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Intermediate-scale theory for electrons coupled to frustrated local moments
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A classic route for destroying long-lived electronic quasiparticles in a weakly interacting Fermi liquid is to
couple them to other low-energy degrees of freedom that effectively act as a bath. We consider here the problem
of electrons scattering off the spin fluctuations of a geometrically frustrated antiferromagnet, whose nonlinear
Landau-Lifshitz dynamics, which remains nontrivial at all temperatures, we model in detail. At intermediate
temperatures and in the absence of any magnetic ordering, the fluctuating local moments lead to a nontrivial
angular anisotropy of the scattering rate along the Fermi surface, which disappears with increasing temperature,
elucidating the role of “hot spots.” Over a remarkably broad window of intermediate and high temperatures, the
electronic properties can be described by employing a local approximation for the dynamical spin response. This
we contrast with the more familiar setup of electrons scattering off classical phonons, whose high-temperature
limit differs fundamentally on account of their unbounded Hilbert space. We place our results in the context of
layered magnetic delafossite compounds.

DOI: 10.1103/PhysRevB.107.L020402

Introduction. Electronic solids provide a fascinating exper-
imental platform for studying the properties of an electronic
fluid coupled to a “bath.” A paradigmatic example is the
coupled electron-phonon problem, where the phonons ef-
fectively act as a bath with which the electrons exchange
energy and momentum [1]. The transport and single-particle
properties for numerous metals at intermediate temperatures
can be understood in terms of this “semiquantum” system
over ωD � T � εF, where εF is the electronic Fermi energy
and ωD is a characteristic Debye frequency. A number of
recent developments in moiré materials [2–7] and magnetic
delafossites [8–18] inspire us to examine the following ques-
tion: What is the nature of a weakly correlated electronic
fluid coupled to interacting local moments for J � T � εF,
where J is a characteristic antiferromagnetic exchange energy
scale? While this system exhibits a familiar resemblance to
the electron-phonon problem, there are a number of important
conceptual differences.

First and foremost, spins have a bounded Hilbert space.
While phonon modes tend to obey classical equipartition
at high T � ωD, spin excitations at T � J do not. Second,
the dynamical correlations in an interacting (“cooperative”)
paramagnet at T � J are a priori nontrivial, arising from a
nonlinear dynamics, even though the static correlations vanish
asymptotically at high temperatures. Finally, residual short-
range order, reflecting any magnetic order at T < TN (� J ),
can leave an imprint on the electronic properties even once
the order melts at T � J .

In this Letter, we focus specifically on the case of local
moments with geometrically frustrated interactions on the
triangular lattice [19]. A frustrated magnet is a useful starting
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point as a bath, since the tendency towards any long-range
magnetic ordering is naturally suppressed, providing a broad
paramagnetic regime, which always has a nontrivial (nonlin-
ear) dynamics, with a momentum dependence reflecting, e.g.,
spin diffusion. Even at the highest temperatures, the question
naturally arises whether this can impart non- (or marginal-)
Fermi-liquid-like electronic correlations [20,21]. Notably, by
carrying out a detailed analysis of the nonlinear spin dynamics
and its effect on the electronic properties, the numerically
evaluated electron self-energy can be captured quantitatively
over a broad energy window J � T � ∞ by employing a
local approximation for the spins.

Model. We consider a simple two-dimensional model of
itinerant spinful electrons ckσ interacting with spin- 1

2 local
moments Si on the sites of a triangular lattice,

H = Hc + HS + HK , (1a)

Hc =
∑
k,σ

(εk − μ)c†
kσ

ckσ
, HS = J

∑
〈i, j〉

Si · S j, (1b)

