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Nonlinear magnon transport in bilayer van der Waals antiferromagnets
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In this paper, we study the Berry curvature induced linear and nonlinear magnon transport in bilayer van
der Waals antiferromagnets, where we deduce forms for the spin and energy currents within the semiclassical
Boltzmann formalism under the relaxation time approximation. Even in the absence of the Dzyaloshinskii-
Moriya interaction, if we turn on the layer dependent electrostatic doping (ED) potential and anisotropy in the
Heisenberg interactions, the linear response remains zero, whereas we obtain a nonzero nonlinear thermal Hall
response resulting from higher moments of the Berry curvature. We show that there is a sign reversal of nonlinear
thermal Hall conductivity with varying strength of ED potential, which can be potentially useful in spin based
technologies. We also comment on the momentum and temperature dependence of the relaxation time, which
can influence the transport properties.
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I. INTRODUCTION

Anomalous transport signatures as a consequence of the
presence of Berry phase of electronic systems have been
studied extensively in the past [1–4]. Berry phase driven non-
vanishing transport signatures in the linear response regime
requires broken time-reversal symmetry (TRS), thus, such
anomalous transport has been under intense investigation,
especially, in quantum Hall systems [5–10]. It is recently
understood that even in time-reversal symmetric systems
signatures of Berry curvature and other band geometric quan-
tities can appear beyond the linear response. In particular,
in a time-reversal symmetric but inversion broken system,
due to the presence of Berry curvature dipole (BCD) in the
reciprocal space, there can be nontrivial electrical as well as
optical response in the nonlinear regime [11–16]. Numerous
studies have been carried out in the recent past of BCD related
anomalous transport, which include nonlinear anomalous Hall
[17–19], Nernst [20–22], and thermal Hall effects [23].

In similarity to electronic systems, Berry curvature plays
an important role in the transport properties of magnetic sys-
tems, where the transport is carried by quantized spin wave
excitations or the magnons [24,25]. In magnetic systems, the
presence of the Dzyaloshinskii-Moriya interactions (DMI)
among the spins can generate complex hopping elements in
the effective magnon Hamiltonian that makes the magnon
bands topological, and hence, one finds the linear response
coefficients to be nonzero [26–28]. In the absence of DMI,
Berry curvature related transport appear only in the nonlin-
ear response regime, as in the case of electronic systems,
where the responses are due to the higher moments of Berry
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curvature. There are a few recent studies that address this
problem, especially, in spin Seebeck effect [29], spin Nernst
effect [30], and optical responses [31,32], but there exists no
study of thermal Hall response in the nonlinear regime of van
der Waals spin systems, as far our knowledge.

In this paper, we investigate linear as well as nonlinear
responses of the magnons in presence a temperature gradient
in the semiclassical Boltzmann transport framework, where
we find that the nonlinear thermal Hall response can also
be attributed to the presence BCD. We apply our calcula-
tion in a bilayer van der Waals honeycomb antiferromagnet
with anisotropic Heisenberg interactions under the presence
of a layer-dependent electrostatic doping potential (ED). An-
tiferromagnetic honeycomb lattices are excellent platforms
for exploring magnon transport properties as these systems
support collinear ground states. Previous work on honey-
comb lattice antiferromagnet MnPS3 showed the existence
of linear spin Nernst current in the presence of DMI inter-
action [26,27]. Both for single-layer and bilayer honeycomb
lattices, the linear thermal Hall current remains zero due to
a global time-reversal symmetry. Recent neutron scattering
experiments [33] suggest that MnPS3 has effectively zero
DMI. Thus, one of the possible explanations for the observed
magnon Nernst [34] response can be explained by the Berry
curvature dipole induced nonlinear currents, which was stud-
ied in a recent paper [30], and other possible mechanisms
include the magnon-magnon and magnon-phonon coupling
[35]. In our study, with finite ED, even in the absence of
DMI, we obtain an anisotropy induced nonlinear magnon
thermal Hall response, while the total nonlinear magnon spin
Nernst current remains zero. Interestingly, we also find a
sign reversal of the nonlinear Hall conductivity with increas-
ing strength of ED, which can have potential applications in
spintronics.

In addition to the nonlinear response, we also study the
linear spin Nernst response in the same system with DMI
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and Heisenberg interactions terms up to the third order (i.e.,
keeping J1, J2, as well as J3 hoppings). We comment on
the possible temperature and momentum dependence of the
magnon scattering time, leading to finite lifetime of these
modes and their effects in the nonlinear transport properties.

Our results show a direct control of the responses of these
magnetic systems by means of electrical doping, an emerging
area of research with potential for application in quantum
devices [36,37]. The recent advance in the field of van der
Waals heterostructures has also opened new avenues for such
electrical control of magnetism [38]. Application of electro-
static doping (ED) technique has already been used to tune
the local moments in atomically thin bilayer systems such as
CrBr3 [39] and CrI3 [40].

Before we present details of the study, we note that
the Boltzmann transport theory is based on semiclassical
wavepacket dynamics, where the energy carriers are local-
ized wavepackets that remain in a single energy band and it
disregards the impact of multiband coherence effects [41,42].
Taking in account multiband effects, which is beyond the
scope of the Boltzmann theory, in addition to the extrinsic
nonlinear Hall coefficient, which is proportional to the life-
time of the quasiparticles, one is expected to get another
contribution that is intrinsic and independent of any scattering
mechanism [43–45].

This paper is organized as follows: In Sec. II, we present
the expression for the linear and nonlinear magnon spin
Nernst and Hall coefficients by invoking semiclassical Boltz-
mann transport formalism. Next in Sec. III, we introduce the
model spin Hamiltonian, where we study different transport
coefficients. In Sec. IV, we provide the details of the numer-
ical simulations and discuss the results. We conclude with
further discussions and a summary in Sec. V.

II. FORMALISM

For the dynamics of quantum particles in a lattice, such
as electron (or magnon), we need the information of their
dispersion as well as the Berry curvature of the Bloch bands
[26]. The various transport properties can get considerably
modified due to the presence of nontrivial Berry curvature
(BC). The general properties of the Berry curvature of the
band can be constrained by symmetry consideration. Under
the time-reversal operation, the Berry curvature transforms
as �z(�k) → −�z(−�k); on the other hand under the inversion
�z(�k) → �z(−�k) [21]. Thus, for a system with both the TRS
and inversion symmetry, the Berry curvature vanishes identi-
cally over the whole Brillouin zone. The Chern number can
be calculated by integrating the Berry curvature over the first
Brillouin zone,

Cn = 1

2π

∫
BZ

d2k �z
n(�k). (1)

We consider a magnon wave packet, which is localized
around the center, rc, kc, in the real and the momentum space,
respectively. The dynamics of the wavepacket is described by
the semiclassical equations of motion (the suffix c is omitted
for brevity), which include an anomalous term due to the

FIG. 1. Setup used for the calculation of edge current in x di-
rection. dc and d1, d2 are chosen well inside and outside the sample,
respectively. The confining potential restricts the magnon wavepack-
ets within the sample and its gradient exerts a force on the magnons,
which are described by Eq. (3).

