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The study of symmetry-protected topological phases of matter has been extended from fermionic electron
systems to various bosonic systems. Bosonic topological magnon phases in magnetic materials have received
much attention because of their exotic uncharged topologically protected boundary modes and the potential for
dissipationless magnonics and spintronic applications. Here, we establish twisted bilayer honeycomb magnets as
a platform for hosting second-order topological magnon insulators (SOTMIs) without fine-tuning. We employ a
simple, minimal Heisenberg spin model to describe misaligned bilayer sheets of honeycomb ferromagnetic mag-
nets with a large commensurate twist angle. We found that the higher-order topology in this bilayer system shows
a significant dependence on the interlayer exchange coupling. The SOTMI, featuring topologically protected
magnon corner states that go beyond the conventional bulk-boundary correspondence, appears for ferromagnetic
interlayer couplings, while the twisted bilayer exhibits a nodal phase in the case of antiferromagnetic interlayer
coupling. At last, relevance to twisted bilayer CrI3 is also discussed.

DOI: 10.1103/PhysRevB.107.L020404

Introduction. After the discovery of time-reversal invari-
ant topological insulators, symmetry-protected topological
phases of matter have been an exciting and cutting-edge
area of research in condensed matter physics [1–6]. Re-
markably, symmetry-protected topological phases are not
unique to electronic systems, and have been identified in
various bosonic systems either, where topological magnon
phases have received special attention for their potential
applications in spintronics [7–10]. Up to now, fruitful topo-
logical magnon phases including insulating and semimetallic
phases, have been investigated both theoretically and ex-
perimentally [11–59]. Recently, the concept of higher-order
topological insulators [60–64] has been extended to magnonic
systems as well [65–70]. The hallmark feature of an nth-
order magnon topological insulator in d dimensions is the
existence of protected gapless magnon states at its (d − n)-
dimensional boundaries, which go beyond the celebrated
bulk-boundary correspondence. For example, a second-order
topological magnon insulator (SOTMI) with magnon corner
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states is realized in a ferromagnetic (FM) Heisenberg model
on a two-dimensional (2D) breathing kagome lattice [65], a
magnonic quadrupole topological insulator hosting magnon
corner states can appear in 2D antiskyrmion crystals [66], and
a SOTMI with 1D chiral hinge magnons is predicted to be
realized in 3D stacked honeycomb magnets [67]. All these ex-
isting magnonic higher-order topological insulators require
significant Dzyaloshinskii-Moriya interaction, whereas the
Dzyaloshinskii-Moriya interaction is a typically weak effect
in most magnetic materials [71,72].

In recent years, 2D twisted van der Waals materials have
emerged as a versatile platform for studying exotic and elusive
states of matter, following the discovery of unconventional
superconductivity [73] and the Mott insulator [74] in twisted
bilayer graphene (TBG) with magic angles [75]. TBG has
been shown to yield a series of fascinating correlated and
topological phenomena [75–85]. Besides the intrinsic fragile
topology [86–89] of the nearly flat bands, higher-order band
topology has been subsequently identified in TBG as well
[90–93]. Meanwhile, researchers have turned their attention
to twisted bilayer honeycomb magnets (TBHMs) analogous
to twisted bilayer graphene, and revealed rich magnetic phases
caused by moiré patterns as well as intriguing moiré magnetic
excitations in TBHMs [94–97]. Moreover, moiré magnetism
has been reported in twisted bilayer CrI3 [98–100] in a very
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FIG. 1. (a) Schematic illustration of the TBHM lattice with the large commensurate angle θ = 21.78◦. Blue dots represent the first layer
lattice and red dots represent the second layer lattice. The blue (red) lines denote the first (second) layer intralayer nearest-neighbor bonds.
The rhombus shaped area composed of the black thick dashed lines represents a single moiré unit cell. (b) Magnon energy spectrum of the
Hamiltonian [Eq. (3)] of the rhombus-shaped TBHM system versus the eigenvalue index n. Red dots mark the in-gap magnon corner states.
(c) The spatial distribution of the probability density of the two in-gap states in (b). The color map shows the values of the probability density.
We take the exchange coupling ratio J⊥/J = 0.2, and the lattice site number N = 11200.

recent experiment. Inspired by the recent theoretical and ex-
perimental developments in twisted 2D magnets, it is tempting
to ask whether higher-order topological magnon insulators
can occur in TBHMs.