HK = g
∑
i,α,β

c†
iα (Si · σαβ )ciβ, (1c)

where εk, μ represent the dispersion and chemical potential
associated with the c electrons, J (> 0) denotes the antiferro-
magnetic exchange interaction between local moments, and
g(> 0) is the Kondo coupling between the local moment and
electron spin density, respectively. For the electronic disper-
sion, we include first (t) and second (t ′) neighbor hoppings on
the triangular lattice. We note at the outset that in the tempera-
ture window of interest and for a “weak” Kondo coupling, the
intrinsic quantum mechanical Kondo physics associated with
the quenching of the local moment will be irrelevant.
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The dynamics of frustrated magnets in their cooperative
paramagnetic phase tends to be well described by the clas-
sical Landau-Lifshitz equations of motion governed by HS ,
even for small spin lengths S far from the classical limit
S → ∞ [22–29]:

Ṡi = ∂HS

∂Si
× Si. (2)

We hence approximate the spins as O(3) vectors precess-
ing around their local exchange fields, which we analyze by
performing molecular dynamics (MD) simulations. We aver-
age over initial configurations obtained from classical Monte
Carlo (MC) simulations of HS and numerically integrate the
equations of motion [30].

In this Letter, we analyze the extent to which the dynamical
correlations associated with the fluctuating local moments
leave an imprint on the electronic liquid at intermediate-
energy scales. Specifically, we calculate the O(g2) perturba-
tive correction to the electron self-energy, which is controlled
by the two-point correlator of the spins. Since the primary
goal is to understand the electronic properties, we ignore the
electron backaction on the local moments, which affects the
electronic properties at higher order in g. Previous work [31]
has analyzed this problem in a different regime, focusing on
the elastic transport lifetimes.

Spin dynamics. In momentum space, the two-point corre-
lator of interest is the dynamical structure factor,

S (q, ω) =
∫ ∞

−∞
dteiωt 〈S(q, t ) · S(−q, 0)〉. (3)

We use heat bath Monte Carlo [32] to draw an ensemble
of 1000 independent initial states Si(0) from the canonical
ensemble of HS at a given temperature T ; from here on
we measure T in units of J . The time evolution of each
state is obtained by numerical integration of Eq. (2), using
the standard fourth-order Runge-Kutta procedure, to a final
time of t f = 4096J−1. We construct each Fourier transformed
state S(q, ω), whose ensemble average yields the dynamical
structure factor. The numerically evaluated static structure
factor, S (q) = ∫

dω S (q, ω), is shown for T = J and T =
10J in Figs. 1(a) and 1(b), respectively. The broadened
“Bragg-like” peaks at T = J near the high-symmetry points
represent a remnant of the thermally disordered 120◦ antifer-
romagnetic state on the triangular lattice.

We are interested in the regime where the spin
bandwidth—the range of frequencies over which S (q, ω)
has support—is much smaller than the electronic bandwidth
and Fermi energy. As we discuss later, the energy scales
that are relevant for electrons with momentum k and fre-
quency ω scattering off the spins enter the structure factor as
S (q, ω − εk+q); the latter has support only over a very narrow
(and k-dependent) region of momentum q. Even for relatively
large system sizes (N = L2, L = 120), the momentum res-
olution available from the numerical simulations directly is
insufficient to determine the electronic lifetime. We therefore
construct an analytical fit to S (q, ω) from our numerics.

We obtain the static (equal-time) structure factor from a
“soft spin” approximation [30]. We can then describe the
numerically computed dynamical structure factor, for T � J ,

FIG. 1. The static structure factor S(q) over the Brillouin zone
for (a) T = J , and (b) T = 10J , respectively. (c) S(q, ω) over a
momentum cut K → � → M → X , at T = 3J . (d) The momentum-
integrated structure factor for selected temperatures, together with
the fit in Eq. (4).

using the following phenomenological ansatz,

S (q, ω) = S (q)N (αq, ηq)

sinh2(αqω) + ηq
, (4)

where αq and ηq are momentum-dependent fitting param-
eters, and N is a normalization factor enforcing S (q) =∫

dω S (q, ω). As both αq, ηq respect the space group symme-
tries of the triangular lattice, they can be expressed in terms of
the following objects,

γn(q) = 1

|En|
∑
δ∈En

eiq·δ, (5)

where En is the set of nth nearest-neighbor vectors, and |En|
its cardinality. At high temperature, with a short correlation
length, typically the first few γn are sufficient to describe these
fit functions. We show S (q, ω) along a certain high-symmetry
cut in the Brillouin zone at T = 3J in Fig. 1(c). In Fig. 1(d)
we compare our analytical fit functions to the momentum-
integrated structure factors for three different temperatures.
As expected, the quality of our fits improves with increasing
temperature; the largest disagreement can be seen at T = J .

