
PHYSICAL REVIEW B 107, L020407 (2023)
Letter Editors’ Suggestion

Characterizing random-singlet state in two-dimensional frustrated quantum magnets
and implications for the double perovskite Sr2CuTe1−xWxO6
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Motivated by the experimental observation of a nonmagnetic phase in compounds with frustration and
disorder, we study the ground state of a spin-1/2 square-lattice Heisenberg model with randomly distributed
nearest-neighbor J1 and next-nearest-neighbor J2 couplings. By using the density matrix renormalization group
(DMRG) calculation on a cylinder system with a circumference of up to ten lattice sites, we identify a
disordered phase between the Néel and stripe magnetic phase with growing J2/J1 in the presence of strong bond
randomness. The vanished spin-freezing parameter indicates the absence of spin-glass order. The large-scale
DMRG results unveil the size-scaling behaviors of the spin-freezing parameter, the power-law decay of the
average spin correlation, and the exponential decay of the typical spin correlation, which all agree with the
corresponding behavior in the one-dimensional random-singlet (RS) state and characterize the RS nature of this
disordered phase. The DMRG simulation also provides insights and opportunities for characterizing a class
of nonmagnetic states in two-dimensional frustrated magnets with disorder. We also compare with existing
experiments and suggest more measurements for understanding the spin-liquid-like behaviors in the double
perovskite Sr2CuTe1−xWxO6.
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Introduction. A spin liquid (SL) is an exotic quantum liq-
uid state realized in frustrated magnets [1–5], which exhibits
long-range entanglement and fractionalized excitations [6–8]
and may have potential applications in quantum computation
[9]. After an extensive search for decades, spin-liquid-like
behaviors have been reported in frustrated antiferromagnets
[3–5]. In particular, most of the SL candidates have been char-
acterized as gapless spin-liquid states in experiment [4,10–
16]. Nevertheless, theoretical studies have only established SL
states in a few highly frustrated models including kagome an-
tiferromagnet and triangular-lattice Heisenberg models with
competing interactions [3,5]. Only considering frustrated in-
teractions may be insufficient to account for the widely
observed spin-liquid-like behaviors in materials.

Another common factor that may suppress magnetic order
is disorder, which naturally exists in materials [11,12,17,18].
In one dimension (1D), the strong-disorder renormalization
group has established an infinite-randomness fixed point
(IRFP) with an infinite dynamic exponent, which describes
the random-singlet (RS) state in random spin chains [19–27].
A characteristic feature of the 1D RS state is the drastic dif-
ference between the average and the typical spin correlations,
which follow the r−2 power law and the exponential decay
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respectively as a function of distance r due to the logarith-
mically broad probability distribution of spin correlation [23].
By extensive experimental studies on random spin chain com-
pounds [28–34], recently RS behaviors have been reported
in the compounds BaCu2(Si1−xGex )2O7 and Ba5CuIr3O12

[33,34]. In two dimensions (2D), it has been shown in ex-
periment that increased disorder can also melt magnetic order
and induce spin-liquid-like behaviors [35–39]. However, un-
derstanding the disorder effect in 2D frustrated systems is
a longstanding challenge for theoretical study. Although the
IRFP has been found in a few 2D systems [40–43], disorder-
induced states in general frustrated Heisenberg models are
quite elusive [44–46]. Recently, systematic exact diagonaliza-
tion (ED) studies have unveiled a disordered phase driven by
random couplings in various frustrated Heisenberg models,
which is conjectured to be a 2D RS state [47–53]. The ED
results of the dynamical and thermodynamic properties of this
state qualitatively agree with the predictions of gapless spin
liquids [47–54]. Nonetheless, the characteristic properties of
the RS state such as the scaling behaviors of spin correlations
have not been addressed and it is unresolved whether or not
this disordered phase is indeed a RS state. A recent quantum
Monte Carlo (QMC) study on the random J-Q model found
a disordered state with the average spin correlation decaying
algebraically as r−2, which is proposed as the 2D analog of
the RS state although the dynamic exponent is finite [55]. It is
also conjectured that such a state should also exist in frustrated
2D Heisenberg spin systems with randomness [55], which,
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however, has not been identified. Therefore, understanding
the spin correlation behaviors is highly desired to identify the
nature of the disorder-induced exotic state in 2D frustrated
systems.

