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Poisson-Dirichlet distributions and weakly first-order spin-nematic phase transitions
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We provide a quantitative characterization of generic weakly first-order thermal phase transitions out of
planar spin-nematic states in three-dimensional spin-one quantum magnets, based on calculations using Poisson-
Dirichlet distributions (PDs) within a universal loop model formulation, combined with large-scale quantum
Monte Carlo calculations. In contrast to earlier claims, the thermal melting of the nematic state is not continuous,
instead a weakly first-order transition is identified from both thermal properties and the distribution of the
nematic order parameter. Furthermore, based on PD calculations, we obtain exact results for the order parameter
distribution and Binder cumulants at the discontinuous melting transition. Our findings establish the thermal
melting of planar spin-nematic states as a generic platform for quantitative approaches to weakly first-order
phase transitions in quantum systems with a continuous SU(2) internal symmetry.
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The theory of phase transitions is fundamental to modern
approaches to many-body systems and quantum matter. In
particular, continuous phase transitions are a central topic in
various areas of physics in view of the universality of critical
phenomena. More recently, also weakly first-order phase tran-
sitions, i.e., discontinuous phase transitions with correlation
lengths well beyond the lattice scale, became a topical subject
in condensed matter research and beyond [1–9]. Different
renormalization group (RG) scenarios explain the emergence
of quasiscaling near weakly first-order phase transitions: In
the “tuning” mechanism, the RG flow passes near a real in-
frared fixed point in theory space; in the case of “walking,”
the RG flow passes between two fixed points at complex
couplings, associated with the collapse of two real fixed
points [1,4]. An example, for which the latter scenario can
be demonstrated explicitly, is the q-state Potts model with a
discrete Zq symmetry, featuring weakly first-order transitions
for q > 4 in two dimensions [5,10–12]. Similar ideas relate to
the hierarchy generation in four-dimensional gauge theories
of high-energy physics within the framework of walking as
a slowly running coupling constant at intermediate-energy
scales [4,13–15].

For quantum many-body systems weakly first-order transi-
tions are also central to some recently proposed interpretations
of the deconfined quantum criticality (DQC) scenario [16–20]
in terms of walking, fixed-point annihilation, and complex
fixed points [2,3,21,22]: For DQC, quantum many-body sys-
tems are considered with continuous internal symmetries,
such as U(1) or spin SU(2), for which the anticipated
DQC points separate ordered regions with noncompatible
symmetry-breaking patterns. The debate is still ongoing, re-
garding the true nature of the quantum phase transitions
observed in various DQC designer models, as well as their
relation to specific quantum materials [23,24]. In view of these
developments, it is crucial to establish quantum systems in

which weakly first-order transitions can be robustly demon-
strated and exact results for the properties at the transition
point can be provided by insightful approaches.

Here, we uncover weakly first-order transitions in spin-
one quantum magnets on the three-dimensional cubic lattice
with SU(2) symmetric interactions. By large-scale quantum
Monte Carlo (QMC) simulations, we establish that contrary
to claims of a continuous transition [25], the planar spin-
nematic (ferroquadrupolar) phase that emerges in this system
melts across a weakly first-order transition (in contrast to
fluctuation-induced first-order spin-nematic transitions in itin-
erant systems [26], the transition considered here is first order
in mean-field theory [27]). Its discontinuous nature becomes
apparent (in both the thermodynamic properties as well as the
order parameter distribution) only on sufficiently large length
scales, beyond those accessed previously [25]. In contrast to
the case of the Potts model and designer models of DQC, in
this system the weakly first-order transition takes place be-
tween a paramagnet and a low-temperature ordered phase that
breaks a continuous internal SU(2) symmetry (certain classi-
cal models with continuous symmetries and strong nonlinear
interactions have been shown rigorously to feature first-order
transitions to nematic order [28–30]). Moreover, we show how
calculations based on Poisson-Dirichlet distributions (PDs)
within a universal loop model formulation of the spin-one
lattice model can be used to derive the exact order param-
eter distribution in the quantum spin-nematic phase as well
as order parameter Binder cumulants at the transition point,
thereby providing us with a quantitative characterization of
this weakly first-order thermal order-disorder transition. We
note that the spin-one material NiGa2S4 is a candidate system
for the planar spin-nematic state considered here [31–36].

