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Field-induced Kitaev multipolar liquid in spin-orbit coupled d2 honeycomb Mott insulators
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The Kitaev model, characterized by bond-dependent Ising spin interactions among spin-orbit entangled dipole
moments in Mott insulators, offered a new approach to quantum spin liquids. Motivated by another type of
bond-dependent interaction among quadrupole moments in 5d2 Mott insulators, we provide a microscopic route
to uncover the Kitaev multipolar liquid, featuring fractionalized excitations out of non-Kramers doublets carrying
multipole moments. The key ingredient is the magnetic field that allows for bond-anisotropic quadrupole-
octupole interactions via mixing with the excited triplet states. The conditions to realize signatures of this phase
in real materials are also discussed.
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Introduction. Recently, there have been many studies on
candidate materials of Kitaev spin liquids (KSLs) as they offer
a platform for topological quantum computation [1,2]. The
Kitaev honeycomb model consists of bond-dependent Ising
interactions leading to the KSL with Majorana fermion and
Z2 vortex excitations. It was shown that bond-dependent (or
“compass”) interactions appear naturally in Mott insulators
with strong spin-orbit coupling since the spin sector of the lo-
calized wave functions becomes sensitive to the orbital spatial
orientation due to spin-orbit entanglement [3–12]. Since then
there has been an intensive search for candidate Kitaev mate-
rials described by an effective model of spin-orbit entangled
Jeff = 1/2 Kramers doublets [3,4,9,13–31].

Bond-dependent interactions are not limited to Kramers
doublets; in the 5d2 double perovskites, the J = 2 states
are further split into a non-Kramers doublet and an excited
triplet via t2g-eg mixing [32–34]. The non-Kramers doublet
hosts quadrupole and octupole moments while lacking a
dipole moment, and the microscopic theory of the multipo-
lar interactions exhibit octupole-octupole and bond-dependent
quadrupole-quadrupole interactions [35–37]. Remarkably,
such interactions on the honeycomb lattice take the form of the
extended Kitaev model, which includes the bond-dependent
off-diagonal exchanges � and �′ along with the conventional
Heisenberg interaction. Given their similarity, one may ques-
tion if there is a way to realize the exactly solvable Kitaev
model in multipolar honeycomb systems.

In this Letter, we present a microscopic theory to uncover
the Kitaev model among multipolar moments where non-
Kramers doublets are fractionalized into Majorana fermions
and Z2 vortices; we call this phase the Kitaev multipolar liquid
in analogy with the KSL. The key ingredient to realize the
KML is the application of a magnetic field which leads to
bond-dependent quadrupole-octupole interactions ordinarily
forbidden by time-reversal symmetry. Below we first derive
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the low-energy effective multipolar model including the time-
reversal symmetry breaking terms and present its classical
phase diagram. Noticing a special point in the phase diagram
which maps to the pure antiferro-Kitaev model, we investigate
the extent of the KML in the quantum phase diagram using ex-
act diagonalization (ED) on the 24-site cluster. We summarize
our results and discuss the conditions to realize signatures of
the KML in d2 honeycomb insulators.

Multipolar pseudospin-1/2 interactions. Electronic states
of transition metal ions enclosed in an octahedral cage are
generally split by cubic crystal fields into a low-lying t2g triplet
and an excited eg doublet. For a d2 filling, the orbital sector
is described by three antisymmetrized two-electron states,
forming an effective total angular momentum L = 1 which
is then coupled to the total spin S = 1 via spin-orbit cou-
pling, resulting in the J = 2 multiplet [38]. The J = 2 dipole
operators are given by Jγ = êγ · J for γ ∈ {x, y, z}, where
êx,y,z point along the three anion directions; see Fig. 1(a). The
fivefold-degenerate J = 2 state can then be further split by
virtual processes mixing the electronic t2g and eg states via
spin-orbital excitations, resulting in a ground state doublet
and excited triplet separated by energy gap �; see Fig. 1(b).
In analogy with the five electronic d orbital states, we refer
to the doublet and triplet states as Eg and T2g, respectively.
The Eg doublet is of the non-Kramers type with vanishing
magnetic dipole moment, but carries higher-rank moments,
i.e., quadrupole and octupole moments denoted by the op-
erators Qx2−y2 = J2

