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Two-dimensional Weyl materials in the presence of constant magnetic fields
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In this work we investigate the effect of a constant external, or artificial, magnetic field on the nonlinear
response of two-dimensional (2D) Weyl materials. We calculate the Landau levels for tilted cones in 2D Weyl
materials by treating the tilting in a perturbative manner and employ perturbation theory to calculate the tilting-
induced correction to the magnetic field induced Landau spectrum. We then calculate the induced current as a
function of the tilting coefficients and extract the corresponding nonlinear signal. Then, we analyze how changing
the tilting parameter affects the nonlinear signal. Our findings show the possibility of achieving a significant
tunability of the nonlinear response by suitably engineering the orientation and degree of tilt of Dirac cones in
2D Weyl materials.
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I. INTRODUCTION

In the last 18 years, after the discovery of graphene [1,2],
the study of two-dimensional pseudorelativistic fermions has
dominated the condensed matter arena. The study of graphene
in a uniform magnetic field also contributed to this boom
with the discovery of the anomalous, half-integer quantum
Hall effect [3]. The basic theory stems from the quantization
of cyclotron orbits in a uniform magnetic field, the Landau
quantization (LQ). The carriers can occupy only orbits with
discrete, equidistant energy values, called Landau levels (LLs)
[4]. LQ plays an important role in the electronic properties
of materials. It is directly responsible for diamagnetism and,
at strong magnetic field, leads to oscillation of the magnetic
susceptibility and conductivity, known as the de Haas–Van
Alphen [5] and Shubnikov–de Haas [6,7] effects, respectively.

Over the past decade, several theoretical and experimental
works dealt with the problem of characterizing the behavior
of Weyl semimetals in the presence of magnetic fields, in-
cluding describing the effect of tilting on the LL spectrum
both semiclassically [8] and with a full relativistic quantum
treatment [9]. These results have been applied to character-
ize the effect of the tilt on LL spectroscopy and revealed
salient features of the evolution of the absorption spectrum
of two-dimensional (2D) Dirac fermions upon tilt, such as the
insurgence of nondipolar transitions as a consequence of the
tilt [10,11]. The effect of tilting on LLs has also been studied
in three-dimensional Weyl materials, for which similar results
have been found [12].

Despite the great interest this topic has attracted, especially
for 2D materials, no study on the simultaneous effect of cone
tilting and LLs on the nonlinear optical response of such
materials has been carried out, to the best of our knowledge.
For this reason, in this paper we focus our attention on LLs
of tilted, type-II Weyl materials (WMs). Type-II WMs were
first postulated in 2015 [13]. In contrast to type-I WMs,
which have straight cones at the nodal point and preserve
Lorentz invariance, they are tilted and have broken Lorentz

invariance. Type-II cones typically occur when type-I Weyl
nodes are tilted enough, along some specific direction, that
a Lifshitz transition occurs and the system acquires a finite
density of states at the Weyl node. Type-II fermions, either
Dirac or Weyl, have been found in a variety of materials
such as semimetals, transition metal dichalcogenides (PtTe2,
WTe2) [14], LaAlO3/LaNiO3/LaAlO3 quantum wells [15],
and PdTe2 superconductors [16]. The electronic properties of
these materials have been extensively studied in the last few
years [17–20]. The nonlinear optics has also recently started
to attract some attention [21–23].

In this work we focus on two-dimensional materials with
type -II Weyl fermions (WFs), which have been theoreti-
cally explored with increasing attention in the last few years
[24–29]. Although a conclusive experimental observation is
still lacking, they are not unrealistic. In fact, a promising
platform for the experimental realization of such materials
is, for example, the organic compound α-(BEDT-TTF)2I3, a
quasi-2D conductor which supports WFs [30–32]. In partic-
ular, we study the nonlinear optical response of the Landau
levels in type-II WMs. Although a fully relativistic and non-
perturbative approach, following Ref. [9], could be employed
to calculate the effect of the tilting on LLs, we instead opt
for a perturbative approach, which allows us to write a set
of coupled mode equations for the time-dependent population
coefficients and calculate the induced current as a function of
such coefficients and the corresponding nonlinear spectrum
directly in the laboratory frame, rather than in the boosted
frame. This allows for a more direct and experiment-friendly
approach to the problem. Notice, however, that treating the
tilting perturbatively does not compromise the nature of the
Dirac cones or, ultimately, the nature of the considered ma-
terial. However, to avoid confusion between a proper type-II
material, defined by the touching point of the electron and hole
pockets, and the perturbative type-II material discussed in this
work, we will refer to our system as quasi-type-II.