Electron self-energy. The imaginary part of the electron
self-energy at real frequencies is given by

�′′(k, ω) = g2

N

∑
q

∫
d�

π
χ ′′

spin(q, ω − εk+q)Ac

× (k + q,�) f (ω,�), (6a)

f (ω,�) = [nb(ω − �) + n f (−�)], (6b)
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FIG. 2. The numerically evaluated electron self-energy �′′
kF

(0, T ) (a) along the Fermi surface at T = J , and (b) for different θ along the
Fermi surface as a function of temperature. Inset: The spin correlation length ξ (T ) extracted from S(q). (c), (d) With increasing temperature,
�′′

kF
(q⊥, ω) becomes featureless as a function of both ω and q⊥.

where Ac(k, ω) is the electron spectral function, χ ′′
spin(k, ω)

denotes the imaginary part of the spin susceptibility, and
nb(. . . ), n f (. . . ) denote the Bose-Einstein and Fermi-Dirac
distributions at temperature T = β−1, respectively. In the tem-
perature window of interest, the susceptibility is related to the
structure factor discussed earlier,

χ ′′
spin(q, ω) = βωS (q, ω), (7)

where we have used the high-temperature (“classical”) ver-
sion of the fluctuation-dissipation theorem for the sake of
internal consistency [30]. In what follows, a key new in-
gredient in our computation is associated with a detailed
microscopic modeling of the intermediate-scale nonlinear dy-
namics of the spin system, which can modify the electron
self-energy in interesting ways.

We begin by noting that, despite the small spin band-
width, high-energy electrons (ω � J) can scatter off the spins
as long as |ω − εk| � J . We first evaluate the self-energy
numerically [30]. In what follows, we fix t = 568 meV,
t ′ = −108 meV, J = 10.34 meV, g = 2.5 meV, and μ =
247.5 meV. These values are partly inspired by the magnetic
delafossite PdCrO2 [17], which consists of alternately stacked
layers of triangular lattice antiferromagnetic Mott insulators
and weakly correlated metals near half filling. The electronic
transport properties in this compound are clearly affected by
the presence of thermally fluctuating local moments [33],
which necessitates a theoretical investigation of the single-
particle lifetime in this unusual regime.

Numerical results. The results for �′′
kF

(ω = 0, T ) around
the Fermi surface with |k| = kF for a number of angles θ

and over a range of finite temperatures is shown in Figs. 2(a)
and 2(b). There are six bright spots at T � J , that we asso-
ciate with hot regions arising from scattering off short-ranged
magnetic fluctuations with a finite correlation length ξ (T ),
peaked near the K, K ′ points in the Brillouin zone (BZ). These
regions comprise 12 “hot spots” identified by the condition
ε(k ± K ) = ε(k) (similarly for K ′), that become thermally
smeared into the six spots [30].

The behavior is reminiscent of fluctuation effects in-
volving electrons scattering off short-ranged density-wave
fluctuations in the context of a Peierls transition in
one dimension [34]. Furthermore, the angular variation of the
evaluated self-energy is closely tied to the filling, and the

magnitude of the 2kF vector relative to the ordering wave vec-
tors [30]. With increasing temperature, the angular anisotropy
near the hot spots disappears as the correlation length de-
creases. Ultimately, with increasing T , and in contrast to
electrons scattering off high-temperature phonons, there ap-
pears a uniform temperature-independent saturation value for
the self-energy along the Fermi surface associated with the
asymptotic limit J � T (� εF ); see Fig. 2(b). However, this
saturation sets in gently, with �′′

kF
(ω = 0, T ) varying only

within ≈20% of its saturation value between T = J and T =
10J . We extract the spin correlation length ξ (T ) from the
real space static structure factor as a function of increasing
temperature, and find that it is already smaller than the lattice
spacing at T = J .