Berry curvature [42],

�̇r = 1

h̄

∂En(�k)

∂�k − �̇k × ��n(�k), (2)

and

h̄�̇k = −�∇Vcon(�r), (3)

here n is the band index, En(�k) and ��n(�k) are the energy and
the Berry curvature of the nth magnon band in the momentum
space, respectively. The geometry we have is shown in Fig. 1,
where we would like to find the current in the x direction in
response to a small temperature gradient in the y direction.
For the calculation of current, we follow the same line of
derivation given in Ref. [42]. The first term of the Eq. (2)
describes the usual group velocity and the second term is the
anomalous velocity arising from the Berry curvature of the
magnon bands. In electronic systems, the right-hand side of
Eq. (3) is usually the Lorentz force, but as the magnons are
neutral quasiparticles, the force term can only be induced by
a confining potential Vcon(�r), which we consider to be present
only near the boundary of the antiferromagnetic sample. The
confining potential restricts the magnon wavepacket within
the sample and its gradient exerts the confining force. For
the validity of Eqs. (2) and (3), the spatial variation of the
confining potential Vcon(�r) should be much slower compared
with the size of the magnon wave packet. If w is the width of
the sample, then we have

Vcon(x, dc) = 0, Vcon(x, d1) = Vcon(x, d2) = ∞
with, d1 < −w/2 < dc < w/2 < d2, (4)

where dc is the center of the sample.
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A. Magnon current

The averaged particle current density along the x direction
is given by

Jx = 1

w

∫ d2

d1

dy jx(y)

= 1

w

∫ d2

dc

dy jx(y) + 1

w

∫ dc

d1

dy jx(y). (5)

Where jx(y) is the magnon current density in the the x
direction, which is y dependent. The confining potential varies

slowly along the y direction and
∂Vcon

∂y
�= 0 only near y =

±w/2. Thus,

h̄�̇k = −dVcon(y)

dy
ŷ. (6)

The net velocity is then given by

�̇r = 1

h̄

(
∂En(�k)

∂kx
x̂ + ∂En(�k)

∂ky
ŷ

)
+ 1

h̄

dVcon(y)

dy
�z

n(�k) (ŷ × ẑ).

(7)
The anomalous part of the velocity (second term) gives rise to
magnon edge currents at the boundaries of the sample.

The anomalous magnon current density in the x direction
is then given by

jA
x (y) = 1

V

∑
n�k

ρn(�k, T (y))
1

h̄

dVcon(y)

dy
�z

n(�k), (8)

where ρn(�k, T (y)) is the nonequilibrium bosonic distribution
function of the nth band, T (y) is the temperature as a function
of the y coordinate and V is the area of the sample. Here
we should mention that, apart from the velocity along the
edge due to BC [second term in Eq. (7)], we have another
contribution coming from the group velocity [first term in
Eq. (7)] of the Bloch bands, so the magnon wavepackets may
not move only along the edges. But, what we have written
in Eq. (8) is indeed the total magnon edge current when all
the magnons in the thermal equilibrium are added up, i.e.,
jA
x (y) ≡ jx(y) [42].

Following the usual procedure, we write down the nonequi-
librium distribution function as a sum of equilibrium distribu-
tion (ρ (0)) and the first-order corrections due to temperature
gradient (details of the calculation are given in Appendix A),

jx(y) = 1

V

∑
n�k

ρ (0)
n (En(�k) + Vcon(�r); T (y))

1

h̄

dVcon(y)

dy
�z

n(�k)

+ 1

V

∑
n�k

ρ (1)
n (�k; T (y))

1

h̄

dVcon(y)

dy
�z

n(�k). (9)

For the moment, we shall not discuss the first term of the
above equation, which is the linear response of the system,
instead, we shall focus on the second term, which is responsi-
ble for the nonlinear response,

jnl
x (y) =

∑
n�k

1

V
ρ (1)

n (�k; T (y))
1

h̄

dVcon(y)

dy
�z

n(�k). (10)

Now we are in a position to calculate the nonequilibrium
bosonic distribution function using the semiclassical Boltz-
mann transport equation under constant relaxation time (τ )
approximation [46], given as

�̇r ∂ρ

∂r
+ �̇k ∂ρ

∂k
= − (ρ − ρ (0) )

τ
. (11)

Writing ρ = ρ (0) + ρ (1) and after some straightforward alge-
bra (given in Appendix A) we get the following form of the
first-order correction,

ρ (1)
n =−τ

h̄

(
− En(�k) − μ

T

)
∂En(�k)

∂ky

∂ρ (0)

∂En(�k)

dT

dy

− τ

h̄

∂En(�k)

∂ky

∂ρ (0)

∂Vcon

dVcon

dy
+ τ

h̄

dVcon

dy

∂ρ (0)

∂ky
. (12)

While calculating the current we neglect the contribution aris-
ing from the second and the third terms of Eq. (12), as they
correspond to higher-order corrections [O(∇T )3 and higher].

Now we plug the expression of Eq. (12) into Eq. (9) to get
the final form of the net magnon current density for the nth
Bloch band,

jn,x(y) = 1

V

∑
�k

1

h̄

dVcon(y)

dy
�z

n(�k)ρ (0)
n

+ 1

V

∑
�k

1

h̄

dVcon(y)

dy
�z

n(�k)
τ

h̄

En(�k) − μ

T

∂ρ (0)
n

∂ky
∇T,

(13)

with jx(y) = ∑
n jn,x(y), and ∇T ≡ (

dT

dy
).

Following further calculations (see Appendix A), we arrive
at the following expression of the net averaged current density
of the nth band:

Jn,x = kB

V

∑
�k

1

h̄
�z

n(�k)c1
(
ρ (0)

n

)
(∇T )

+ 1

V

∑
�k

1

h̄
�z

n(�k)
τ

h̄

(En(�k) − μ)2

T 2

∂ρ (0)
n

∂ky
(∇T )2, (14)

with Jx = ∑
n Jn,x. Here cν are defined as

cν (ρ0
n ) = −

∫ ∞

En(�k)
(εβ )ν

(
∂ρ (0)

n /∂ε
)
dε

=
∫ ρ (0)

n

0
log

[(
1 + t

t

)]ν

dt . (15)

The first and second terms in Eq. (14) correspond to the
linear and nonlinear contributions of magnon current in the x
direction under the influence of a temperature gradient in the
y direction, respectively. We should note that the second term
in Eq. (14) can be recast into the following form:

1

V
(∇T )2

∑
�k

τ

h̄2T
c1

(
ρ0

n

) ∂

∂ky

[
En(�k)�z

n

]
, (16)

which also agrees with the result of Ref. [30]. The quan-
tity within the square bracket is termed an extended Berry
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(a) (b)

(c)

(d)

FIG. 2. (a) Schematics of stacked bilayer honeycomb lattice. We are taking antiferromagnetic intra layer Heisenberg interactions up to
third order, in plane easy axis anisotropy in both layers, an antiferromagnetic interlayer coupling and oppositely directed ED potentials. Red
and blue circles correspond to the A and B sublattices respectively. (b) Schematics of single-layer honeycomb lattice in real space and (c) unit
cell in the reciprocal space. The real space and momentum space lattice vectors are also marked. (d) Schematic of the right- and left-handed
magnon modes in a single layer. The brown and green arrows represent the precession of spins on A/B sublattices, in each mode the Sz

component is different for A and B sublattices during the spin wave precession, as a result, eigenmodes carry opposite spin angular momentum
(figure adapted from Ref. [48]).

curvature dipole, which has similar implications to the BCD
in electronic systems [20].