In this work, we reveal that a SOTMI can be realized in the
TBHM at the large commensurate angle, without requiring
the Dzyaloshinskii-Moriya interaction. We adopt a simple,
minimal spin model which consists of two honeycomb FM
layers with the nearest-neighbor intralayer exchange interac-
tion coupled by the FM or antiferromagnetic (AFM) interlayer
exchange coupling, to describe the TBHMs with collinear
order. For our purpose, we assume that the interlayer exchange
coupling is sufficiently weak compared to the intralayer
Heisenberg interaction. Therefore, the out-of-plane collinear
magnetic order is favored under weak interlayer coupling.
Furthermore, we obtain an effective magnon Hamiltonian in
terms of the Holstein-Primakoff transformation to bosonize
the spin model. Based on numerical diagonalization, we show
that the FM interlayer coupling can give rise to an energy gap
associated with the nontrivial higher-order topology charac-
terized by a mirror winding number, resulting in a SOTMI in
the TBHM. The SOTMI supports two in-gap magnon corner
states localized at mirror symmetric corners. The magnon
corner states are robust against symmetry-preserving disorder.
In contrast, in the case of AFM interlayer coupling, the TBHM
system remains gapless and has magnon Dirac dispersion.
Our work, together with these works on higher-order topology
in twisted photonic [101,102] and acoustic [103] materials,
suggest a natural strategy to realize bosonic higher-order topo-
logical insulators.

Model. We consider a twisted AA-stacked bilayer hon-
eycomb magnets with the commensurate angle θ = 21.78◦,
whose spins are localized at the hexagon vertices marked by
red and blue dots, as shown in Fig. 1(a). The spin Hamiltonian
is formulated on the twisted bilayer honeycomb lattice, which
reads

H = −J
∑

〈i, j〉,l
Si,l · S j,l − J⊥

∑

〈i, j〉
Si,2 · S j,1, (1)

where the first and second terms represent the nearest-
neighbor intralayer and nearest-neighbor interlayer Heisen-
berg interactions, respectively. Si,l = (Sx

i,l , Sy
i,l , Sz

i,l ) is the spin

vector operator at site i on layer l = 1, 2, and the summa-
tion runs over nearest-neighbor sites 〈i, j〉. J > 0 denotes the
FM intralayer interaction, and J⊥ is a tunable parameter in
TBHMs, which is positive for the FM interlayer coupling
while negative for the AFM coupling. Here, J⊥ only couples
the sites of the first layer with the sites of the second layer
that are positioned directly next to them. In the Supplemental
Material (SM) [104], we also show the results when including
the spatially modulated remote interlayer couplings.

Noticing that the twisted bilayer system is constructed by
twisting the bilayer magnets with respect to the collinear axis
at the hexagonal center, where the lower layer rotates coun-
terclockwise θ/2 and the upper layer rotates clockwise θ/2,
respectively. The system belongs to D6 point group [90] with
concurrent spatial and spin rotations. More specifically, the
system is invariant under the action of either of the symmetry
operators: C6z, sixfold rotation about the out-of-plane z axis,
and C2x/2y, twofold rotation about the in-plane x/y axis.