Our results clearly show how it is possible to control and
enhance the nonlinear response of 2D Weyl materials using an
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external, or artificial (generated, for example, through bend-
ing or strain [33]), magnetic field. We, in fact, show how a
suitable combination of magnetic field control and material
engineering, in the form of control of the degree of tilt of Dirac
cones, can lead to efficient generation of high harmonics,
up to order 50 and beyond. This could lead to significant
applications in optics and photonics. The possibility to control
the nonlinear optical response of such materials by controlling
both the applied magnetic field and the degree of tilt of Dirac
cones in such materials, in fact, could lead to reconfigurable,
broadband, efficient frequency converters. On the other hand,
the same device could also be used for sensing applications,
essentially exploiting the fact that external perturbation either
can change the local crystalline structure of Weyl materials
(thus amounting to an overall change in the intensity of the ap-
plied magnetic field, for example) or can induce anisotropies,
which could change the degree of tilting, thus allowing the
use of the intrinsic anisotropic nature of the nonlinear optical
response of 2D Weyl materials [23]. In both cases, analyz-
ing the effects of such perturbations on the nonlinear optical
response of 2D Weyl materials might prove insightful for
sensing applications.

This paper is organized as follows: In Sec. II we introduce
the Hamiltonian for tilted two-dimensional Weyl materials in
the presence of an external gauge field. In Sec. III we compute
the tilt-induced perturbation on Landau levels. In Secs. IV and
V we focus on the nonlinear optical response by considering
the interaction of the Landau level with the impinging electric
field. Finally, conclusions are drawn in Sec. VI.

II. TILTED HAMILTONIAN FOR 2D WEYL MATERIALS

The Hamiltonian for a 2D Weyl material in the presence
of an external electromagnetic field [described by the vector
potential A(t )] and a gauge field [described by the U(1) gauge
potential A(g)] is given by

Ĥ =
2∑

i=1

vi piσ̂i + �σ̂3 + a · p σ̂0, (1)

where σ̂k are Pauli matrices (with σ̂0 = I being the two-
dimensional identity matrix); a = (ax, ay) is the tilting vector;
vx,y are the (anisotropic) Fermi velocities along the x and
y directions, respectively; � is a staggered potential, which
accounts for the gap between the valence and conduction
bands; and p is the minimally coupled kinetic momentum,
which takes into account both the impinging electromagnetic
field and the external (or artificial) magnetic field, i.e.,

pμ = kμ + e

c
A(g)

μ + e

c
Aμ, (2)

where kx,y are the Cartesian components of the momentum.
For later convenience, we also define the minimally coupled
magnetic momentum πμ = kμ + e

c A(g)
μ , which will be useful

in constructing the unperturbed and tilted LLs for 2D Weyl
materials. In general, the presence of the vector potential A(g)

in Eq. (2) breaks translational symmetry, rendering the Bloch
theorem and the corresponding tight-binding approximation
invalid. To overcome this problem, one possible solution, vi-
able for both free space and lattice geometries and presented
in many textbooks on quantum mechanics (see, for example,

FIG. 1. Schematic representation of the geometry for a 2D Weyl
material. The flake is assumed to be infinitely extended along the
x direction, so that translational symmetry is unbroken along it.
The gauge potential A(g), giving rise to the out-of-plane magnetic
field, is oriented along the x direction, so that its magnitude can be
proportional to y, thus allowing us to decouple Landau quantization
from the calculation of the effective band structure. The plot shows a
regular honeycomb lattice, where the two different colors (blue and
red) of the lattice sites represent the different atomic species char-
acterizing Weyl materials. Both unscaled ({x, y}) and scaled ({ξ, η})
reference frames are shown for convenience.

Ref. [34] for a detailed discussion) and graphene physics
[2,35,36], is to choose a preferential direction for the vector
potential along which translation invariance is broken and
assume translation invariance in the other direction. For the
case of lattice systems such as the one depicted in Fig. 1, we
choose y to be the direction of broken symmetry, so that kx is
still a good quantum number, as translational invariance is not
broken along the x direction, and although we ca no longer
formally apply Bloch’s theorem to the whole 2D material,
we can still calculate an effective band structure along the x
direction, which will be parametric in the y coordinate [35].
If, moreover, we choose the gauge potential A(g) in such a
way that A(g) ∝ y, we can apply standard Landau quantization
without breaking translational symmetry in the x direction.