B. Nernst, and thermal Hall current

The magnon spin Nernst current is defined as

JNernst
x = h̄

∑
n

〈
Sz

n

〉
Jn,x, (17)

where 〈Sz
n〉 is the expectation value of Ŝz operator in nth

magnon band. Energy current for nth band is simply given
by (see Appendix A)

JEnergy
n,x = k2

BT

h̄V

∑
�k

�z
n(�k)c2

(
ρ (0)

n

)
(∇T )

+ 1

V

∑
�k

�z
n(�k)

τ

h̄2

(En(�k) − μ)3

T 2

∂ρ (0)
n

∂ky
(∇T )2.

(18)

The net magnon thermal Hall current is defined as the sum of
the contribution arising from each band,

JHall
x =

∑
n

JEnergy
n,x . (19)

We note that these final expressions have similar forms as in
the case of fermionic systems [21]. We would like to stress
that the definition of thermal Hall current in Eq. (19) is appli-
cable solely to the linear and nonlinear extrinsic currents.

C. Nonvanishing transport coefficients based on symmetry

Now, having arrived at this result, we present a short
discussion on the symmetries of the dispersion and the
Berry curvature, and their consequences on various terms in
Eqs. (14) and (18). For a time-reversal symmetric system, the
Berry curvature is an odd function of �k and the dispersion
is an even function of �k and hence the first terms of both
the Eqs. (14) and (18) are odd functions of �k, thus total
contribution will vanish for each band when we sum over the
entire BZ. But the second term (which is the nonlinear con-
tribution) for each of the equations are even functions under
the exchange �k → −�k because of the presence of the term
∂

∂ky
, and, as a consequence, the contribution coming from each

band can be nonzero when we sum over the entire BZ. Overall
spin Nernst current and Hall currents, which are described by
Eqs. (17) and (19), respectively, can be nonvanishing depend-
ing on the sign of 〈Sz

n〉 and the symmetry of Berry curvature.
Below we take a generic spin Hamiltonian and analyze the
above mentioned magnon transport coefficients.

III. VAN DER WAALS HONEYCOMB
ANTIFERROMAGNET

We take a stacked bilayer honeycomb lattice as our model
Fig. 2(a) to calculate the magnon transport coefficients. We
consider a Hamiltonian of the spins consisting of various
kinds of spin spin interactions, which are relevant in van der
Waals magnets [26,47]. The Hamiltonian is given by

H =
∑
l=1,2

⎛
⎝∑

〈i, j〉
J1 j �Si,l · �S j,l +

∑
〈〈i j〉〉

J2 �Si,l · �S j,l +
∑

〈〈〈i j〉〉〉
J3 �Si,l · �S j,l

⎞
⎠

+
∑
〈i j〉

t �Si,1 · �S j,2 +
∑
l=1,2

⎛
⎝∑

i

K
(
Sz

i,l

)2 +
∑

i

UlS
z
i,l + D

∑
〈〈i j〉〉

νi j[�Si,l × �S j,l ]z

⎞
⎠, (20)
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where �Si,l stands for the spin operator at site i in the layer l = 1/2. The first three terms within the braces consist of an
antiferromagnetic Heisenberg interaction up to third order, the fourth term is an antiferromagnetic interlayer coupling (t) between
the nearest-interlayer sublattices, the fifth term is an easy axis anisotropy term in each layer (K), the sixth is the layer-dependent
electrostatic doping potential (Ul ) [47] interaction, and the last term is the intra layer DMI strength (D) among the second-nearest
neighbors (the DMI coupling between the nearest-neighbor spins vanishes as the inversion center of the Honeycomb lattice
coincides with the center of the link joining the AB sublattice). Sign structure νi j is depicted in Fig. 2(b). Further, we consider
anisotropic nearest-neighbor Heisenberg model where J11 �= J12 �= J13, which might be induced by pressure in a realistic system
[30], whereas in absence of such anisotropy J11 = J12 = J13 ≡ J1. �δ j ( j = 1, 2, 3) are the set of three vectors that connects the
nearest-neighbor sites. An easy axis anisotropy interaction K = KS/(2S − 1), stabilizes the Néel ordering in the z direction.
Ul = ±U for layer l = 1/2, respectively, which can be controlled by external doping of impurity ions.

We proceed by writing down the Hamiltonian in terms of Holstein-Primakoff bosons defined as

Sublattice A:

{
layer 1: Ŝz

i,1 ≈ S − â†
i,1âi,1, S+

A1 ≈ √
2Sa1, S−

A1 ≈ √
2Sa†

1

layer 2: Ŝz
i,2 ≈ −S + â†

i,2âi,2, S+
A2 ≈ √

2Sa†
2, S−

A2 ≈ √
2Sa2

(21)

Sublattice B:

{
layer 1: Ŝz

j,1 ≈ −S + b̂†
j,1b̂ j,1, S+

B1 ≈ √
2Sb†

1, S−
B1 ≈ √

2Sb1

layer 2: Ŝz
j,2 ≈ S − b̂†

j,2b̂ j,2, S+
B2 ≈ √

2Sb2, S−
B2 ≈ √

2Sb†
2

(22)

Fourier transformed operators are defined as[
âi

b̂i

]
= 1√

N

∑
k

ei�k·�r
[

âk

b̂k

]
, (23)

where N is the number of unit cells. Now the Hamiltonian can
be written in the following form:

H = 1

2

∑
k

�†(�k)H (�k)�(�k) (24)

where the full basis is given by

�(�k) = [
a1,�k b1,�k a†

1,−�k b†
1,−�k a2,�k b2,�k a†

2,−�k b†
2,−�k

]T
,

where al (bl ) indicates the bosonic magnon annihilation oper-
ator at sublattice A(B) in layer l (details in Appendix B).