x − J2
y , Q3z2 = (3J2

z − J2)/
√

3, and Txyz =√
15
6 JxJyJz, where the overline symbol denotes symmetrization

of the underlying operators. Let us define three operators
sa,b,c as

(sa, sb, sc) ≡ 1

2
P†

Eg

(
Q3z2

2
√

3
,

Qx2−y2

2
√

3
,

Txyz

3
√

5

)
PEg, (1)

where PEg is the projection operator onto the Eg dou-
blet. The action of these operators on the Eg subspace can
be represented by the three Pauli matrices (sa, sb, sc) =
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FIG. 1. (a) Honeycomb lattice with transition metal ions (shown
in yellow) enclosed in an octahedral anion cage (shown in gray). The
crystallographic abc and octahedral xyz coordinates are shown. The
x, y, z bonds are colored green, blue, and red, respectively. (b) Single-
ion level scheme for the J = 2 moment. The fivefold degeneracy is
split by an energy gap � into a low-lying non-Kramers Eg doublet
and an excited T2g triplet by electronic t2g-eg mixing induced by spin-
orbit coupling [32,34]. The Eg and T2g states are also shown where
red and blue represent nonzero spin density.

(σ 3, σ 1, σ 2)/2, so that sa,b,c form effective pseudospin-1/2
operators. The components are given by sγ̄ = êγ̄ · s for γ̄ ∈
{a, b, c}, where êc points out of the honeycomb plane spanned
by êa and êb; see Fig. 1(a). The quadrupolar and octupolar mo-
ments are in one-to-one correspondence with the projection of
s onto the ab plane or the c axis, respectively.

We now investigate the form of the multipolar interactions
by introducing t2g orbital hopping, as was done in the case of
the d2 double perovskites [35–37]. On a honeycomb z bond,
the parameters t3 and t1 represent intraorbital hopping through
xy − xy overlap, or xz − xz and yz − yz overlaps, respectively;
see Fig. 1 of the Supplemental Material (SM) [39]. We also
introduce an xz − yz interorbital hopping through the edge-
shared anions by hopping parameter t2. We go beyond earlier
studies by immersing the system in an external magnetic field
h = (hx, hy, hz ). The spin and orbital degrees of freedom are
sensitive to this field via a Zeeman coupling HZ = μB(L +
2S) · h = gJμBJ · h, which introduces off-diagonal matrix el-
ements between the doublet and triplet states [39]. We ensure
that the Eg and T2g manifolds remain well separated by consid-
ering the low-field limit gJμB|h| � � so that the perturbative
expansion is carried out in both |h|/� and t2

i j/U , where ti j

is some hopping between sites i and j and U is the Hubbard
energy cost of double occupancy. The external field gives rise
to new virtual processes where the Eg doublet mixes with the
polarized T2g triplet during the hopping procedure; see Fig. 2.
This process generates new terms in the effective Hamiltonian
denoted by Jγ

B and heff = (ha
eff, hb

eff, hc
eff ) appearing at third

order in addition to the previously derived Jτ , JQ, and JO:

H =
∑
〈i j〉γ

Jτ τ
γ
i τ

γ
j + JQ

(
sa

i sa
j + sb

i sb
j

) + JO sc
i sc

j

−
√

2Jγ
B

(
τ

γ
i sc

j + sc
i τ

γ
j

) −
∑

i

heff · si, (2)

where τ γ ≡ sa cos φγ + sb sin φγ is a compass quadrupole
operator with φγ = 0, 2π/3, 4π/3 for a given bond of
type γ = z, x, y. Crucially, the addition of a magnetic field