The Hamiltonian above can be split into two contributions,
one containing only the magnetic field through the magnetic
momentum πμ and one containing only information about
the tilt through the parameters ax,y. Before doing that, how-
ever, since in general vx �= vy, it is first convenient to rescale
both the momentum and the gauge fields A and A(g) by
introducing the effective Fermi velocity v = √

vxvy and, con-
sequently, the scaled momentum coordinates kξ = √

vx/vy kx

and kη = √
vy/vx ky and the corresponding scaled gauge field

components Aξ = √
vx/vy Ax and Aη = √

vy/vxAy, so that the
following transformation between magnetic momenta holds:

vxπx ± ivyπy → v(πξ ± iπη ), (3)

meaning that then, the components of the magnetic momen-
tum in the scaled frame are given by πξ = √

vx/vy πx and
πη = √

vy/vx πy.
After doing this, we can then rewrite the Hamiltonian in

Eq. (1) as Ĥ ≡ Ĥ0 + Ĥtilt , where Ĥ0 depends on only the
gauge fields (in particular, on the applied magnetic field) and
not on the tilting parameters, and its explicit expression is
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FIG. 2. Pictorial representation of untilted vs tilted cones in 2D
Weyl materials. The blue and orange cones represent the valence
and conduction bands, respectively, of an untilted system [a = 0 in
Eq. (1)], while the green and red cones depict tilt-induced perturba-
tion of the band structure in the vicinity of the Dirac point. The purple
lines on each cone represent the LL appearing in that band due to the
magnetic field.

given by

Ĥ0 = v

[
2∑

i=1

πiσ̂i + �

v
σ̂3

]
+ ev

c

2∑
i=1

Aiσ̂i. (4)

The tilt Hamiltonian, on the other hand, contains the depen-
dence on the tilting parameter τk = ak/vk and reads

Ĥtilt =
2∑

i=1

[
τi

(
πi + e

c
Ai

)]
σ̂0, (5)

where now the convention 1 → ξ and 2 → η has been implic-
itly assumed and τξ,η ≡ τx,y.

A pictorial representation of the band structure of 2D Weyl
materials in the vicinity of one of their Dirac points is given
in Fig. 2. In particular, the band structure given by the Hamil-
tonian Ĥ0 in Eq. (4) imposes Landau levels on a straight Dirac
cone (orange and blue cones in Fig. 2), while the inclusion of
the tilting Hamiltonian in Eq. (5) tilts the whole structure, i.e.,
Dirac cone plus Landau levels (green and red cones in Fig. 2).

III. LANDAU QUANTIZATION OF TILTED CONES

In this section we shall see how to perform the LQ for
the Hamiltonian (1). To do that, we will adopt a perturbative
approach, in which we first quantize Ĥ0, which will give rise
to the usual LLs, and then include the tilting perturbatively
by promoting τx and τy to perturbative parameters. As a result
of this operation, we will show how the tilting de facto intro-
duces new transition matrix elements between the valence and
conduction band LLs.

A. Standard Landau quantization

To start with, let us first consider Ĥ0 and solve the eigen-
value problem

Ĥ0|φn〉 = En|φn〉 (6)

in the presence of a constant magnetic field. According to
Fig. 1, we can exploit translational symmetry along the x
direction to write the eigenstate |φn〉 as

|φn〉 =
∫

dkξ eikξ ξ |ψn(η; kξ )〉, (7)

where |ψn(kξ ; η)〉 ≡ |ψn〉 emphasizes that the eigenstate |ψn〉
is function of the momentum kξ and depends parametrically
on η. Note, moreover, that even in the absence of a magnetic
field, i.e., for A(g) = 0, the above ansatz is still valid and
allows for the calculation of an effective band structure, which
will depend parametrically on η.

