uniformly on all

up triangles in the lattice, so that each kagome site is counted
once. We then measure the response on a single up triangle
with sites numbered (0, 1, 2) in anticlockwise order. For
J3 < 0, such a field term will induce the XYZ umbrella state
at large hXYZ. The response 〈Sα〉 vs hXYZ on the three sites 0,
1, and 2 is shown in Fig. 4(d) at J3 = −1.4Jχ for the 24Rh
cluster. Due to the degenerate ground state at J3 = −1.4Jχ ,
a discontinuous jump in all 〈Sα〉 is observed at hXYZ = 0,
resulting in a divergent susceptibility with respect to the XYZ
umbrella state. In a similar manner, for J3 > 0, we can apply
a field term of the form −∑

� hα
octS

α with hα
oct now reflecting

the octahedral ordering shown in Fig. 1(c), with a pattern
like the Weiss field Boct used in our variational study. The
response of the system to such a field on the sites 0, 1, and
2 is shown in Fig. 4(e) vs hoct at J3 = 0.15Jχ for the 24
clusters. (The octahedral ordering is not compatible with the
24Rh cluster). Because of the nonzero spin gap, the response
is more gradual, but 〈Sα〉 quickly reach values close to sat-
uration even for small fields. For this value of J3, we expect
the spin gap to close with increasing system size N . In the
limit hoct → 0, we interpret ∂〈Sα〉/∂hoct as a susceptibility
to octahedral ordering; we have verified that this susceptibil-
ity appears to diverge with increasing N [53]. On the other
hand, if hXYZ or hoct is applied within the CSL, a first-order
transition to an ordered state is observed at a finite value of
the field [53].

Conclusions. In this letter, we have used SWT, ED, and
Gutzwiller wave functions to uncover two chiral magnetic
orders—XYZ order and octahedral order—near the gapped
CSL on the kagome lattice, which are accessed by tuning a
small Heisenberg interaction across the bow ties. Our pro-
posed global phase diagram, as we vary spin S, hints at the
possibility of unusual QSLs in the chiral model for higher
spin, including spin-1 magnets, opening up a promising re-
search direction. Our work unveils distinct noncoplanar orders
on the kagome lattice with uniform spin chirality and points to
a tantalizing universal connection between many-body topo-
logical order in the gapped CSL and real-space topology
encoded in Berry fluxes of the noncoplanar broken sym-
metries. While our parton mean-field theory and variational
Monte Carlo calculations find a first-order transition from
the CSL into the XYZ or octahedral states, our ED results,
which we expect to be more reliable than the variational wave
function calculations, are instead suggestive of a possibly
continuous gap closing transition for J3 > 0. Further research
is needed to explore this possibility; we emphasize that we
do not, at present, have a field theory description of this
CSL-octahedral transition. In addition, for J3 < 0, it would
be desirable to construct a variational spin-wave approach
which would allow us to better understand the evolution of
the XYZ umbrella into the perfect XYZ state with increasing
|J3|. It would also be valuable to extend our work to explore
competing orders in models which spontaneously break these
symmetries [11,12] and study the impact of charge doping
[30]. Finally, our work lends impetus to extend the exploration
of kagome skyrmion materials [36] to the quantum regime to
study the melting of skyrmion crystals as a route to CSLs.
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