Next, we evaluate the frequency and (transverse) momen-
tum dependence of the self-energy, �′′

kF
(q⊥, ω, T ), away from

the Fermi surface. In Figs. 2(c) and 2(d), we show a color map
for the self-energy for a fixed θ at two different temperatures;
the scales are chosen such that ω is comparable to vF q⊥. At
T ∼ J , the self-energy exhibits a weak q⊥ dependence; the in-
teresting feature is tied to the ω dependence for the full range
of q⊥ considered in Fig. 2(c). At a fixed q⊥, �′′

kF
(ω) ∼ ω2 at

low frequencies, and crosses over into a distinct regime with
weak ω dependence for ω � 2J . With increasing temperature
[Fig. 2(d)], the self-energy becomes largely momentum inde-
pendent, signaling a predominantly “local” character of the
spin-fluctuation spectrum. In such a regime, the self-energy
displays a nearly featureless behavior as a function of ω, q⊥,
that varies weakly with temperature. The electronic properties
for 3J � T � εF can be captured by the high-temperature
and local limit of χ ′′

spin, as we discuss below.
In Fig. 3(a), we analyze the ω and T dependence of �′′

kF

for a range of θ along the Fermi surface. At low T , there is a
crossover from a ω2 to a weak ω dependence at larger ω; the
dispersive structure disappears with increasing T . Despite the
angular anisotropy in �′′

kF
(ω = 0, T ) for small T , the relative

renormalization of the self-energy as a function of ω is largely
insensitive to θ at a given T . We have also observed that even
for finite q⊥, the ω, T dependencies are broadly similar to
the q⊥ = 0 results. In spite of the complex structure of the
dynamical spin response (Fig. 2), we will be able to capture
most of the quantitative features of the electron self-energy
starting from a high-temperature analytical perspective.
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FIG. 3. (a) Frequency dependence of the self-energy at different
angles along the Fermi surface with increasing temperature. (b) The
function h(. . . ) constructed out of the electron self-energy [Eq. (10)]
exhibits a scaling collapse on a universal momentum-independent
curve φ(ω, αβJ ) over a wide range of T , angle around the Fermi
surface, and q⊥.

Analytical approach for electron self-energy. Recall that, in
the Lehmann representation,

χ ′′
spin(q, ω) = π (eβω − 1)

1

Z

∑
n,m,α

e−βEm
∣∣〈n|Sα

q |m〉∣∣2

×δ(ω + En − Em), (8)

where the {n, En} label the many-body eigenstates and
eigenenergies, respectively, and Z is the partition function.
The spin operators Sα

q denote the α component with mo-
mentum q. Remarkably, we have observed that the numerical
computation of the electron self-energy based on the full
S (q, ω) agrees almost perfectly with a completely “local” ap-
proximation for the susceptibility (to be made precise below).
Specifically, this implies that the frequency and angular de-
pendence along the Fermi surface of the electron self-energy
is controlled by the nearly momentum-independent, nondif-
fusive piece of the structure factor [30]. We can quantitatively
account for this behavior at T � J based on a simple (but con-
trolled) “local” approximation for χ ′′

spin, which is reminiscent
of a dynamical mean-field theory-type approximation [35].
Instead of ignoring the q dependence of the matrix elements in
Eq. (8) altogether, we replace it by a momentum average that
leads to an overall constant prefactor κ , with χ ′′

spin ≈ κβω/J .
This is also consistent with our direct computations of χ ′′

spin
extracted from S (q, ω) at small ω [Fig. 3(b) inset]. We em-
phasize that there is a crossover out of the χ ′′

spin ∼ ω regime
and the response vanishes smoothly beyond a scale set by the
spin bandwidth, which for tractability we replace with a sharp
cutoff at |ω| = απJ [30]. We use the above approximate form

to simplify the local electron self-energy as

�′′
loc(ω, T ) ≈

∫
dεν(ε)χ ′′

spin(ω − ε) f (ω, ε), (9)

where ν(ε) is the electronic density of states and f (ω, ε) is
as defined in Eq. (6a). We use the simplified form of χ ′′

spin
introduced above.