In this Letter, we use the large-scale density matrix renor-
malization group (DMRG) calculation to address the charac-
teristic behaviors of spin correlations in a disorder-induced
phase. We study the spin-1/2 square-lattice Heisenberg model
with random nearest-neighbor (NN) J1 and next-nearest-
neighbor (NNN) J2 couplings. This system may be considered
as the preliminary description of the spin-liquid-like phase
in the double perovskite Sr2CuTe1−xWxO6 [56–64], which
realizes a simultaneous tuning of frustration and disorder by
random Te-W cation mixing. The pure J1-J2 square Heisen-
berg model has a nonmagnetic phase near J2/J1 = 0.5 due to
strong frustration [65–68]. With random couplings, a recent
ED study has found evidence of a disordered phase and a
possible spin-glass phase [52], without resolving the nature of
the disordered phase. Based on the DMRG results, we identify
a disordered phase without any magnetic order or spin-glass
order [44] in the strong randomness regime. Furthermore, we
unveil the L−1/2

x scaling of the spin-freezing parameter with
system length Lx, the r−2 power-law decay of the average
spin correlation, and the exponential decay of the typical spin
correlation, which all agree with the corresponding behavior
in the 1D RS state [23] and characterize the RS nature of
this disordered state. The consistent r−2 behavior of average
spin correlation also indicates that this state may belong to the
same fixed point as the proposed RS state in the J-Q model,
which demonstrates the robust universal behavior for such
interacting and disorder systems. The vanished spin-freezing
parameter in our model study implies that spin-glass order
should be absent in Sr2CuTe1−xWxO6 at low temperature. Our
results agree with the observations in the muon spin rotation
(μSR) measurements of Sr2CuTe1−xWxO6, including the ab-
sent spin freezing for x = 0.5 at very low temperatures [56]
and the large dynamic exponent supporting the intermediate
RS phase [64].

The model with random J1, J2 couplings is defined as

H =
∑
〈i j〉

J1(1 + �αi j )Si · S j +
∑
〈〈i j〉〉

J2(1 + �βi j )Si · S j,

(1)

where αi j and βi j denote the random variables uniformly
distributed in the interval [−1, 1], and � controls the
randomness strength of the interval [Ji(1 − �), Ji(1 + �)]
(i = 1, 2). We set J1 = 1.0 and choose �/J1 = 1.0 to focus
on the strong randomness case, as shown in Fig. 1. By using
the DMRG with spin SU(2) symmetry [69,70], we simulate
the system on the cylinder geometry with periodic boundary
conditions along the circumference direction (y) and open
boundary conditions along the axis direction (x), with Ly and
Lx being the numbers of sites along the two directions. We
study systems with Ly up to 10. To avoid edge effects, we
choose Lx = 2Ly in most calculations and compute physical
quantities using the middle Ly × Ly subsystem, which is found
valid by the agreement of our data with the QMC result.
We keep 3000 SU(2) states [equivalent to about 12 000 U(1)
states] to ensure the truncation error is smaller than 1 × 10−5.

FIG. 1. Model Hamiltonian and quantum phase diagram of a
spin-1/2 J1-J2 square-lattice Heisenberg model with random cou-
plings. (a) The random NN J1 (green bonds) and NNN J2 (red bonds)
couplings are uniformly distributed in the interval αi j, βi j ∈ [−1, 1].
� is the strength of the randomness. (b) Quantum phase diagram of
the model with growing J2/J1 and fixed �/J1 = 1, which shows a
random-singlet phase between the Néel and stripe magnetic phase.

We take 100 (50) random samples for Ly = 4, 6 (Ly = 8, 10),
which ensure a good sample average of the quantities; see
Supplemental Material (SM) [71]. We use “〈 〉” and “[ ]” to
represent quantum mechanical and stochastic averages, re-
spectively.