Diagonalization and spectrum

Our Hamiltonian in Eq. (20) preserves the rotational sym-
metry along the z direction (in the spin space). In this case,

[Sz
total, H] = 0, where Sz

total = ∑
l,i Sz

i,l is a good quantum
number. We make a unitary transformation (W ) of our basis
such that the Hamiltonian becomes block diagonal with each
block corresponding to a fixed Sz sector. With

� ′(�k) = W �(�k),

our transformed Hamiltonian becomes

H = 1

2

∑
k

� ′†(�k)(W −1)†H (�k)W −1� ′(�k)

=
[

H↑ 0
0 H↓

]
, (25)

where

H↑ = 1

2

∑
k

�
′†
↑ (�k)H↑(�k)� ′

↑(�k), (26)

H↓ = 1

2

∑
k

�
′†
↓ (�k)H↓(�k)� ′

↓(�k). (27)

Here,

H↑(�k) =

⎡
⎢⎢⎣

A + F − U + D 0 B − iC t
0 A + F + U − D t B + iC

B + iC t A + F + U − D 0
t B − iC 0 A + F − U + D

⎤
⎥⎥⎦, (28)

where A = S(J11 + J12 + J13 + 3J3 + t − K ), γ�k =
S(J11eikx/

√
3 + J12e−i/2(ky+kx/

√
3) + J13e−i/2(−ky+kx/

√
3)),

g�k = J3S(e−2ikx/
√

3 + 2e−ikx/
√

3 cos(ky)), F = J2S[2(cos ky +
cos[−ky/2 − (

√
3/2)kx] + cos[−ky/2 + (

√
3/2)kx]) − 6],

D = 2D2S[sin(ky) + sin (1/2(ky + √
3kx )) + sin (1/2(ky −√

3kx ))], B = Re[γ�k + g�k], and C = Im[γ�k + g�k]. The basis
for ↑ sector is given as

� ′
↑(�k) = (a�k,1 b�k,2 b†

−�k,1
a†

−�k,2
)T , (29)

and, in a similar fashion, the basis for the ↓ sector is given by

� ′
↓(�k) = (a�k,2 b�k,1 b†

−�k,2
a†

−�k,1
)T . (30)

Now, in order to diagonalize the Hamiltonian in Eq. (28),
we employ the standard technique of Bogoliubov trans-
formation for quadratic bosonic Hamiltonian [49,50]. We
introduce new creation and annihilation magnon operators
(α†/α, β†/β), such that

� ′
↑(�k) = T↑ �′

↑(�k); �′
↑(�k) = (α�k,1 β�k,2 β

†
−�k,1

α
†
−�k,2

)T . (31)
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We choose T↑ such that the matrix T †
↑ H↑(�k)T↑ becomes di-

agonal with the condition that T↑ �z T †
↑ = �z with �z =

σz ⊗ I2, where σz is the Pauli matrix for the spin space and I2

is the identity in the layer space. The last condition preserves
the bosonic commutation rules in the new basis. The elements
of the matrix T↑ can be found from the eigenspectrum of the
matrix �zH↑(�k), which is also known as the dynamic matrix.
More details of the procedure can be found in Refs. [50,51].
Similarly, we can diagonalize the Hamiltonian for the ↓ sector.
After the diagonalization, we obtain four magnon bands, and
corresponding eigenkets |α�k,1〉, |α�k,2〉, |β�k,1〉, |β�k,2〉,

|α�k,l〉 = α
†
�k,l

|0〉, |β�k,l〉 = β
†
�k,l

|0〉,
α�k,l |0〉 = 0, β�k,l |0〉 = 0. (32)

A schematic diagram of the precession of spins in each
layer for each magnon mode is depicted in Fig 2(d). For either
D = 0 or U = 0 the Hamiltonian for H↑(�k) (up-spin sector)
and H↓(�k) (down-spin sector) are related by

H↑(�k) = H∗
↓ (−�k).

The total spin angular momentum can be written as

Sz
total =

∑
i,l=1,2

Sz
i,l,A + Sz

i,l,B, (33)

which we can write as

Sz
total =

∑
i

(a†
i,1ai,1 − a†

i,2ai,2 − b†
i,1bi,1 + b†

i,2bi,2)

=
∑

k

(a†
�k,1

a�k,1 − a†
�k,2

a�k,2 − b†
�k,1

b�k,1 + b†
�k,2

b�k,2). (34)

After the block diagonalization, we can write the spin angular
momentum in each sector and find its average for the magnon
mode α and β (�z = σz ⊗ I2),

S↑ = 1

2

∑
k

�
′†
↑ �z�

′
↑

= 1

2

∑
k

(α†
�k,1

α�k,1 + β
†
�k,2

β�k,2 − β−�k,1β
†
−�k,1

− α−�k,2α
†
−�k,2

),

(35)

and, similarly,

S↓ = −1

2

∑
k

�
′†
↓ �z�

′
↓

= −1

2

∑
k

(α†
�k,2

α�k,2+β
†
�k,1

β�k,1−β−�k,2β
†
−�k,2

− α−�k,1α
†
−�k,1

).

(36)

In each of these blocks, we calculated the expectation value
of the total spin operator, which signifies spin momentum
locking of the magnon modes having chirality ±1, and also,
that these expectations are k independent. Interactions like
an in-plane easy axis anisotropy or the Kitaev term destroy
this spin rotation symmetry around z axis and invalidate these
relations.

TABLE I. Model, Eq. (20), with D �= 0 and U = 0. In this case
the two bands have Chern numbers C = ±1.

Band n Energy 〈Sz〉 �z
n(�k)

1 E1(�k) +1 +�1(�k)
2 E2(�k) +1 −�1(�k)
3 E1(�k) –1 +�1(�k)
4 E2(�k) –1 −�1(�k)

IV. NUMERICAL RESULTS

A. Dispersion and Berry curvature with D �= 0 and U = 0

For a single-layer model, with antiferromagnetic Heisen-
berg interaction in the presence of single ion anisotropy and
DMI coupling, the magnon bands are known to be twofold
degenerate [E1(�k) = E2(�k), E1,2(�k) �= E1,2( �−k)] with oppo-
site Berry curvature [�1(�k) = −�2(�k)]. As a consequence,
the linear spin Nernst current becomes nonzero but the ther-
mal Hall current remains zero [26], which can be readily
understood from our equations (17) and (19), respectively.
The same model in a bilayer honeycomb lattice with inter-
layer antiferromagnetic coupling was also briefly discussed
in Ref. [27]. We have studied this particular model [Hamil-
tonian in Eq. (20) with U = 0] under the additional presence
of second- and third-nearest neighbor Heisenberg coupling,
which was not investigated in earlier literature. In Figs. 3(a)
and 3(b) we plot the magnon spectrum along the high sym-
metry points with zero and nonzero value of DMI strength.
In both cases, the bands are doubly degenerate with vanishing
energy at � point. In contrast to the single-layer model, in
this case En(�k) = En( �−k). In absence of DMI, the magnon
bands touch at the K, K ′ points. In Fig. 3(c) we also show
the momentum resolved Berry curvature, which peaks near
the M points. It is clear that the Berry curvature for this case
is an even function of the momentum that results in nonzero
value of the Chern number (which is ±1). In Table I we have
summarized the symmetries of the dispersion and the Berry
curvature for this particular model.