To better characterize the ω dependence of the numerically
evaluated self-energy with increasing temperature, accounting
for the intrinsic variations associated with �′′

kF
(0, T ), we con-

sider the function

h(ω, T, q⊥, kF ) = �′′
kF

(q⊥, ω, T )

�′′
kF

(q⊥, 0, T )
− 1, (10)

which trivially satisfies h(ω = 0, T, q⊥, kF ) = 0. We have
evaluated h(ω, T, q⊥, kF ) for a range of temperatures, 1.5J �
T � 10J , for six different θ ∈ [0, π/6] along the Fermi sur-
face, and for the same range of q⊥ as in Figs. 2(c) and 2(d).
Remarkably, we find that these curves all collapse on to a
universal function, φ(ω, αβJ ) [dashed line in Fig. 3(b)], that
is computed using the local form of the spin susceptibility in
Eq. (9). The explicit analytical form for φ(ω, αβJ ) appears
in the Supplemental Material [30]. Note that the only free
parameter here is α, which fixes the spin bandwidth, and can
reproduce the curves for all T � J and a wide range of ω;
αJ also sets the scale at which �′′

loc(ω) crosses over from a
low-frequency ω2 behavior to the asymptotic high-frequency
regime. Moreover, when βω → 0 and βαJ � 1, the coeffi-
cient of this low-frequency regime scales as �′′

loc(ω) ∼ β4ω2

(with additional dimensionful prefactors) [30]. We note that
the dashed line in Fig. 3(b) captures the full β dependence
and various crossovers out of the asymptotic high-temperature
regime.

It has not escaped our attention that at large frequencies,
there is a weak ω-linear dependence of �′′

kF
(ω) ∼ �′′

loc(ω),
whose slope is independent of temperature. For the specific
electronic dispersion on the triangular lattice near half filling
that is used to evaluate the self-energy, we are near a van Hove
singularity. The origin of this frequency dependence can be
traced back to the electronic density of states ν(ω), which is
not independent of ω [30].

Contrast with electron-phonon scattering. It is useful to
contrast the results obtained here for electrons scattering off
a frustrated paramagnet with the more conventional example
of electron-phonon scattering at ωD < T � εF. As a function
of frequency, the two problems are similar, with ωD play-
ing a role analogous to the spin bandwidth. However, due
to the unbounded phonon Hilbert space and an associated
temperature-independent phonon spectral function, we note
that, at low frequencies, �′′

loc(ω)/�′′
el-ph(ω) ∼ β [30]. Simi-

larly, as is already clear from our considerations thus far, in the
high-T limit and for ω = 0 we also find �′′

loc(T )/�′′
el-ph(T ) ∼

β. This is consistent with the classical result, whereby elec-
trons scattering off high-temperature phonons leads to a
scattering cross section that depends linearly on temperature.
On the other hand, the additional suppression of the spin
spectral function (∼β) exactly cancels out this temperature
dependence.
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Outlook. We have presented a quantitative theory for
the electron self-energy for J � T � ∞ in a Fermi liquid
when Kondo coupled to a frustrated Heisenberg spin sys-
tem obeying semiclassical Landau-Lifshitz dynamics. The
resulting electron self-energy leads to a conundrum for
the in-plane electrical transport in PdCrO2, which dis-
plays a broad regime of an excess T -linear resistivity
for T � J , when compared against the isostructural but
nonmagnetic compound PdCoO2 [33]. The distinction to
PdCoO2 would seem to rule out a purely electron-phonon
scenario, as well as a scenario involving electrons scat-
tering off spin waves [36]. Our present analysis disfavors

an analogous electron–local-moment scenario. Identifying
the origin of this phenomenon remains a worthwhile
challenge.
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