FIG. 2. Schematic of a virtual process that contributes to both
JB and heff term in the effective Hamiltonian Eq. (2) at third order
for the case of a magnetic field aligned along the c axis. The Eg

and T2g states at site j mix due to (a) the on-site Zeeman field and
(b) hopping of an electron via interorbital t2 and intraorbital t3; see
visual representation of the orbital overlaps in Fig. 1 of the SM [39].
The overall contribution is then proportional to (t2t3/U )(h/�).

supplements the Hamiltonian of Ref. [37] with terms or-
dinarily forbidden by time-reversal symmetry, including a
bond-anisotropic quadrupole-octupole interaction Jγ

B ; that is,
Jx

B, Jy
B, and Jz

B generally differ in strength along each bond.
For the case of a [111] magnetic field h = hêc, the Jγ

B inter-
action becomes bond isotropic with JB ≡ Jx

B = Jy
B = Jz

B, and
ha

eff = hb
eff = 0, heff ≡ hc

eff, where

JB = 8

9

t2(2t1 + t3)

U

gJμBh

�
j↑−
x ,

heff = 2

3

t2(t1 − t3)

U

gJμBh

�
j↑0̄
z − 24

(gJμBh)3

�2
j↑+
x j++

z j+↑
x ,

(3)

where jμν
α ≡ 〈μ| Jα |ν〉, |↑〉 is one of the Eg states, and

{|±〉 , |0̄〉} are the three T2g states [39]. For the remainder of
this Letter we focus on the case of a [111] magnetic field;
the general form of Jγ

B and heff for an arbitrary magnetic
field direction are given in Sec. II of the SM [39], along
with the expressions for Jτ , JQ, and JO previously derived in
Ref. [37].

Classical phase diagrams. We now explore the phase di-
agram of the Jτ − JQ − JO − JB − heff model. We study the
phase diagram of the Hamiltonian Eq. (2) in the classical
limit by treating s as an O(3) vector using Monte Carlo simu-
lated annealing to obtain the classical ground states [40–42];
see Appendix A of Ref. [43] for simulation details. Signa-
tures of quadrupolar and octupolar ordering are given by
peaks in the structure factors 1

N

∑
i j (s

a
i sa

j + sb
i sb

j ) e−iq·(ri−r j )

and 1
N

∑
i j sc

i sc
j e−iq·(ri−r j ), respectively. We focus on the re-

gion where both Jτ , JO > 0 by setting Jτ = J̄ cosθ, JQ =
J̄ sinθ cosφ, JO = J̄ sinθ sinφ and restricting to 0 � θ � π/2,
0 � φ � π ; for JB = 0 the Hamiltonian is invariant under
φ → 2π − φ (i.e., JO → −JO) and sc → −sc on one of the
two honeycomb sublattices. In Fig. 3(a) we present the phase
diagram at fixed JB = heff = 0, which is dominated by the
antiferro-octupole (AFO), antiferro-quadrupole (AFQ), ferro-
quadrupole (FQ), and vortex-quadrupole (VQ) phases; the
VQ phase in particular is a six-site quadrupolar phase; see
Sec. III of the SM for pseudospin configuration [39]. Note
that each of these phases host either quadrupolar or octupolar
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FIG. 3. Classical phase diagrams computed by Monte Carlo sim-
ulated annealing at heff = 0 and (a) JB = 0 and (b) JB = J̄/

√
5,

where J̄ = 1 sets the energy scale. The angles (θ, φ) parametrize
the exchange interactions in Eq. (2) as Jτ = J̄ cos θ, JQ =
J̄ sinθ cosφ, and JO = J̄ sinθ sinφ. Some phases are labeled by the
number of sites in the ordering unit cell; two such phases with
identical unit cell size are distinguished using Roman numerals. In
Sec. III of the SM we display the pseudospin configuration in each
ordered phase [39]. The yellow and red stars indicate points shown
in Fig. 4; at the red star the Hamiltonian is equivalent to the pure
antiferro-Kitaev model.

moments, but not both. The line where JQ = 0 and 0 � JO �
Jτ /2 hosts a disordered quadrupolar state originating from the
pure Jτ limit at θ = 0. There the model has a macroscopically
large ground state manifold owing to the physics of the 120◦
compass honeycomb model [7,44,45]. The octupolar Ising in-
teraction, which is proportional to sc

i sc
j , does not immediately

lift this degeneracy until JO > Jτ /2, where the AFO phase
is stabilized in a spin-flop transition. On the other hand, the
degeneracy is lifted by finite JQ and selects either VQ or AFQ
ordering depending on the sign of JQ.