In the FM case, the classical ground state is represented
by the uniform state Si,l ≡ Sẑ, where the spins point along
the +z direction. In the ordered phase supported at suf-
ficiently low temperatures, we obtain an effective magnon
Hamiltonian through the linear spin-wave theory. Using the
Holstein-Primakoff transformation [105]

S+
i =Sx

i + iSy
i �

√
2Sdi,

S−
i =Sx

i − iSy
i �

√
2Sd†

i , (2)

Sz
i =S − d†

i di,

and neglecting magnon-magnon interactions, the spin Hamil-
tonian can be transformed into a quadratic magnon
Hamiltonian

H =3JS
∑

i,l

d†
i,l di,l − JS

∑

〈i, j〉,l
(d†

i,l d j,l + H.c.) (3)

+ J⊥S
∑

〈i, j〉
[(d†

i,2di,2 + d†
j,1d j,1) − (d†

i,2d j,1 + H.c.)],

where d†
i (di) is the bosonic creation (annihilation) operator. In

subsequent calculations, the energy unit is set as the intralayer
Heisenberg interaction amplitude J . In addition, the lattice
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FIG. 2. (a) Moiré Brillouin zone. The dashed red (first layer) and blue (second layer) large hexagons show the unfolded Brillouin zones
of individual layers, respectively, and the blue hexagon corresponds to red hexagon for the twist angle θ = 21.78◦. The first moiré Brillouin
zone of the bilayer is shown by the central (green) thick solid hexagon. The next several Brillouin zones of the TNHM are depicted by the six
surrounding (black) thin solid hexagons. The magnon band structures are calculated along the high symmetry path specified by the triangle
�MK (black). The symmetry points are � = (0, 0), M = (2

√
7π/21, 0), and K = (2

√
7π/21, 2

√
21π/63). (b) Magnon band structure of the

TBHM with θ = 21.78◦ for the FM interlayer interaction amplitude J⊥/J = 0. (c) Magnon band structures for the FM interlayer interaction
amplitude J⊥/J = 0.2. The zoom-ins demonstrate the dispersion around the K point.

constant of monolayer and the interlayer spacing between
layers are both set to 1.

Magnon corner states induced by the FM interlayer
coupling.—To diagnose the higher-order topology of the
TBHM system with the FM interlayer coupling, we first cal-
culate the magnon energy spectrum of the TBHM with a
rhombus boundary preserving the twofold rotational symme-
try. By numerically diagonalizing the magnon Hamiltonian
Eq. (3) in real space, we plot the magnon energy spectrum
in Fig. 1. It is found that the magnon energy spectrum shows
an energy gap, and even more interestingly, two in-gap states
reside in the energy gap [shown in Fig. 1(b)]. As shown in
Fig. 1(c), the two in-gap states are symmetrically localized
at the top and bottom corners of the rhombus, respectively,
which are two mirror symmetric corners. Note that, due to the
finite size effect, the two magnon corner states are not degen-
erate, and a small gap due to the hybridization of two corner
states exists. The twofold symmetric in-gap corner states are
a hallmark feature of the SOTMI in the TBHM, which are
associated with a mirror winding number as demonstrated
later in this paper.

In the SM [104], we demonstrate that the two mirror sym-
metric magnon corner states still exist when including remote
intralayer and interlayer FM exchange couplings. Moreover,
we also show that six magnon corner states appear when
considering a finite hexagon-shaped TBHM sample in the SM.
These magnon corner states are six-fold rotation symmetric
and localized at the six corners of the sample.

Magnon band structures and mirror winding number. To
gain more insight into the origin of magnon corner states, we
study the bulk band structure of the TBHM and its topology.
At the commensurate angle θ = 21.78◦, the original transla-
tional symmetry of AA-stacked bilayer honeycomb is broken,
but the moiré translational symmetry can be defined to display
the periodicity of superlattices. Thereby, under the Fourier
transformation, we obtain a 28 × 28 magnon Hamiltonian in
the k space, which reads H = ∑

k �
†
kHk�k with the basis

�
†
k = (c†

k,1, · · · , c†
k,28). The concrete expression of Hk and

more details are given in Ref. [104].
The magnon band structures of the TBHM system along a

high symmetry line of the moiré Brillouin zone [see Fig. 2(a)]
obtained by numerically diagonalizing Hk are shown in Fig. 2.
For comparison, we also depict the magnon band structure of

the TBHMs system in the absence of interlayer interaction
J⊥/J = 0 in Fig. 2(b). It is found that the magnon band
structure shows linearly dispersive bands around the moiré
Brillouin Zone corner K, which is identical to the monolayer
honeycomb magnet. Subsequently, we present the magnon
band structures of the TBHM system with a finite FM inter-
layer exchange interaction in Fig. 2(c), where we set J⊥/J =
0.2 echoing the magnon energy spectrum of the system with
open boundary conditions shown in Fig. 1. We conclude that
the finite FM interlayer coupling opens a sizable energy gap
at the point K. The energy gap is topologically nontrivial
since magnon corner states emerge within it when the open
boundary condition is imposed.