Phase diagram and absent spin-glass order. We first deter-
mine the phase diagram of the system by computing magnetic
order and spin-freezing parameters. We define the magnetic
order parameter at the wave vector k as

m2(k) = 1

N2
s

∑
i, j

[〈Si · S j〉]eik·(ri−r j ), (2)

where Ns = Ly × Ly. The Néel and stripe magnetic order
parameters can be defined as m2

N = m2(π, π ) and m2
str =

[m2(0, π ) + m2(π, 0)]/2, where the results at (0, π ) and
(π, 0) are averaged to reduce the geometry effect. In Figs. 2(a)
and 2(b), we show the polynomial size scaling of m2

N and
m2

str. For J2 = 0, m2
N is smoothly extrapolated to 0.064 in the

N → ∞ limit, which agrees with the QMC data quite well
[72] and shows the validity of our DMRG setup and calcu-
lation. With growing J2, the Néel order seems to be melted
at J2 � 0.3, where the Néel order parameters are smaller than
those of the nonmagnetic state at J2 = 0.5, � = 0 [67,68]. For
the larger J2, m2

str becomes finite at J2 = 1.2, 1.5 [see SM for
the results of m2(0, π ) and m2(π, 0) [71]], showing the stripe
order survives from randomness. The strong average spin
correlations at J2 = 1.2 also support the emergent stripe order
[71]. Based on the DMRG results, we identify an intermediate
nonmagnetic phase.

We further explore a possible spin-glass phase in this
nonmagnetic region [45,52]. Spin-glass order can be charac-
terized by the spin-freezing parameter q [73] defined as

q = 1

Ns

√∑
i j

[〈Si · S j〉2
]
. (3)

If spin orientations freeze, q would be nonzero in the thermo-
dynamic limit. First, we show the size scaling of q vs Lx for
a given Ly [Ns = Lx × Ly in Eq. (3)] in Figs. 2(c) and 2(d).
On Ly = 4, 6 systems with large Lx, q clearly shows L−1/2

x
scaling behavior, agreeing with that in the 1D RS state. We
further study the decay behavior of [〈Si · S j〉2] as a function
of |i − j|, which indeed supports this L−1/2

x scaling behavior
[71]. We also notice that for any given Lx, q decreases with
growing Ly, strongly indicating the absence of spin freez-
ing in the large-size limit. To confirm this conclusion, we
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FIG. 2. Finite-size scaling of order parameters. (a) and (b) are
the Néel (m2

N) and stripe (m2
str) order parameters vs 1/Ly. For a

comparison, we include the result of J2 = 0.5, � = 0 [67], which
has been identified as a nonmagnetic state. The lines denote the
polynomial fitting of the data up to the second order of 1/Ly. The star
symbol denotes the QMC result [72]. (c) and (d) are the spin-freezing
parameter q vs L−1/2

x with Ly = 4, 6. The result of the 1D RS state of
the Heisenberg chain is also shown. The good linear fittings indicate
q ∝ L−1/2

x . (e) and (f) are the spin-freezing parameter q vs 1/Ly

obtained in the middle Ly × Ly subsystem. The dashed lines denote
the linear fitting using the two largest-size data. The solid line in (f)
shows the linear scaling of the small-size data with Ly = 4 and 6.

also compute q in the middle Ly × Ly subsystem and analyze
q vs 1/Ly as shown in Figs. 2(e) and 2(f). Since the q data
decrease slightly faster than the linear behavior, we linearly
extrapolate the results using the two largest-size data to reduce
the finite-size effect. In the magnetic order phases, q goes
to a finite value as expected. In the nonmagnetic region, we
can also obtain a very small finite q that agrees with the ED
conclusion [52] if we use linear scaling for small-size results,
as shown by the solid line in Fig. 2(f). However, by fitting the
larger-size data, q tends to vanish for Ly → ∞, which agrees
with the results shown in Figs. 2(c) and 2(d). The finite q in
the ED calculation [52] should be owing to the larger-size
effect.