B. Linear magnon transport

In this bilayer model, the linear spin Nernst current is
enhanced compared to the single layer. Although the bands
are topologically nontrivial, the thermal Hall current remains
zero due to a global time-reversal symmetry [27]. We neglect
the nonlinear part of the Eq. (17) and write down J lin,Nernst

x =
I lin
Nernst∇T [see details in Appendix A, Eq. (A13)]. In Fig. 4 we

plot I lin
Nernst as a function of temperature for different values

of DMI strength, as well as, J2 and J3. For the increasing
value of D the linear spin Nernst current increases. As a
function of temperature, it starts from zero, then increases,
and finally saturates. As we increase J2 the nearest-neighbor
spins get frustrated, which helps noncollinear configurations,
in contrast, J3 stabilizes the Néel ordering. This is the reason
why for constant D, the linear Nernst coefficient increases
with increasing J2 but decreases with J3. From the perspective
of magnon dispersion, with increasing J2 the interband gaps
between the magnon bands at M points increase; in contrast,
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(a) (b) (c)

FIG. 3. Model with U = 0: The dispersion along the high symmetry points and the Berry curvature (lowest magnon band) for a model
with Heisenberg interaction under the presence of the second-nearest neighbor DM and easy axis anisotropy. Parameters for (a) and (c): S = 1,
J1 = 1.5 meV, J2 = 0.05J1, J3 = 0.1J1, K = –0.0086 meV, U = 0, t = 1.0 meV, D = 0.3 meV. The values of the parameters are close to the
real values in most of the van der Waals magnets [52] from the predictions by ab initio calculations. The dispersion is highly anisotropic as
a function of k. With D = 0 there is a band touching near K , K ′ points (b). The density plot of the Berry curvature shows that it is highly
concentrated near M points and topological charges for each M point is 1/3. The dotted lines indicate the first Brillouin zone.

when J3 is increased the gaps decrease, leading to a vanishing
measure of the Berry curvature at the M points, and, as a re-
sult, the linear Nernst current decreases with increasing J3. In
this analysis, we have kept the values of J2 to be small enough
so that the system is still in an ordered state and the spin wave
theory is a valid approximation [50]. Our analysis reveals that
the change in magnitude of the linear spin Nernst coefficient
by varying second- and third-nearest neighbor Heisenberg
coupling is much larger in comparison to the change due to
D. In passing, we comment that the nonzero spin Nernst cur-
rent observed in the material MnPS3 was originally explained
using these models, but recent neutron experiments done on
the same material [33] suggests that the observed value of D
is too small to explain the magnitude of linear spin Nernst
current. Thus, the observed Nernst effect may be related to
other possible mechanisms, such as the magnon magnon and
magnon phonon interaction [53] and nonlinear effects.

C. Dispersion and Berry curvature with U �= 0 and D = 0

In a very recent paper [30], the authors have shown that
in a single-layer honeycomb lattice, even without DMI, in

the presence of anisotropic Heisenberg exchange interaction,
one can get nonvanishing magnon spin Nernst current. In this
case, the dispersion and Berry curvature holds the following
identities: E1(�k) = E2(�k), E1,2(�k) = E1,2( �−k) and �1(�k) =
−�2(�k), because of this symmetry, the linear spin Nernst and
thermal Hall current remains zero. In the following, we inves-
tigate the nonlinear response in a stacked bilayer honeycomb
lattice by introducing a layer-dependent electrostatic potential
that can be externally controlled by changing the amount of
doping [38–40]. The Hamiltonian is given by Eq. (20) with
D = 0 and in addition, we have a strain induced anisotropic
nearest-neighbor coupling, J11 �= J12 �= J13.

Now without the application of strain (i.e., when J11 =
J12 = J13), near the K, K ′ points the derivatives of magnon
dispersions are vanishingly small, making their product
�n(�k)∂En(�k)/∂ky almost zero near each of those points. How-
ever, under the application of strain, the maximum value of
Berry curvature and the derivative of dispersion shifts in the
kx − ky plane in a nonequivalent way that makes their product
nonzero. This is a necessary condition to get a large non-
vanishing nonlinear response in our particular model. Such
anisotropic nearest-neighbor coupling can be generated by

(a) (b) (c)

FIG. 4. Linear Nernst current as a function of temperature for different values of D, J2, and J3. The coefficient of linear Nernst current is
defined in Eq. (A13). The Chern number of the bands are C = ±1, which indicates that the bands are topologically nontrivial. In (a) J2 and
J3 are kept zero, in (b) and (c) D=0.3 meV, for all plots t = 1.0, the other parameters are the same as Fig. 3. In a typical experimental setup
∇T = 10−6 K/nm.
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TABLE II. Model, Eq. (20), with U �= 0 and D = 0.

Band n Energy 〈Sz〉 �z
n(�k)

1 E1(�k) +1 +�1(�k)
2 E2(�k) +1 −�1(�k)
3 E1(�k) –1 −�1(�k)
4 E2(�k) –1 +�1(�k)

the application of external pressure induced strain [30]. As
a passing comment, we want to mention that very high value
of ED potential leads to a transition from an antiferromagnetic
to a ferromagnetic interlayer coupling even in zero magnetic
field [40], so we assume ED potential to be small enough
so that the interlayer interaction remains antiferromagnetic in
nature. In the Table II we have summarised the symmetries of
the dispersion, and Berry curvature for this particular model.

In Fig. 5 we plot the magnon dispersions and the Berry
curvature for this model with J11 �= J12 �= J13. The spectrum is
doubly degenerate where the gaps between the bands at K, K ′
points are proportional to U . In this model, the maximum
contributions to the Berry curvature come from momenta near
the K , K ′ points. The Berry curvature in this case being an
odd function of the Bloch momentum, the Chern number of
the band is zero.

D. Nonlinear magnon transport

In our case, the inversion symmetry is broken in each layer
but it remains intact if we consider both the layers together.
From Eq. (17), the total nonlinear magnon spin Nernst current
can be written as

Jnl,Nernst
x = τ (∇T )2

h̄V T 2

∑
n,�k

〈Sz
n〉�n(�k)g1(En(�k)),

where g1(En(�k)) = En(�k)2∂ρ (0)
n /∂ky and the Berry curvature

�n(�k) are both odd functions of momentum. As a result, the
nonlinear Nernst response for the individual magnon bands
will be nonzero but when we sum over the bands they cancel
each other out. It means that we have counterpropagating
nonlinear spin currents.

Interestingly, the nonlinear thermal Hall response is
nonzero in this case. From the Eq. (19), the total nonlinear
magnon thermal Hall current can be expressed as

Jnl,Energy
x = τ (∇T )2

h̄2V T 2

∑
n,�k

�n(�k)g2(En(�k)),

here, �n(�k) and g2(En(�k)) = En(�k)3∂ρ (0)
n /∂ky are both odd

under k. The nonlinear magnon thermal Hall response for
each band as well as their sum is nonzero. In Fig. 6(a) we
plot the nonlinear magnon thermal Hall current [details in
the Appendix A, Eq. (A14)] as a function of temperature for
different values of U . The thermal Hall coefficient starts from
zero and peaks up at a point where the temperature becomes
of the order of the energy gap. From Fig. 6(b), it is also clear
that with increasing U there is a sign change in the nonlinear
Hall current. With increasing temperature, the curves exhibit
a diminishing slope, leading to a rightward shift of the points
where they intersect the U axis. As U increases, the valence
band’s influence on the thermal Hall current undergoes a
change in sign, resulting in a complete reversal of the total
response. These results predict that the nonlinear thermal Hall
current can indeed be tuned by external doping and strain
induced anisotropy. These are the main results of our current
paper.