Model and planar spin-nematic. To stabilize the planar
spin-nematic state, we consider the generic SU(2)-symmetric
spin-one Hamiltonian, i.e., with both bilinear and biquadratic
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interactions, on a simple cubic lattice �,

H = −J
∑

〈i, j〉∈B�

[u(Si · S j ) + v(Si · S j )
2], (1)

with |�| = L3 sites, and a sum over the (nearest-neighbor)
bonds B� of � (with periodic boundary conditions). It is
convenient to fix v = 1 and keep u as a free parameter. Alter-
natively, an angular parametrization, u = cos(φ), v = sin(φ)
can be used. In any case, we fix J = 1. For u ∈ (0, 1) [i.e.,
φ ∈ (π/4, π/2)], H harbors an extended planar spin-nematic
phase [25,37–41], in which magnetic fluctuations are con-
strained to the plane perpendicular to a director �a ∈ PS2, the
projective sphere, i.e., �a is identified with −�a. Each director
corresponds to an extremal Gibbs state 〈·〉�a [41]. The symmet-
ric Gibbs state at inverse temperature β = 1/T , 〈·〉β = Tr ·
e−βH/Z , Z = Tre−βH , in the infinite-volume limit, then has
the decomposition [41] limL→∞〈·〉β = ∫

PS2〈·〉�a d�a. Here, d�a
denotes the uniform probability measure on PS2. In general,
〈·〉�a depends on β (for small β the Gibbs state is unique and
〈·〉�a does not depend on �a). A suitable local operator to detect
nematic order is Qi = (Sz

i )2 − 2
3 , and we denote by n∗ the

“spontaneous nematization” in the z direction, n∗ = 〈Qi〉�ez ,
where i is any site. From the PD formulation introduced
below, it follows that n∗ < 0 [42]. In contrast to the axial
nematic state that appears, e.g., for H with classical spins at
u = 0 [43,44], the planar nematic phase is characterized by
the minimization of the fluctuations in the plane perpendicular
to the director, and 〈·〉�a = limh→0+ limL→∞〈·〉H+h

∑
i∈�(�a·�Si )2

(notice the “+” sign in front of h) [41]. This is a genuine
quantum mechanical phenomenon, related to the m = 0 state
of the spin-one variables in this system. For u = 0 and u = 1,
the model exhibits an enhanced SU(3) symmetry and ferro-
magnetic low-temperature order [41,45]. In the following, we
study the properties of the model H at finite T , in particular
the nature of the thermal melting of the spin-nematic state and
its quantitative description.

Loop model and PD predictions. Loop models involve one-
dimensional objects “living” in d-dimensional space. Phases
may occur where loops of diverging lengths are present. It
was recently observed in Ref. [46] that the joint distribution
of the lengths of long loops displays universal behavior: It is
always given by the stationary distribution of a split-merge
process, which is PD characterized by a real number, the
PD parameter θ (cf. Supplemental Material [42] for a basic
introduction to PD and split-merge processes). We denote the
corresponding distribution by PD(θ ). It is possible to derive a
loop model representation for H using the Trotter or Duhamel
formulas for the Gibbs operator e−βH . It is restricted to u ∈
[0, 1] (outside this domain, the representation involves nega-
tive weights). This combines representations due to Tóth [47]
and to Aizenman and Nachtergaele [48] and was proposed in
Ref. [45]. The latter paper contains a detailed derivation. The
resulting representation is illustrated in Fig. 1. On top of each
bond of the spatial lattice � is the “time” interval [0, β]. In
each interval is an independent Poisson point process where
“crosses” occur with intensity u and “double bars” occur
with intensity 1 − u. One then defines the loops as the closed
trajectories obtained by moving vertically, and jumping on the
neighboring site when encountering a cross or a double bar. If

FIG. 1. Illustration of the loop model on different small lattices
(for H , � is the cubic lattice).

it is a cross, one continues in the same vertical direction, while
if it is a double bar, one changes the vertical direction. The role
of the loops is twofold: (i) They affect the probability of the
loops because of a factor 3#loops, and (ii) quantum correlations
are given by loop correlations. The relation between quantum
spins and loops concerns the partition function via

Z = e2β|B�|
∞∑

k,�=0

ūku�

k! �!