Average and typical spin correlations. Next, we study the
average and typical spin correlations to characterize this dis-
ordered phase. We analyze the average spin correlation in
two ways. First, we consider the Ly dependence, which has
been used in the study of the J-Q model [55]. We calculate
the average absolute spin correlations that are defined for
the largest-distance sites on the middle Ly × Ly subsystem,

FIG. 3. Size scaling and distribution of spin correlation func-
tions. (a) Log-log plot of the average absolute spin correlation vs
Ly, which are defined for the largest-distance sites on the middle
Ly × Ly subsystem as shown by the example in the inset. The dashed
lines denote the fittings with Cs(Ly ) ∼ L−2

y . (b) Log-log plot of the
average absolute spin correlation [|〈S0 · Sr〉|] vs distance r along the
axis direction of the cylinder. The reference site S0 is defined on
the left-hand side of the middle Ly × Ly subsystem, and the site Sr

is counted from the left- to the right-hand side, as shown by the
inset. The dashed lines denote the fittings with Cs(r) ∼ r−2. (c) and
(d) show the data collapse of P(x) vs x = ln(|Ci j |L2

y ) on different
system sizes. (e) and (f) show the linear plot of −[ln |〈S0 · Sr〉|] vs
r1/2.

as illustrated in the inset of Fig. 3(a). The log-log plot of
the average spin correlation versus Ly shows a power-law
decay Cs(Ly) ∝ L−α

y with the exponent α � 2. This exponent
agrees with that found in the RS state of the J-Q model [55].
Second, we study the average spin correlation decay along
the x direction. To reduce the finite-size effects, we consider
large systems with Ly = 8, 10 and Lx = 2Ly. We choose the
reference site S0 on the left-hand side of the middle Ly × Ly

subsystem and study the spin correlation decay [|〈S0 · Sr〉|]
from the left- to the right-hand side, as shown in Fig. 3(b). The
average spin correlations shown here are very close, showing
small finite-size effects and a consistent power-law decay
Cs(r) ∝ r−2 (see SM for the smaller-size data and the con-
sistent results for the weaker randomness strength, as well as
preliminary results of the dimer-dimer correlationsbrk [71]).

We further investigate the probability distribution of the
absolute spin correlations defined for the largest-distance sites
in the middle Ly × Ly subsystem, denoted as |Ci j |. The proba-
bility P(|Ci j |) vs ln |Ci j | on different sizes becomes broader
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with growing Ly [71], which agrees with the decrease of
Cs(Ly). To eliminate the finite-size effects in the analysis, we
define a new scaling variable x = ln(|Ci j |L2

y ) and plot P(x)
vs x in Figs. 3(c) and 3(d). Any distribution P(x) with data
collapse for different Ly must lead to the power-law decay of
the average spin correlation

Cs(Ly) =
∫ ∞

0
dxP(x)

ex

L2
y

∝ L−2
y . (4)

Thus, the good data collapse in Figs. 3(c) and 3(d) further
supports the power-law decay of Cs(Ly) found in Fig. 3(a).

The logarithmically broad distribution of spin correlations
may lead to the exponential decay of the typical spin cor-
relation defined as exp [ln |〈S0 · Sr〉|]. In the 1D RS state,
the exponential typical spin correlation can be equivalently
described as −[ln |〈S0 · Sr〉|] ∝ r1/2 [23]. We show the linear
plot of −[ln |〈S0 · Sr〉|] vs r1/2 in Figs. 3(e) and 3(f). On both
the Ly = 8, 10, Lx = 2Ly systems and the Ly = 4, 6 cylinders
with large Lx, −[ln |〈S0 · Sr〉|] follows the linear scaling with
r1/2 quite well. We also analyze −[ln |〈S0 · Sr〉|] vs r using
the log-log manner [71], which shows good power-law depen-
dence and the slope gives a power exponent very close to 1/2,
supporting the results in Figs. 3(e) and 3(f). Therefore, our
results unveil the characteristic behaviors of spin correlations,
which suggest the RS nature of this disordered phase.