As described above, the magnetic field is inserted through
minimal coupling by the substitution k → π = k + e

c A(g),
where A(g) is the vector potential corresponding to the applied
magnetic field. To make calculations easier, we can assume
that we are working in the Landau gauge, where the vector
potential can be chosen as

A(g) = −Bηx̂. (8)

Note that at this level of analysis, we do not make any as-
sumption about the nature of the magnetic field. It could
be an actual external magnetic field, or it could emerge as
a consequence of bending or straining the material lattice,
as detailed in Ref. [33]. Our formalism and calculations are
insensitive to the physical origin of the magnetic field, and for
this reason we will not specify one.

The easiest way to solve the above eigenvalue problem
(6) is to transform Ĥ0 in terms of creation and annihilation
operators of the harmonic oscillator. To do that, let us first
observe that [πξ , πη] = −i( eB

c ) [34]. This suggests taking
qξ = (c/eB)πη as a viable canonically conjugated generalized
coordinate to the generalized momentum πξ . This means that
πξ and πη are canonically conjugated variables, and we can
therefore associate creation and annihilation operators with
them, as per standard quantum mechanics [37], i.e.,

πξ = 1√
2LB

(â† − â), (9a)

πη = i√
2LB

(â† + â), (9b)

where [â, â†] = 1 and LB = √
h̄/eB is the characteristic

magnetic length. Substituting this into the scaled Ĥ0 and intro-
ducing the quantities λ ≡ �LB/

√
2v and ωc = √

2v/LB, we
have

Ĥ0 = ωc

(
λ â†

â −λ

)
. (10)

The eigenvalues and eigenstates of the Hamiltonian in
Eq. (14) can then readily be calculated by substituting its
expression into Eq. (6), so that the eigenvalue spectrum is
finally given by

εn = sn

√
λ2 + |n|, (11)

where |n| accounts for the Landau level and sn = sgn(n) ≡
± accounts for valence (−) and conduction (+) bands. The
(normalized) Landau spinor corresponding to the eigenstates
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of Ĥ0 then reads

|ψn〉 = 1√
1 + γ 2

n

(
φ|n|

γnφ|n|−1

)
, (12)

where γn = (εn − λ)/
√|n|, φn(x) is a harmonic oscillator

eigenstate (Hermitian-Gaussian functions in one dimension)
[34], and the prescription that φ−1 = 0 is enforced. Note,
moreover, that for n = 0 we have

ε0 = λ, (13a)

|ψ0〉 =
(

φ0

0

)
(13b)

and that we need to exclude the eigenvalue ε−
0 = −λ because

for this case γ −
0 → ∞ and therefore |ψ−

0 〉 → 0.

B. Introducing the tilting

We now consider the effect of the tilt on both Landau levels
and eigenstates. We first rewrite Ĥtilt in terms of creation and
annihilation operators, following the prescription above, to
obtain

Ĥtilt = ωc[τx(â† − â) + iτy(â† + â)]I, (14)

where τi ≡ ai/2vi is the tilting in the i direction and consti-
tutes our perturbation parameter. To calculate the effect of the
tilting on the Landau levels and eigenstates of Ĥ in Eq. (1), we
employ first-order perturbation theory using τ as the pertur-
bation parameter. Without loss of generality, we can assume
that the tilt happens only along the x direction so that τy = 0
and τ ≡ τx and the calculations are easier. This assumption
essentially means that we consider a situation in which the
vector potential (generating the external out-of-plane mag-
netic field) is aligned with the tilting direction. A more general
solution with the vector potential and tilting misaligned is
readily obtained by employing perturbation theory with two
perturbative parameters τx,y or by simply applying a rotation
operator to both the vector potential and the eigenstates of Ĥ0,
but it is out of the scope of this paper.

First, we expand the eigenstates and eigenvalues of the
tilted system in terms of the perturbative parameter τ up to
order O(τ 2), i.e., |ψn〉 = |ψ (0)

n 〉 + τ |ψ (1)
n 〉 + O(τ 2) and εn =

ε(0)
n + τε(1)

n + O(τ 2), and solve the complete eigenvalue prob-
lem up to the same order, thus obtaining

(Ĥ0 + τV̂ )
(∣∣ψ (0)

n

〉 + τ
∣∣ψ (1)

n

〉)
= (

ε(0)
n + τε(1)

n

)(∣∣ψ (0)
n

〉 + τ
∣∣ψ (1)

n

〉)
, (15a)

where V̂ ≡ Ĥtilt/(τωc). The zero-order solution is given above
(and corresponds to the untilted cones). At first order in τ we
have instead