In our nonlinear Hall response, most of the contribution
comes near the K, K ′ points, near which the group velocities
of magnons are of the order 1

h̄
∂E
∂k = 7.5×1011 nm sec−1. Typ-

ically, the magnon mean free path for an antiferromagnetic
sample at 20 K ranges from 1−100 µm [54], this corre-
sponds to a magnon lifetime (τ ) is 10−7−10−9 seconds. The

(a) (b) (c)

FIG. 5. Model with D = 0: [(a),(b)] The band structure along the high symmetry points and the Berry curvature of the lowest magnon
band. Parameters of the plots are as follows: S = 1, J11 = 1.0 meV, J12 = 1.05 meV, and J13 = 0.95 meV, K = –0.0086 meV, D = 0, t =
1 meV, U = 0.05 meV, J2 = 0, J3 = 0. Bands are twofold degenerate and the gap at K , K ′ points are of the order of twice the ED potential.
The Berry curvature for the bands picks up near the K and K ′ points and is an odd function of momentum, resulting in a zero Chern number.
(c) Schematic of nonlinear magnon thermal Hall current. Different colors and the arrows represent different magnon modes and their spin Sz

quantum numbers, respectively. The length of the arrows from the center represents the magnitude of the corresponding particle current. We
have a pair of modes having the same magnitude of Hall current in the same direction but with opposite Sz, as a result, we have a nonzero
nonlinear thermal Hall current with vanishing nonlinear spin Nernst current.
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(a) (b)

FIG. 6. Nonlinear Hall coefficient defined in Eq. (A14) as a function of temperature and ED potential. We find that, under the presence of
strain, there is a sign reversal of the Hall coefficient. For very large anisotropy there is a competition between the Berry curvature density at
the �, M, and K points. The magnitude of the ED potential should be kept small so that there is no spin flipping transitions. Parameters of the
plots are as follows: S = 1, J11 = 1.0 meV, J12 = 1.05 meV and J13 = 0.95 meV, K = –0.0086 meV, D = 0, t = 1 meV, J2 = 0, J3 = 0. The
relaxation time (τ ) of the magnon modes in antiferromagnets are typically of order 10−7 − 10−9 sec.

applied temperature gradient (∇T ) for a magnon transport
measurement reported by the experiment in Ref. [34] is of
the order of 10−6 K/nm. The coefficient of nonlinear Hall
current we obtain for U = 0.03 meV at 20 K is around 250 eV
nm−1 sec−2. This is equivalent to a nonlinear thermal Hall
current of 250×10−7 eV nm−1sec−1 ≈ 10−14 W/m, which
is in the measurable range. In comparison, the magnitude
of the linear magnon thermal Hall conductivity reported in
Refs. [53,55] at 20 K is around 10−13 W/K. Assuming the
same value of the temperature gradient in our case, the value
of the linear magnon thermal Hall current is 10−10 W/m. We
have checked that the order of magnitude estimation is robust
against changes of the material parameters.

E. Model with both U �= 0 and D �= 0

We have also analyzed the magnon band structure when
both DMI and ED are nonzero (Fig. 7). For this particular
case, the twofold degeneracy of the magnon modes is lifted
and the dispersion becomes asymmetric about the � point
(also termed as nonreciprocal magnons) with the formation of
Dirac like nodes near the M point. The degree of nonreciproc-
ity of the magnon band structures can be possibly manipulated
by changing the direction and magnitude of the external ED
potential. As the linear response is already nonzero for this
model, we do not show any transport studies of this model

in this paper. The outcome of various magnon transport co-
efficients for variants of U + D model are summarized in
Table III.

F. Momentum and temperature resolved relaxation time

The simplest mechanism through which out of equilibrium
magnets can relax is known as Gilbert damping [56–59]. From
the Landau-Lifshitz-Gilbert equations, the scattering rate can
be written as

� = ∂ρ

∂t
= − 1

τG
(ρ�k − ρeq) = −2αE (�k)

h̄
(ρ�k − ρeq), (37)

where ρ is the bosonic distribution function, α is the Gilbert
damping parameter, and E (�k) is the magnon dispersion. In this
mechanism the relaxation time is inversely proportional to the
dispersion; as a result, we can expect that at small tempera-
tures, it will modify the magnitude of the different magnon
transport coefficients. For example, within the Gilbert relax-
ation, our nonlinear magnon Hall current will be proportional
to E (�k)2 instead of E (�k)3. For higher temperatures, magnon-
magnon interactions become important and it can significantly
modify the band structures and the wavefunctions. Previous
studies [60–62] have confirmed that there is a T 2 dependence
on relaxation rates. In our case, this will make the nonlinear
Hall current proportional to T 0 in contrast to T −2 dependence

(a) (b) (c)

FIG. 7. Evolution of magnon band structures in the D + U model with a varying magnitude of D and U . Parameters are as follows:
(a) U/D = 0.4, (b) U/D = 1.2, (c) U/D = 6.0, all the other parameters are same as Fig. 4. It is interesting to note that, in D + U model the
valley degeneracy between K, K ′ points is broken, i.e., the magnon bands have different energies at those two momentum points.
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TABLE III. Variants of D + U model and their various transport signatures.

Model Linear Nernst Linear Hall Nonlinear Nernst Nonlinear Hall

U �= 0, D = 0 ✗ ✗ ✗ ✗

U �= 0, D = 0 + strain ✗ ✗ ✗ �
D �= 0, U = 0 � ✗ ✗ ✗

under constant relaxation time. This certainly enhances the
magnitude of the Hall response at higher temperatures.

V. SUMMERY

In conclusion, we have investigated the linear and nonlin-
ear magnon transport under the presence of various possible
spin-spin interactions in a bilayer van der Waals honeycomb
magnet within the semiclassical Boltzmann transport theory.
We have shown that, even in the absence of Dzyaloshinskii-
Moriya interactions (DMI), the presence of anisotropy and
electrostatic doping potential (ED) can lead to a nonzero
nonlinear thermal Hall effect. Interestingly, we have observed
a sign reversal of this nonlinear magnon Hall current as a
function of the ED potential, which can have the potential
for application in spin-based technologies. We have further
shown that, in the presence of DMI coupling, the second-
and third-nearest Heisenberg interactions play an important
role in determining the magnitude of the linear magnon spin

Nernst current. We have also commented on the momentum
and temperature dependence of the magnon scattering time,
which can significantly affect the magnitude of the transport
coefficients and their experimental relevance.

ACKNOWLEDGMENTS

R.M. and S.V. thank, for useful communication, Ran
Cheng (University of California, Riverside), Vladimir A.
Zyuzin (Landau Institute, Moscow), Hiroki Kondo (Univer-
sity of Tokyo), Yutaka Akagi (University of Tokyo). R.M.
acknowledges the CSIR (Govt. of India) for financial sup-
port. S.V. acknowledge financial support from the Institute for
Basic Science in the Republic of Korea through the project
IBS R024 D1. We also acknowledge the use of the HPC
facility at IIT Kanpur. A.K acknowledges support from the
SERB (Govt. of India) via Sanction No. ECR/2018/001443
and CRG/2020/001803, DAE (Govt. of India) via Sanction
No. 58/20/15/2019 BRNS, as well as MHRD (Govt. of India)
via sanction no. SPARC/2018 2019/P538/SL.