Excitation gaps and microscopic clusters. A previous ED
study found the vanished spin gap in the disordered phase
[52]. To further unveil the properties of excitations, we sep-
arately compute spin-triplet and spin-singlet gaps by using
ED. Compared with the results in the Néel phase, both triplet
and singlet gaps in the disordered phase decrease, as shown
in Figs. 4(a) and 4(b), showing the vanished gaps in the ther-
modynamic limit [74]. In particular, while the finite-size data
of the triplet gap slightly decrease, the singlet gap is strongly
suppressed.

In the presence of disorder, local clusters may form in
microscopic scale. A recent ED study has found three types
of clusters in random spin systems, including an isolated
dimer, resonating-dimer cluster, and orphan spin [53], which
should be helpful for understanding low-energy excitations.
We extend such an analysis in different phases based on the
DMRG results. For each sample on the Lx = 2Ly cylinder,
we collect all the correlations 〈Si · S j〉 in the middle Ly × Ly

subsystem. We define the isolated dimer as a singlet pair with
strong correlation, the resonating-dimer cluster as a cluster
with more than two strongly coupled spins, and the orphan
spin as the one weakly coupled to other spins (see SM [71] and
Ref. [53] for the procedure to obtain the covering of clusters).
One example of the covering is shown in Fig. 4(c). For each
random sample we compute the ratios for the different types
of clusters and then take their sample averages, as shown in
Fig. 4(d). In the three quantum phases, the dominant cluster
is always the isolated dimer due to strong bond randomness,
and the ratio of the orphan spin varies slightly. A feature in
the disordered state is the less resonating dimers compared
with magnetic states. In the RS picture, the triplet excitations
are related to breaking dimers. The broad distribution of bond
couplings causes a decrease of the triplet excitation gap. For
singlet excitations which are related to spin flip in magnetic

FIG. 4. Finite-size scaling of gaps and distributions of micro-
scopic clusters. (a) and (b) are the gaps obtained from the ED
calculation. N = 8, 12, 16, 18, 24 is the total site number. The linear
fitting curves are guides to the eye. (c) The covering of isolated
dimers (the red ellipse), resonating-dimer clusters (the connected
green ellipses), and orphan spins (the arrow) on the lattice with a
given random sample. The gradation of the red color corresponds to
the strength of the bond correlation 〈Si · S j〉. (d) The ratios of the
different clusters in different quantum phases. We analyze the data
from the middle Ly × Ly subsystem.

phases, in the RS state such excitations could be driven by
the diffusion of orphan spins [53], which may account for the
strongly suppressed singlet gap in Fig. 4(b). Due to the size
limit, here we only focus on the features of the small clusters.
The collective properties on a larger length scale need future
study beyond the present system size.

Conclusion and discussion. We have studied the ground
states of a spin-1/2 square Heisenberg model with random
J1, J2 couplings in the strong disorder regime by using a
large-scale DMRG calculation. With growing J2, we find a
gapless phase without any magnetic order or spin-glass or-
der. We identify the characteristic size-scaling behaviors of
spin correlations in this state, including the L−1/2

x scaling of
the spin-freezing parameter with a system length Lx, the r−2

power-law decay of the average spin correlation, and the expo-
nential decay of the typical spin correlation. Although the RS
state of a generic 2D system is not well understood, our results
strongly suggest this disordered state as the 2D analog of the
1D RS state. The same scaling behavior of an average spin
correlation in this frustrated model and the J-Q model also
suggests the same fixed point of the states in these different
systems. For further study, the dynamic exponent may be
explored by a tensor network simulation at finite temperature
[75,76] or an analysis of the excitation gap distribution (a
rough estimation of the dynamic exponent from ED gap data
is shown in SM [71]).

For Sr2CuTe1−xWxO6, spin freezing has been excluded
for x = 0.5 [56], which agrees with our results. For more
mixing ratios, the μSR measurement has identified a large
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dynamic exponent supporting the intermediate RS phase in
Sr2CuTe1−xWxO6 [64]. At last, we emphasize that this 2D
RS state should be considered as the preliminary understand-
ing of the spin-liquid-like state in Sr2CuTe1−xWxO6, since
the bond randomness in our study is a simplified picture to
describe the random substitution in Sr2CuTe1−xWxO6 [64].
We leave the more realistic modeling of the material to future
study.
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