Ĥ0

∣∣ψ (1)
n

〉 + V̂
∣∣ψ (0)

n

〉 = ε(0)
n

∣∣ψ (1)
n

〉 + ε(1)
n

∣∣ψ (0)
n

〉
. (16)

Note, moreover, that the normalization condition of |ψn〉 im-
poses that 〈ψ (0)

n |ψ (1)
n 〉 = 0. With this information, we can

then calculate the correction to the eigenvalues by projecting
Eq. (24) onto 〈ψ (0)

n |, obtaining

ε(1)
n = 〈

ψ (0)
n

∣∣V̂ ∣∣ψ (0)
n

〉
. (17)

It is not hard to show that ε(1)
n = 0. Substituting this result

into Eq. (24) and applying standard methods of perturbation
theory, we get

∣∣ψ (1)
n

〉 =
∑
m �=n

〈
ψ (0)

m

∣∣V̂ ∣∣ψ (0)
n

〉
ε

(0)
n − ε

(0)
m

∣∣ψ (0)
k

〉
. (18)

Using the (normalized) expression of V̂ through Ĥtilt and the
expressions of the untilted eigenstates, we get〈

ψ (0)
m

∣∣V̂ ∣∣ψ (0)
n

〉 = αn,n+1δm,n+1 − αn,n−1δm,n−1, (19)

where

αn,n+1 =
√|n| + 1 + γnγn+1

√|n|√(
1 + γ 2

n

)(
1 + γ 2

n+1

) , (20a)

αn,n−1 =
√|n| + γnγn−1

√|n| − 1√(
1 + γ 2

n

)(
1 + γ 2

n−1

) . (20b)

Substituting this result into Eq. (18), we get the following
form for the perturbed eigenstates:

∣∣ψ (1)
n

〉 = N

(
An,n+1 φ|n|+1 + An,n−1 φ|n|−1

γn+1An,n+1 φ|n| + γn−1An,n−1 φ|n|−2

)
, (21)

with N = 1/
√

1 + γ 2
n and

An,n±1 =
√

1 + γ 2
n

ε
(0)
n − ε

(0)
n±1

αn,n±1. (22)

This is the first result of our work. At first order in per-
turbation theory, the tilting affects only the eigenstates |ψn〉
and not the energies of the LLs. Since, as can be seen in
the equation above, the perturbative correction to the Landau
eigenstates contains terms proportional to φ|n|±1 and φ|n|−2,
the expected impact of this perturbation in the interaction of
tilted cones with an impinging electromagnetic pulse would
be to modify the selection rules for the allowed transitions,
thus inserting more excitation and decay channels than in the
untilted case.

IV. COUPLED MODE EQUATIONS FOR
THE INTERACTION HAMILTONIAN

In this section, we consider the action of an impinging,
pulsed electromagnetic field and study its interaction with
a system presenting tilted cones, i.e., a Weyl material. We
continue working within the minimal coupling framework
and simply add a second gauge field to the picture, this time
representing the external pulse impinging on the Weyl mate-
rial, by employing the substitution π → p = π + (e/c)A(t ).
The interaction Hamiltonian, comprising, as can be seen from
Eqs. (4) and (5), both tilt-independent and tilt-dependent
terms, then reads

Ĥlight = ev

c

[
2∑

i=1

Aiσ̂i + 2τ (Aξ + iAη )I

]
. (23)

Without loss of generality, we can assume the impinging op-
tical pulse is polarized along the ξ direction (i.e., along the x
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direction), so that we can set Aη = 0 and write

Aξ ≡ A(t ) = E0τ e− (t−t0 )2

�t2 cos(ωLt ), (24)

where E0 is the amplitude of the impinging electric field, �t is
the pulse duration, and ωL is the pulse central frequency. Note
that since in the previous section we assumed the Dirac cone is
tilted along the x direction (i.e., we set τy = 0), the assumption
made above essentially corresponds to the case in which the
impinging field is polarized along the tilting direction.