In Fig. 3(b) we present the classical phase diagram at a
fixed value of JB = J̄/

√
5 > 0, which modifies the JB = 0

case in several notable ways. First, the area surrounding the
disordered quadrupolar state in the JB = 0 limit now hosts
several large unit cell (LUC) orders including 24-site and 40-
site orders. Second, whereas the region where both JQ, JO > 0
is relatively undisturbed, the opposite limit where JQ and JO

differ by a sign hosts a variety of new ordered phases. An
example is the zigzag (ZZ) phase which contains both an
in-plane and out-of-plane component; see Fig. 4. In fact, all
new phases appearing in Fig. 3(b) feature both quadrupolar
and octupolar moments; see Sec. III of the SM for a visual rep-
resentation of the classical pseudospin moments [39]. Third,
six different phases emerge from a single point indicated by

FIG. 4. Quantum phase diagram obtained by 24-site ED, where
the parameters ξ = (JB − JO )/(JB + JO) and heff are tuned, while
JQ = 0 and Jτ = JB + JO = 1 are fixed. Phase boundaries are given
by peaks in the ground state energy derivatives and we determine
the presence and type of ordering by calculating the quadrupolar and
octupolar structure factors of each phase shown in Sec. III of the
SM [39]. The yellow star corresponds to the point where Jτ = JO,
whereas the red star corresponds to the antiferro-Kitaev point. For
each ordered phase, the arrows represent each pseudospin’s in-plane
(i.e., quadrupolar) component, whereas red and blue colors indicate
the out-of-plane (i.e., octupolar) component with opposite directions.

a red star in Fig. 3(b). In the next section we explore this
point in detail and consider the consequences for the quantum
pseudospin model.

Kitaev multipolar liquid. To find the relation to the Kitaev
model, we rewrite the Hamiltonian Eq. (2) in the octahedral
xyz coordinates, where it may be written in the JK��′ form:

H =
∑
〈i j〉γ

J si · s j + Ksγ

i sγ

j + �
(
sα

i sβ
j + sβ

i sα
j

)

+ �′[sγ

i sα
j + sα

i sγ

j + (α → β )
] − heff

∑
i

êc · si, (4)

where sγ = êγ · s, γ ∈ {x, y, z}, and α, β ∈ {x, y, z}\{γ }. The
values of J, K, �, and �′ are given by

J = 1
3

(
1
2 Jτ − 2JB + JO + 2JQ

)
,

K = 1
2 Jτ + 2JB, � = J − JQ,

�′ = 1
3 (−Jτ + JB + JO − JQ). (5)

The special point indicated by the red star in Fig. 3(b) is
where JQ = heff = 0 and the other parameters satisfy the ratio
Jτ : JO : JB = 2 : 1 : 1. Here the Hamiltonian takes the form
H = ∑

〈i j〉γ K̄ sγ
i sγ

j , where K̄ = 3Jτ /2 > 0; in other words,
our multipolar pseudospin model is described purely by an
antiferro-Kitaev interaction. The classical limit of this model
hosts an extensive ground state degeneracy, which explains
why several classical phases meet at the red star in Fig. 3(b).
In analogy to the Kitaev honeycomb model for spin-1/2
moments, we can write the multipolar pseudospin operator
in terms of Majorana fermions bγ and c as sγ = ibγ c/2,
and the model can be solved exactly in terms of Majorana
fermions hopping with a Dirac dispersion in the presence of a
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background Z2 gauge field. The resulting entangled ground
state lacks long-range multipolar order, which we recognize
as the KML. The discovery of an exotic phase in an exactly
solvable model of multipolar moments in d2 honeycomb ma-
terials forms the central result of this Letter.