∑
b1,...,bk
c1,...,c�

∫ β

0
ds1 · · · dskdt1 · · · dt� 3|L(ω)|.

Here, ω denotes a configuration in terms of b1, . . . , bk ∈
B� (c1, . . . , c� ∈ B�), the bonds corresponding to double
bars (crosses), and s1, . . . , sk ∈ [0, β] (t1, . . . , t� ∈ [0, β]), the
times at which double bars (crosses) occur. L(ω) denotes the
set of loops, and ū = 1 − u.

Furthermore, we obtain for the characteristic function of
the “nematic histogram,” i.e., the distribution function ρQ of
the ferroquadrupolar operator Q = 1

|�|
∑

i∈� Qi in the Gibbs
state 〈·〉β , the identity (for any k ∈ C)

〈
eikQ

〉
β

=
〈 ∏

γ∈L(ω)

(
1

3
e− 2

3
ik
|�| �(γ ) + 2

3
e

1
3

ik
|�| �(γ )

)〉loops

β

, (2)

where the length �(γ ) of the loop γ is defined as the number
of sites traversed by the loop at time 0, and 〈·〉loops

β denotes
the expectation with respect to the loop measure above. This
measure can be viewed as the invariant measure of a Markov
process, involving the insertion and removal of double bars
and crosses [41,49], as detailed in the Supplemental Material
[42] (note that this process would be too slow to use in simula-
tions.) Any new cross or double bar between two loops causes
them to merge. When u ∈ (0, 1), a subtle phenomenon occurs:
A new cross or double bar may either cause a loop to split, or
reorganize it without splitting it (this is akin to 0 ↔ 8); either
occurs with probability 1

2 . The lengths of macroscopic loops
can be shown to satisfy an effective split-merge process, and
the invariant distribution is PD(3/2) [46,50,51]. For u = 0 or
u = 1, the subtle phenomenon above does not occur; splits
then happen at twice the rate, and θ = 3.

The PD conjecture [41,46] states that, as L → ∞, we can
replace the expectation in the loop model by the expectation
with respect to PD(θ ), scaled by a number η = η(u, β ) ∈
[0, 1] that represents the fraction of sites in long loops at imag-
inary time 0. This can be used to calculate the characteristic
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TABLE I. PD results for the moments of Q.

θ 〈Q2〉β 〈Q3〉β 〈Q4〉β

u ∈ (0, 1) 3/2 4
45 η2 − 16

27·35 η3 16
27·35 η4

u ∈ {0, 1} 3 1
18 η2 − 1

135 η3 1
135 η4

function of ρQ explicitly [42]:

lim
L→∞

〈eikQ〉β = e− 2
3 ikη

∞∑
r=0

�
(

3
2

)
�

(
r + 3

2

) (ikη)r . (3)

Inverse Fourier transform finally gives [42]

ρQ(s) =
{

1

2
√

η
√

1
3 η−s

if − 2
3η � s � 1

3η,

0 otherwise.
(4)

From here, we can calculate the moments 〈Qn〉β in the
nematic phase. It is more insightful however, to derive them
from the loop representation directly, using the PD conjecture
to write them all in terms of the single unknown variable η.
Cumulant ratios, such as UQ = 1 − 1

3 〈Q4〉β/〈Q2〉2
β , are then

given by ratios that no longer depend on η. We provide the
calculations in some detail in the Supplemental Material [42].
The identities for the second, third, and fourth moment that
are exact in the infinite-volume limit read

〈Q2〉β = 2
9P

loops
β [i1, i2 in same loop],

〈Q3〉β = − 2
27P

loops
β [i1, i2, i3 in same loop],

〈Q4〉β = 2
27P

loops
β [i1, i2, i3, i4 in same loop]

+ 4
27P

loops
β [i1, i2 in same loop, i3, i4 in other loop].