With the light-matter Hamiltonian in hand, we can then
cast the time-dependent Dirac equation in the following form:

i
∂

∂t
|�(t )〉 = [Ĥ0 + Ĥtilt + Ĥlight (t )]|�(t )〉. (25)

To solve it, we expand the real solution in the instantaneous
eigenstates calculated above, i.e.,

|�(t )〉 =
∑

n

[c+
n (t )e−iωnt |ψ+

n 〉 + c−
n (t )eiωnt |ψ−

n 〉], (26)

where |ψn〉 = |ψ (0)
n 〉 + τ |ψ (1)

n 〉, ωn = |εn| =
√

λ2 + |n|, and∑
n(|c+

n |2 + |c−
n |2) = 1. Substituting this ansatz into the equa-

tion above and remembering that |ψn〉 are (perturbative)
eigenstates of Ĥ0 + Ĥtilt , we get the following set of coupled
mode equations for the time-dependent coefficients:

i ċ+
m =

∑
n

[〈ψ+
m |Ĥlight (t )|ψ+

n 〉e−i(ωn−ωm )t c+
n

+〈ψ+
m |Ĥlight (t )|ψ−

n 〉ei(ωn+ωm )t c−
n ], (27a)

i ċ−
m =

∑
n

[〈ψ−
m |Ĥlight (t )|ψ+

n 〉e−i(ωn+ωm )t c+
n

+〈ψ−
m |Ĥlight (t )|ψ−

n 〉ei(ωn−ωm )t c−
n ]. (27b)

To solve these coupled mode equations, one first needs to
write down the matrix elements 〈ψ±

m |Ĥlight (t )|ψ±
n 〉. To do so,

let us assume that the carrier frequency of the impinging pulse
is resonant with the transition |ψ−1〉 → |ψ0〉 (correspond-
ing to the transition between the zero-energy state and the
first LL in the valence band) and then set ωL = |ω0 − ω1| =√

λ2 + 1 − λ.
In the untilted case, selection rules allow only transitions

that obey �|n| = 1 [38], which corresponds to choosing
matrix elements of the form 〈ψ (0)

m,±|Ĥlight|ψ (0)
n,±〉 
 δ|m|,|n|+1 +

δ|m|,|n|−1.
In the presence of tilt, however, the selection rule above is

not valid anymore, and new selection rules appear due to the
fact that the matrix elements of the interaction Hamiltonian
calculated with respect to the perturbed eigenstates read〈

ψ
(1)
m,±

∣∣Ĥlight

∣∣ψ (1)
n,±

〉 
 δ|m|,|n|+2 + δ|m|,|n|−2. (28)

Combining this extra set of selection rules with those of the
usual, untilted case, we can write the tilt-induced selection
rules as follows:

0 < �|n| � 2. (29)

This is the second result of our work. The tilt in Dirac cones
introduces an extra set of selection rules for light-matter
interaction, which essentially originates from the eigenstate
mixing imposed by the tilt itself [see Eq. (21)]. A schematic
representation of the different sets of selection rules for the

FIG. 3. Band structure of LLs in the vicinity of the Dirac points
for the case of (a) untilted and (b) tilted cones. As can be see, in
(a), the selection rules dictate, for example, that only the transitions
represented by gray lines, i.e., |ψ−2〉 → |ψ−1〉 and |ψ−2〉 → |ψ1〉, are
possible (assuming that |ψ−2〉 is the only initially populated level).
When the cone is tilted in (b), however, the red transitions, i.e.,
|ψ−2〉 → |ψ0〉 and |ψ−2〉 → |ψ2〉, become allowed. This is possible
due to the tilting extending the selection rules to encompass also
�|n| = 2 as a viable option. Note that in going from (a) to (b),
while the valence and conduction bands are being tilted, the energy
levels are not because they are, at first order in perturbation theory,
unaffected by the tilting. This, ultimately, is one of the reasons for
the appearance of extra selection rules.

untilted and tilted cases is shown in Fig. 3. A more careful
analysis of these selection rules reveals that while the simplest
model to describe light-matter interaction for untilted Dirac
cones is a three-level system (see, for example, Ref. [39]),
in the case of tilted cones, the simplest system that catches
the essential physics of tilted cones in a magnetic field is a
five-level system.