We would like to find the ordered multipole phases nearby
the KML phase space as JB and heff are tuned, as the KML
physics may govern the finite temperature above which the
multipole ordering melts. To do so, we solve Eq. (2) using ED
on the 24-site cluster with the numerical package H� [46].
We parametrize the quantum phase diagram by fixing JQ = 0
and tuning the parameter ξ = (JB − JO)/(JB + JO) between
ξ ∈ [−1, 1]. Whereas ξ = −1 corresponds to the point where
JB = 0 and Jτ = JO, shown in Fig. 3(a) by the yellow star,
ξ = 0 corresponds to the point where JB = JO = Jτ /2 which
maps to the pure antiferro-Kitaev point. The three ordered
phases AFO, AFQ, and ZZ dominate the phase diagram.
However, there exists a narrow window where the KML is
stabilized which is extended in the heff direction until roughly
heff ∼ 0.6 Jτ . At the antiferro-Kitaev point, the KML is not
immediately susceptible to polarization as the ferro-octupole
configuration does not lie within the antiferro-Kitaev ground
state manifold.

One may expect that, due to the relations implied by
Eq. (5), other ordered phases explored in the JK��′ literature
can be stabilized by the model Eq. (2) including the four-site
stripy phase. Yet this phase does not appear in our work, as
it primarily occupies the K < 0 region [4,6] and we have
focused on the region where Jτ , JB � 0, i.e., K � 0. A small
stripy phase could appear near K > 0 when � < 0 and �′ > 0
[25] but it lies outside our parameter space.

Discussion and summary. We now discuss the conditions
to realize the KML in d2 insulators. The bond-dependent
quadrupole-octupole interaction requires the Zeeman field
which induces off-diagonal components between the Eg and
T2g states while maintaining their energy separation �; thus
the first condition is that gJμBh � �. In the Os6+ and Re5+
double perovskites � is around 10–20 meV, restricting h ∼
O(10 T). The second condition is approaching the Kitaev
limit. In most edge-sharing materials, |t2|, |t3|  |t1| [6] so
that the Kitaev limit is best approached if t2

2 ∼ 2t1t3, since
JQ ∼ 0 and JO ∼ 4t2

2 /3 while Jτ ∼ 4t2
3 /9; see expressions

given in Sec. I of the SM [39]. The ratio of t2 and t3 then

determines whether the material is VQ, AFQ, or AFO ordered
in the zero-field limit shown in Fig. 3(a). As the magnetic field
is introduced and JB is increased, the system approaches the
KML phase space but it may remain in the ordered phase
depending on t2/t3. The signature of KML physics is then
revealed at the finite temperatures above which the ordering
vanishes. The intricate balance between the field strength h/�

and exchange paths presents a challenge for the material real-
ization of the KML. Nevertheless, this work serves as a “proof
of concept” that the d2 spin-orbit entangled honeycomb in-
sulators with non-Kramers doublets may exhibit multipolar
Kitaev physics.

In this Letter we have shown that the KML can arise in
a spin-orbit coupled d2 honeycomb material. The key in-
gredient is the application of a magnetic field which allows
for bond-dependent quadrupole-octupole interactions in the
effective Hamiltonian of the Eg doublet. In combination with
the Ising octupole and 120◦ compasslike quadrupole terms,
the Hamiltonian can be tuned to the pure Kitaev form. The
resulting multipolar model can then be solved exactly using
Majorana fermions, in analogy with Kitaev’ s original spin-
1/2 model. Multipolar ordered phases arise along with the
KML, including those featuring combinations of quadrupolar
and octupolar ordering, as well as a disordered compass-
quadrupole phase. The nature and extent of these phases
in the quantum phase diagram form interesting avenues of
future work. We have also shown that the field-induced bond-
dependent JB becomes bond anisotropic when the field is tilted
away from the c axis. This extended phase space, and the
novel physics contained within, motivates future studies of d2

multipolar systems.
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