(5)

Here, i1, i2, i3, and i4 are sites that are very distant from
one another. Since the sites are distant, it is necessary that
they belong to long loops in order to have a chance to be in
the same loop. We can then use the PD conjecture to obtain
the probability P loops

β [i1, . . . , in in same loop], that i1, . . . , in
belong to the same loop, in terms of the probability that, if
we choose a random partition of [0,1] according to PD(θ ),
and n-independent points in [0,1], all n points are in the same
partition element [42]:

P loops
β [i1, . . . , in in same loop]

= ηnPPD(θ )[n random points in same partition element]

= ηn �(1 + θ )�(n)

�(n + θ )
,

and similarly

P loops
β [i1, i2 in same loop, i3, i4 in other loop]

= 2η4
∑
k<�

PPD(θ )[i1, i2 in kth element, i3, i4 in �th el.]

= 2η4 θ�(1 + θ )

�(4 + θ )
.

The resulting moments are given in Table I. We obtain an
η-independent value U −

Q = 2/7 for the Binder cumulant in the

−0.6 −0.3 0.0 0.3
s

0
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ρ
Q

(s
)

T = 0.5

−0.2 −0.1 0.0 0.1

s0.0

2.5

5.0

7.5

ρQ(s)

T = TcL = 48
L = 64
L = 96
L = 128

L = 48
L = 128

PD prediction

FIG. 2. Comparison of the nematic histogram obtained from
QMC at u = cot(3π/8) with the PD prediction for η = 0.9021(2).
The inset shows the histogram for various L at the transition temper-
ature Tc = 1.649 00(1).

thermodynamic limit within the planar spin-nematic phase,
and η-independent values for the ratios of the moments toward
the SU(3) end points, such as limu→0+〈Q2〉β (u)/〈Q2〉β (u =
0) = limu→1−〈Q2〉β (u)/〈Q2〉β (u = 1) = 8/5. The moments
of Q can also be calculated using symmetry breaking extremal
states [42], for which, however, the heuristics is more subtle
and the result may be uncertain.

Comparison to QMC. We verify the above results, ob-
tained from the PD conjecture, by making use of unbiased
large-scale QMC simulations, based on the stochastic series
expansion [52,53]. Figure 2 compares the PD prediction for
ρQ with the nematic histogram obtained using QMC simula-
tions for u = cot(φ = 3π/8) = 0.414 12 . . ., i.e., at the center
of the spin-nematic regime in the angular parametrization of
H , at a low temperature of T = 0.5 in the ordered phase (sim-
ilar results are obtained for other values of u). We observe a
remarkable agreement between the nematic histogram and the
PD prediction. In Fig. 3, we show the thermal evolution of UQ

1.646 1.648 1.650 1.652
T

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

U
Q

u = cot(3π/8)U−
Q

Uc
Q

Tc

0.0 0.5 1.0

u

0.04

0.06

0.08
Q2

T = 0.5
PD jump
L = 80

L = 48
L = 64
L = 72

L = 80
L = 96
L = 128

FIG. 3. Temperature dependence of the Binder cumulant UQ near
the phase transition for different system sizes at u = cot(3π/8) from
QMC. The PD-based predictions U −

Q in the ordered phase and U c
Q at

the transition temperature Tc are indicated by dashed lines. The right
inset shows the u dependence of the second moment 〈Q2〉β .
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FIG. 4. Temperature dependence of the specific heat C for differ-
ent system sizes at u = cot(3π/8) from QMC. The inset shows the
scaling of the maximum Cmax with system size, extracted from the
shown Lorentzian interpolations.

and find that within the ordered phase, the QMC data converge
toward the PD prediction upon increasing the system size (UQ

converges to 0 in the paramagnetic regime). We also examine
in the inset of Fig. 3 the u evolution of 〈Q2〉β at a fixed low
temperature T = 0.5. We observe an explicit u dependence of
the second moment (reflected by the u dependence of η in the
PD prediction), as well as the agreement in the relative size of
its jump to both SU(3) end points with the PD prediction.