V. NONLINEAR OPTICAL RESPONSE

Once the coupled mode equations have been solved, we
can proceed with calculating the current, with its usual defini-
tion, i.e.,

J(t ) = 〈�(t )|σ|�(t )〉, (30)

where σ = σxx̂ + σyŷ. Substituting the expansion (26) into the
above equation, we get, for the components of the current,

Jμ(t ) =
∑
n,m

[(c+
m )∗c+

n ei(ωm−ωn )t 〈ψ+
m |σμ|ψ+

n 〉

+ (c+
m )∗c−

n ei(ωm+ωn )t 〈ψ+
m |σμ|ψ−

n 〉
+ (c−

m )∗c+
n e−i(ωm+ωn )t 〈ψ−

m |σμ|ψ+
n 〉

+ (c−
m )∗c−

n e−i(ωm−ωn )t 〈ψ−
m |σμ|ψ−

n 〉], (31)

and the expectation values of the Pauli matrices over the
perturbed states can be calculated up to order O(τ ) using the
results from the previous section. From here, we can then
calculate the Fourier transform of the induced current and the
corresponding nonlinear signal as I (ω) ∼ |ω J(ω)|2, where
J(ω) is the Fourier transform of the nonlinear current.
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FIG. 4. (a) Spectrum for different values of the tilting parameter
τ , with the magnetic field intensity set to B = 0.1T. (b) and (c) The
individual spectrum for τ = 0.5 and τ = 0, respectively. As can be
seen, the tilting of a cone shifts the higher harmonic of the spectrum
to higher orders, with a slope, estimated from (a), of about 72 Hz.

To study the nonlinear optical response of the system un-
der consideration we solve coupled mode equations for the
time-dependent coefficients defined by Eq. (27) using the
JULIA package DIFFERENTIALEQUATIONS.JL [40], and then we

compute the nonlinear electrical current using Eq. (31) and
the definition of the nonlinear signal given above. As stated at
the end of the previous section, we employ a five-level model
to describe the nonlinear response of 2D Weyl materials; that
is, our model contains only two levels in the valence band,
namely, |ψ−2〉 and |ψ−1〉, and two levels in the conduction
band, i.e., |ψ1〉 and |ψ2〉. The zero-energy state |ψ0〉, com-
mon to both Landau oscillators, constitutes the fifth level. As
initial condition, we assume that only the lowest LL is oc-
cupied, i.e., c−2(0) = 1. Moreover, we assume an impinging
electromagnetic pulse with an amplitude of E0 = 107 V/m;
a carrier frequency of ωL = 78 THz, resonant with the tran-
sition |ψ−2〉 → |ψ0〉; and a pulse duration of τ = 50 fs. We
performed simulations while varying the tilting parameter for
both the cases of fixed and varying magnetic field strength.
The results of these simulations are depicted in Figs. 4 and
5, respectively. However, before focusing on those results, let
us first concentrate on Fig. 6. There, we plot the nonlinear
response of a 2D Weyl material in the presence of a weak
magnetic field for the case where the impinging electric field
is polarized in the direction orthogonal to that of the tilt; that
is, for Fig. 6 we have assumed Aξ = 0 and set Aη to be equal
to Eq. (24). The parameters for this simulation, moreover, are
the same as those listed above. As can be seen from Fig. 6,
for the case of orthogonally polarized (with respect to the tilt
direction) pulses, the only effect of the tilting is to suppress
higher harmonics for values of the tilting parameter τ � 0.3,
and no particularly interesting dynamics occurs.

The situation where the impinging field is aligned with the
direction of the tilt, on the other hand, is profoundly different.
Let us first discuss the case of fixed magnetic field. To start
with, let us use the value B = 0.1 T for the magnetic field.
We will then investigate the influence of different values of
the magnetic field amplitudes later in this section. As can be
seen from Fig. 6(c), for τ = 0, i.e., untilted cones, our results
are consistent with those obtained in Ref. [39] [compare our
Fig. 6(c), for example, with Fig. 6(a) therein], even though
in our case we obtain a similar result with a magnetic field
approximately one order of magnitude lower than the one used
in Ref. [39]. This can be simply imputable to the presence of a
nonzero gap between the valence and conduction bands in 2D
Weyl materials, which is absent in graphene. As soon as we

FIG. 5. Contour plots of the spectrum with the harmonic order on the x axis and tilting parameter on the y axis for different values of
magnetic field amplitude: (a)–(c) 0.1, 1.0, and 5.0 T, respectively. We can see a trend on highest harmonic that a generated relative to tilting
parameter, and moreover, this trend is conserved for different magnetic field amplitudes. An increase in magnetic field causes higher nonlinear
effects; thus, more harmonics are generated in the nonlinear optical response.
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FIG. 6. Spectrum for different values of the tilting parameter τ

with the magnetic field intensity set to B = 0.1T. The polarization of
the impinging electromagnetic field in this case is orthogonal to the
tilting direction; that is, the electric field is polarized along the η (y)
direction. As can be seen, the only effect of the tilting in this case is
to suppress harmonics higher than the fundamental ones for values
of the tilting parameter τ � 0.3.