To further illustrate the topological properties of the
magnon band structures, we utilize the Z2 mirror winding
number [90] as a topological invariant to characterize the
higher-order magnon topology. The mirror winding number
ν is defined in a mirror-invariant line �-M-� in the moiré
Brillouin zone, where C2x symmetry is preserved. Then we
can decompose the Hamiltonian Hk(kx, 0), which situates at
this mirror-invariant line �-M-�, into two decoupled parts
H±(kx ) by projecting Hk(kx, 0) onto the subspace formed by
the eigenvectors that correspond to the mirror eigenvalues ±1
of the mirror operator C2x. The mirror winding number ν is
defined as ν = ν+ = ν− (mod 2), where ν± is the winding
number in the two subsectors.

The mirror winding number can be calculated by the Wil-
son loop method [60,90,106]. The Wilson loop operator W± is
considered in the mirror-invariant line �-M-�, where ki(k f )
is the initial (final) point of the loop. We define the ele-
ment of a matrix F±

x,ki
as [F±

x,ki
]mn = 〈un

±,ki+�k|un
±,ki

〉, where
�k is the spacing of momentum in the loop and |un

±,kx
〉, for

n = 1...Nocc, are the occupied Bloch functions of a crystal
with Nocc occupied energy bands. Next, the Wilson loop op-
erator can be expressed as W± = F±

k f −�kF±
k f −2�k · · · F±

ki+�kF±
ki

.
Therefore, the winding number reads

ν± = 1

iπ
log(det[W±]). (4)

In this work, the magnon corner states appear when the mirror
winding number is ν = ν± = +1, which confirms the topo-
logical origin of the magnon corner states localized at the
mirror invariant corners of the TBHM.
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FIG. 3. (a) Magnon energy spectrum of the total Hamiltonian
H + Hz versus the eigenvalue index n. Red dots mark all the in-gap
states. For comparison, we also plot the magnon energy spectrum
(shown in grey circles and dots) without disorder (W/J = 0) and the
magnon energy spectrum (shown in blue circles and dots) with strong
disorder (W/J = 0.2). We take the model parameters J⊥/J = 0.2,
W/J = 0.01 and lattice site number N = 11200. (b) Magnon energy
spectrum of the Hamiltonian H on the TBHMs system with a defect
versus the eigenvalue index n, and the probability density of the
two in-gap states, where J⊥/J = 0.2 and the lattice site number
N = 11190. Red dots mark all the in-gap states. The color map shows
the values of the probability density.

Stability of corner states. Here, we use a random magnetic
field to examine the robustness of the magnon corner states.
The Zeeman term induced by the random magnetic field along
z direction can be expressed as

Hz = −
∑

i,l

Bi,l Si,l · z. (5)

The random magnetic field is Bi = W ωi, where ωi is the
uniform random variable chosen from [−0.5, 0.5] and W is
the disorder strength. Within the framework of the linear
spin-wave theory and via Holstein-Primakoff transforma-
tion, the Zeeman field term can be transformed into Hz =∑

i,l Bi,l d
†
i,l di,l , where all elements situate at the diagonal of

the magnon Hamiltonian matrix, resembling the on-site chem-
ical potential disorder known from the electronic version.