Next, we consider the phase transition. We demonstrate
that in contrast to earlier claims, the planar spin-nematic
order melts across a (weakly) first-order thermal transition.
A basic quantity for this purpose is the specific heat C, the
T dependence of which is shown in Fig. 4. For sufficiently
large systems, we clearly identify a prominent peak with a
scaling Cmax ∝ |�|, characteristic of a first-order transition.
From an extrapolation of the peak position [42], we obtain
the estimate Tc = 1.649 00(1) for the transition temperature
at this parameter value.

Further evidence for the first-order character of the tran-
sition is obtained from considering the nematic histogram at
Tc. This is shown in the inset of Fig. 2, and exhibits the co-
existence of two contributions: (i) a broad low-T contribution
akin to the one in the main panel, and (ii) a further, compa-
rably sharp peak near Q = 0, i.e., related to disordered states.
The latter emerges only mildly upon increasing the system
size, but it is clearly resolved for L � 100. This indicates the
rather weak first-order character of the transition. Histograms
based on the internal energy also support this conclusion [42].
Another quantity that exhibits genuine behavior at first-order
transitions is the Binder cumulant UQ, shown in Fig. 3 across
the transition region. Two properties are noticeable: (i) UQ

develops a substantial dip just above Tc, which grows and
sharpens with increasing L, another characteristic feature of
first-order transitions [54]. (ii) The data for UQ from different
system sizes exhibit a crossing at Tc. We can calculate the
crossing point value U c

Q as follows from considering the co-
existence of ordered and disordered states: Denoting by α the
weight of the ordered states at coexistence, such that 〈·〉βc =
α limβ→β+

c
〈·〉β + (1 − α) limβ→β−

c
〈·〉β , we can express U c

Q in
terms of the previously calculated moments of Q in the
nematic phase, taking into account that they vanish in the
paramagnetic phase. This gives U c

Q = 1 − 5/(7α). We finally
need to determine the mixing parameter α at the first-order
transition in the quantum system described by H . A related
issue appears for first-order transitions in classical models
with continuous variables, and this has been addressed only
recently [55]: Based on the fact that for the discrete q-state
Potts model the corresponding parameter is given in terms
of the number q of distinct degenerate low-T sectors with
respect to the single paramagnetic sector by α = q/(q + 1),
it was argued that for the continuous case, α is obtained upon
replacing q in the above formula by the integral measure of
the space of extremal states. In the current case this mea-
sure is given by the area 2π of the projective sphere PS2,
i.e., α = 2π/(2π + 1). The value of U c

Q = 2/7 − 5/(14π ) =
0.1720 . . . resulting from this heuristics indeed matches re-
markably well to the QMC data (cf. the inset in Fig. 3).
This demonstrates that PD calculations provide an accurate
quantitative description of the planar spin-nematic phase of
the spin-one quantum magnet. It would be valuable to base
the heuristics of Ref. [55] on more rigorous considerations for
both continuous and quantum variables.

Conclusions. We used a combination of QMC and PD
calculations, based on a loop model formulation, to uncover
weakly first-order thermal melting transitions of planar spin-
nematic states realized in quantum spin-one systems with
SU(2)-symmetric interactions. We demonstrated explicitly
how generic properties of both the low-temperature nematic
phase and the phase coexistence line can be calculated based
on the PD conjecture, with remarkable agreement to QMC
results. Further studies, e.g., based on RG approaches, will be
useful in order to explain the weakness of these transitions
via the tuning mechanism, or by connecting it to the ideas of
walking and fixed-point annihilation within this well-defined
framework of a comparably simple quantum spin model.
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