APPENDIX A: SEMICLASSICAL BOLTZMANN TRANSPORT CALCULATION

The semiclassical equations of motion of the magnon Bloch bands are given by

�̇r = 1

h̄

∂En(�k)

∂�k − �̇k × ��n(�k), (A1)

h̄�̇k = −�∇Vcon(�r), (A2)

here n is the band index, En(�k) is the nth magnon band energy, and �z
n(�k) is the Berry curvature in momentum space. For the

validity of Eqs. (A1) and (A2), the spatial variation of the confining potential Vcon(�r) should be much slower compared with the
size of the magnon wave packet. Here, we focus on the edge current in the x direction, with a small temperature gradient in the
y direction, as an example.

We are specifically interested in the situation when the contribution due to the first term of Eq. (9) (which is linear in �T )
vanishes due to symmetry considerations. We show below that the second term is proportional to (�T )2, which gives the
first-order nonlinear correction,

jnl
n,x(y) = 1

V

∑
�k

ρ (1)
n (�k; T (y))

1

h̄

dVcon(y)

dy
�z

n(�k). (A3)

Under the relaxation-time approximation, as written in the main text,

�̇r · ∂ρ

∂r
+ �̇k · ∂ρ

∂k
= − (ρ − ρ (0) )

τ
,

where ρ (0) is the equilibrium distribution function. Let us suppress the suffix n in ρn for notational simplicity for the moment.
We first calculate the first-order correction, i.e., ρ (1),

�̇r · ∂ρ (0)

∂r
+ �̇k · ∂ρ (0)

∂k
= −ρ (1)

τ

(
∂ρ (0)

∂x
= 0,

∂ρ (0)

∂y
�= 0

)
,

using Eqs. (6) and (7) we can write

vy
∂ρ (0)

∂y
− 1

h̄

dVcon

dy

∂ρ (0)

∂ky
= −ρ (1)

τ
⇒ 1

h̄

∂En(�k)

∂ky

∂ρ (0)

∂y
− 1

h̄

dVcon

dy

∂ρ (0)

∂ky
= −ρ (1)

τ
. (A4)
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And we write

∂ρ (0)

∂y
= ∂ρ (0)

∂T

dT

dy
+ ∂ρ (0)

∂Vcon

dVcon

dy
. (A5)

From Eq. (A4), we can write

∂En(�k)

∂ky

∂ρ (0)

∂T

dT

dy
+ ∂En(�k)

∂ky

∂ρ (0)

∂Vcon

dVcon

dy
− dVcon

dy

∂ρ (0)

∂ky
= − h̄

τ
ρ (1). (A6)

The equilibrium bosonic distribution is given by

ρ (0) = 1

eβ(En (�k)−μ) − 1

⇒ ∂ρ (0)

∂T
= −1

(eβ(En(�k)−μ) − 1)2

(
−En(�k) − μ

kBT 2

)
,

∂ρ (0)

∂En(�k)
= −1

(eβ(En (�k)−μ) − 1)2

(
1

kBT

)
.

So we have

∂ρ (0)

∂T
=

(
−En(�k) − μ

T

)
∂ρ (0)

∂En(�k)
,

this expression enables us to write ρ (1) in compact notation,

ρ (1) = −τ

h̄

(
− En(�k) − μ

T

)
∂En(�k)

∂ky

∂ρ (0)

∂En(�k)

dT

dy
− τ

h̄

∂En(�k)

∂ky

∂ρ (0)

∂Vcon

dVcon

dy
+ τ

h̄

dVcon

dy

∂ρ (0)

∂ky
. (A7)

Now, the force acting on the magnon wavepacket can be written in a perturbative series of the confining potential (Vcon), if we
take dVcon/dy correction term in the expansion of ρ (1), then it comes with order (dVcon/dy)2 in the expression of the nonlinear
current, which can be neglected in comparison to (dVcon/dy) order. Thus, we write

ρ (1)(�k, T (y)) ≈ τ

h̄

En(�k) − μ

T

∂ρ (0)

∂ky

(
dT

dy

)
. (A8)

The expression of nonlinear current density for each band can be written as (putting back the suffix n),

jnl
n,x(y) = 1

V

∑
�k

1

h̄

dVcon(y)

dy
�z

n(�k)
τ

h̄

En(�k) − μ

T

∂ρ (0)
n

∂ky

(
dT

dy

)
.

The total averaged nonlinear current in x direction is given by the integral of the current density

Jnl
n,x = 1

V

∑
�k

1

h̄
�z

n(�k)
τ

h̄

En(�k) − μ

T

(
dT

dy

) ∫ ∞

0

1

w

(
∂ρ (0)

n (En(�k) + Vcon(r); T (+w/2))
∂ky

− ∂ρ (0)
n (En(�k) + Vcon(r); T (−w/2))

∂ky

)
dVcon.

This is zero if T (w/2) = T (−w/2). Now using Taylor series approximation we can write

ρ (0)
n (T (−y)) = ρ (0)

n (T (y)) − 2y
dT

dy

∂ρ (0)
n

∂T
.

Thus

Jnl
n,x = 1

V

∑
�k

1

h̄
�z

n(�k)
τ

h̄

En(�k) − μ

T

(
dT

dy

)2 ∫ ∞

0

(
∂2ρ (0)

n (En(�k) + Vcon(r))
∂ky∂T

)
dVcon.

We have

∂ρ (0)
n

∂ky
= ∂ρ (0)

n (En(�k) + Vcon(r))

∂En(�k)

∂En(�k)

∂ky
,
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and

Jnl
n,x = 1

V

∑
�k

1

h̄
�z

n(�k)
τ

h̄

En(�k) − μ

T
(∇T )2 ∂

∂T

∫ ∞

0

(
∂ρ (0)

n (En(�k) + Vcon(r))
∂ky

)
dVcon

= τ (∇T )2

h̄T

∑
�k

1

V

1

h̄
�z

n(�k)
(En(�k) − μ)2

T

1

kBT
ρ (0)(En(�k))(1 + ρ (0)(En(�k)))

∂En(�k)

∂ky
. (A9)

Total nonlinear spin Nernst current is given by

Jnl,Nernst
x = h̄

∑
n

〈
Sz

n

〉
Jnl

n,x. (A10)

The total averaged magnon current for each band including both linear [26,42] and nonlinear contribution is given by

Jn,x = kB

V

∑
�k

1

h̄
�z

n(�k)c1
(
ρ (0)

n

)
(∇T ) + 1

V

∑
�k

1

h̄
�z

n(�k)
τ

h̄

(En(�k) − μ)2

T 2

∂ρ (0)
n

∂ky
(∇T )2, (A11)

the first term is the linear contribution,

J lin
n,x = kB

V

∑
�k

1

h̄
�z

n(�k)c1(ρ (0)
n )(∇T ). (A12)

The linear spin Nernst current is given by

J lin,Nernst
x = h̄

∑
n

〈
Sz

n

〉
J lin

n,x = I lin
Nernst ∇T, (A13)

nonlinear energy current is simply given by

Jnl,Energy
n,x = 1

V

∑
�k

�z
n(�k)

τ

h̄2

(En(�k) − μ)3

kBT 3
ρ (0)(En(�k))[1 + ρ (0)(En(�k))]

∂En(�k)

∂ky
(∇T )2,

the total nonlinear Hall current is given by

Jnl,Energy
x =

∑
n

Jnl,Energy
n,x = τ × Inl

Hall. (A14)

APPENDIX B: FURTHER DETAILS OF MODEL

In this Appendix, we provide the details of different kinds of spin-spin interaction under the linear spin wave approximation.
We calculate the Heisenberg coupling up to the third order, Dzyaloshinskii-Moriya (DM) coupling in second order (first-order
term is zero in honeycomb lattice from symmetry consideration), and in-plane easy axis anisotropy term. We write the terms in
a symmetrized fashion.