In Fig. 3(a), we demonstrate the magnon energy spectrum
versus the eigenvalue index n for different disorder strength.
We find that the two in-gap magnon corner states remain
stable in the case of weak disorder, where we take the disorder
strength as W = 0.01. While the in-gap magnon corner states
are destroyed and pushed into bulk states by the strong disor-
der with the disorder strength (W = 0.2) shown in Fig. 3(a). In
addition, we also reveal the robustness of the magnon corner
states by introducing a local defect into the rhombus boundary

FIG. 4. (a) Magnon band structures of TBHMs with θ =
21.78◦ for the AFM interlayer interaction amplitude J⊥/J = 0, and
(b) Magnon band structures for the AFM interlayer interaction am-
plitude J⊥/J = −0.2. The zoom of the region near K point indicated
by a dashed black box in the left panel of (a) and (b) are shown in the
right panel.

sample at the top corner, where the defect is constructed by
removing 10 sites. In the presence of defects, we plot the
magnon energy spectrum and the spatial probability density
of the two in-gap states in Fig. 3(b). We can see that the two
in-gap states are still stable and localized around the original
two corners, although the spatial distribution becomes mirror
asymmetric. Meanwhile, in the SM [104], we also show that
the sixfold rotation symmetric magnon corner states are robust
against random magnetic fields and local defects.

AFM interlayer exchange coupling. We briefly discuss the
case of AFM interlayer Heisenberg interaction in this sec-
tion. We assume that the spins of the first (second) layer are
polarized along the positive (negative) z direction. Similarly,
using the Holstein-Primakoff transformation and neglecting
magnon-magnon interactions, an effective magnon Hamilto-
nian HAFM is obtained. Again by using the Fourier transforma-
tion, we obtain a 28 × 28 magnon Hamiltonian in the k space,
which can be expressed as HAFM = ∑

k ψ
†
kHAFM(k)ψk with

the basis ψk = (ck,1, ..., ck,14, c†
−k,15, ..., c†

−k,28)T . To obtain
the AFM magnon band structures, we use a paraunitary Bo-
goliubov transformation ψk = R(k)φk to diagonalize the k-
space magnon Hamiltonian as R(k)†HAFM(k)R(k)=D, where
D is a diagonal matrix and φk = (1, ..., 1,−1, ...,−1)T . More
details of the Hamiltonian in the AFM case are given in
Ref. [104].

We display the AFM magnon band structures of the TBHM
system in Fig. 4. Figure 4(a) shows the magnon band structure
of the TBHMs system in the absence of the interlayer inter-
action, where we take the parameter J⊥/J = 0. The magnon
band structures of the TBHM system with a finite AFM
interlayer interaction is shown in Fig. 4(b), where we set
J⊥/J = −0.2. It is found that, in contrast to the FM case,
the AFM magnon energy bands of the system keep gapless,
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and the linear dispersion is stable, regardless of whether AFM
interlayer interactions exist.

At last, it is necessary to point out that the ferromagnetic
interlayer coupling induces the intervalley scattering of Dirac
magnons, thus opens the energy gap, which is similar to the
fermionic systems [90,107]. On the contrary, the antiferro-
magnetic coupling only involves the Dirac magnons within
the same valley, which leaves them gapless.

Conclusion and Discussion. In this work, we have in-
vestigated higher-order topology of in the TBHM with the
large commensurate angle θ = 21.78◦. Based on a simple,
minimal spin model, we found the FM interlayer coupling
hybrids the Dirac bands of two individual honeycomb lay-
ers and thus opens a topological band gap characterized
by the mirror winding number, leading to a SOTMI in
the TBHM. The SOTMI supports hallmark magnon corner
states, which are robust against weak random magnetic fields
and local defects. In contrast, in the case of AFM inter-
layer coupling, the linearly dispersive magnon bands remain
gapless.

Our theory is immediately testable considering rapid
experimental progress on 2D twisted magnets [98–100].
Monolayer Chromium triiodide (CrI3) is a 2D ferromag-

net with honeycomb lattice [108]. For a θ = 21.78◦ twisted
bilayer CrI3, our first-principles calculations show that
interlayer FM interation is always favored, although its mag-
nitude depends on the interlayer stacking configurations (See
the calculations in the SM [104], also references [109–116]
therein). Accordingly, we predict that twisted bilayer CrI3 is
a promising setup to realize the SOTMI featuring magnon
corner states.
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