Real-space lattice unit vectors of the honeycomb lattice are given by (see Fig. 2)

�a1 = a

2
(3,

√
3), �a2 = a

2
(3,−

√
3). (B1)

In the following, we set the nearest-neighbor spacing a = 1/
√

3. The re scaled nearest-neighbor lattice vectors are then

�δ1 = 1

2

(
1√
3
, 1

)
, �δ2 = 1

2

(
1√
3
,−1

)
, �δ3 = 1√

3
(−1, 0). (B2)

The nearest-neighbor terms (H (1)
H ) without any anisotropy (J11 = J12 = J13) is written in the momentum space as

H (1)
H = J1S

2

∑
�k,�δi,i=1,2,3

(e−i�k·�δi a�kb−�k + ei�k·�δi a−�kb�k + H, c.) + J1S

2
z1

∑
k

(a†
�ka�k + a†

−�ka−�k + b†
�kb�k + b†

−�kb−�k ), (B3)

where �δi with i = 1, 2, 3 are the three nearest-neighbor lattice vectors connecting A and B sublattices, and the coordination
number, z1 = 3 for honeycomb lattice. In the case of anisotropic interaction J1z1 is replaced by respective coupling strength.
Next-nearest-neighbor Heisenberg interaction (H (2)

H ) is given by

H (2)
H = J2S

2

∑
�k,�ηi,i=1,2,3

(e−i�k·�ηi a†
�ka�k +ei�k·�ηi a†

−�ka−�k +e−i�k·�ηi b†
�kb�k +ei�k·�ηi b†

−�kb−�k +h.c) − J2Sz2

∑
k

(a†
�ka�k +a†

−�ka−�k +b†
�kb�k +b†

−�kb−�k ),

(B4)
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FIG. 8. Schematic picture of the lattice Wilson loop on a discretized square lattice. The U(1) link variables and the path travelled along the
closed loop is also shown; for our case the Brillouin zone is a parallelogram.

where �ηi with i = 1, 2, 3 are the three next-nearest-neighbor lattice vectors connecting the AA and BB sublattices, z2 = 6 for
honeycomb lattice. Third nearest-neighbor Heisenberg interaction (H3

H ) is given by

H (3)
H = J3S

2

∑
�k,�ζi,i=1,2,3

(e−i�k·�ζi a�kb−�k + ei�k·�ζi a−�kb�k + h.c) + J3S

2
z3

∑
k

(a†
�ka�k + a†

−�ka−�k + b†
�kb�k + b†

−�kb−�k ), (B5)

where �ζi with i = 1, 2, 3 are the three third-nearest-neighbor lattice vectors connecting AB sublattices, z3 = 3 for honeycomb
lattice. The easy axis anisotropy term, which stabilized the ordering along the c axis is given by (HE ),

HE =
∑

i

K(Sz
i )2 = KS

2S − 1

∑
k

(a†
�ka�k + a†

−�ka−�k + b†
�kb�k + b†

−�kb−�k ) (B6)

and the DMI coupling term (HDM) between next-nearest-neighbor is given by

HDM =
∑
i, j

νi jDẑ · (�Si × �S j ) = S

2

∑
k

(�ka†
�ka�k − �−ka†

−�ka−�k + �kb†
�kb�k − �−kb†

−�kb−�k ), (B7)

with

�k = 2D[− sin(�k · �a1) + sin(�k · �a2) + sin (�k · (�a1 − �a2))].

The lattice vectors and the sign conventions in the DM coupling term are given in Fig. 2(b).

APPENDIX C: BERRY CURVATURE FOR THE BOSONIC
BOGOLIUBOV DE GENNES (BDG) HAMILTONIAN

In this section, for the sake of completeness we present
the computation of the Berry curvature for the bosonic BdG
Hamiltonian. We will closely follow the line of derivation
given in Ref. [50]. Let us consider the Hamiltonian for the
up-spin sector H↑(�k), which is written in the basis � ′

↑(�k) =
(a�k,1 b�k,2 b†

−�k,1
a†

−�k,2
)T . To satisfy the bosonic commutation

relations, the generalized eigenvalue equation for the Hamil-
tonian H↑(�k) is written as

H↑(�k)|n(�k)〉 = E (�k)�z|n(�k)〉, (C1)

where |n(�k)〉 being a normalized wave function of the nth
Bloch band.

The Berry connection Aμ(�k) (μ = 1, 2) and the corre-
sponding field strength F12(�k), for the nth band, are given by
[50,63]

An
μ(�k) = 〈n(�k)|∂μ�z|n(�k)〉, (C2)

F n
12(�k) = ∂1An

2(�k) − ∂2An
1(�k), (C3)

This way of computing the Berry curvature leads to nu-
merical errors because of the presence of the derivative in the
Brillouin zone (see Fig. 8). Instead, we define a inner product
in U(1) link variable of the Bloch band as [63]

U n
μ̂(�k) ≡ 〈n(�k)|�z|n(�k + μ̂)〉/Nn

μ̂(�k) (C4)

where

Nn
μ̂(�k) ≡ |〈n(�k)|�z|n(�k + μ̂)〉|. (C5)
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μ̂ = 1̂, 2̂ are the discretized vectors in the direction of the
reciprocal lattice vectors. E (�k) has eigenvalues of the form

(ε�k,α1
, ε�k,α2

,−ε�k,α1
,−ε�k,α2

). (C6)

For particle/hole bands the eigenvector |n(�k)〉 is normalized as
follows:

〈nparticle(�k)|�z|nparticle(�k)〉 = 1, (C7)

〈nhole(�k)|�z|nhole(�k)〉 = −1. (C8)

The link variables are well defined as long as Nn
μ̂(�k) �= 0,

which can always be assumed to be the case [64]. The field
strength is then numerically approximated as

F n
12(�k)δk1δk2 ≈ loge U n

1 (�k)U n
2 (�k + 1̂)U n

1 (�k + 2̂)−1U n
2 (�k)−1,

(C9)

with

−π <
1

i
F n

12(�k)δk1δk2 � π. (C10)

Field strength is defined within the principle branch of the
logarithm specified in Eq. (C9). This definition of the field
strength is gauge invariant. The Berry curvature is written in
terms of the field strength as

�n(�k) = −iF12(�k). (C11)

The Chern number on the lattice corresponding to the nth
Bloch band is defined as follows:

Cn ≡ 1

2π i

∑
�k∈BZ

F12(�k)δk1δk2. (C12)

In similar way we compute the Berry curvature of the
Bloch bands corresponding to the H↓(�k) Hamiltonian.
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