turn on the tilt, we can see from Fig. 4(a) that an increase of
the tilt parameter τ corresponds to a blueshift of the harmonic
spectrum, which, in turn, allows the generation of higher
harmonics than in the untilted case. Figure 4(a), moreover,
shows how the blueshift of the maximum of the harmonic
spectrum is approximately linear with τ . This phenomenon
is a consequence of the fact that the kinetic momentum
of an electron in the vicinity of a tilted cone is given by
p = k + (e/c)A(g) + (e/c)A. In this scenario, the vector po-
tential A(g) linearly displaces the electron momentum [see
Eq. (8)]. The action of this linear displacement, com-
bined with the action of the tilting on the interaction
Hamiltonian, ultimately makes sure that the blueshift ex-
perienced by the nonlinear spectrum is linear in τ . As a
concrete example of the possibility this offers for light-
matter interaction engineering, in Fig. 4(b) we explicitly
point to the case τ = 0.5, where the maximum of the
spectrum now sits around the 50th harmonic. Considering
the input carrier frequency of ωL = 78 THz, its 50th har-
monic corresponds to ω50 = 3900 THz, i.e., λ 
 480 nm.
By suitably engineering 2D Weyl materials to possess a tilt of
τ = 0.5 (along the x direction, in our case, but the same line
of reasoning would hold for an anisotropic tilt), it would be
then possible to realize a frequency converter capable of im-
plementing efficient conversion of light between the terahertz
(THz) and visible (blue, in this case) domains.

Figure 5, instead, shows how different values of the mag-
netic field affect the tilt-induced blueshift. As can be seen,
while the shift induced by the tilting parameter τ remains
essentially unaltered by an increasing amplitude of the applied
magnetic field, an increase of the latter changes the nonlinear

optical response of the system. In particular, it redistributes
the energy between the various harmonics, as can be seen,
for example, in Fig. 5(b), where intermediate harmonics have
higher intensity than the case with small magnetic field [see
Fig. 5(a), for example]. Moreover, increasing the magnetic
field even further leads to a more complicated scenario, as de-
picted in Fig. 5(c), where the nonlinear response as a function
of τ becomes much more complex. However, the blueshift
effect reported by our simulations is genuinely an effect of
the tilting parameter τ because it persists independently of the
value of the applied magnetic field, as can be seen from Fig. 5,
where, despite the “noise” introduced by the higher magnetic
field, the dependence of the nonlinear response on the tilting
parameter τ remains the same.

VI. CONCLUSION

In this work, we have studied how tilted Dirac cones in 2D
Weyl materials are affected by the presence of an external (or
artificial) magnetic field. We derived the analytical expression
for the LLs and eigenstates for the case of tilted cones using
first-order perturbation theory and have shown that when 2D
Weyl materials in the presence of magnetic field interact with
electromagnetic pulses, the tilting induces an extra set of
selection rules, which extends the usual ones to 0 < �|n| � 2.
We then computed the nonlinear optical response of 2D Weyl
materials immersed in magnetic fields and noticed that by
controlling the tilt of their cones, it is possible to achieve
a versatile and precise control of their nonlinear spectrum
and that by engineering Weyl materials with greatly tilted
cones, it is possible to achieve high-harmonic generation up
to the 80th harmonic for τ → 1. However, accounting for a
more physically feasible situation, we discussed the case of
τ = 0.5, where the 50th harmonic appears in the spectrum,
thus enabling efficient transfer of energy between THz and
UV radiation. In comparison, Ref. [39] discussed the efficient
THz-to-visible conversion of radiation in graphene in the pres-
ence of a magnetic field of 2 T. Here, instead, the tilting not
only can serve as a tuning parameter to enhance the generated
harmonic, allowing access to different spectral regions, but
also enables the same efficiency with much lower values of
the magnetic field, roughly one order of magnitude lower than
that used in Ref. [39].

Finally, we studied the impact of the magnetic field on this
process and concluded that while the overall trend does not
change, a change in the magnetic field intensity corresponds
to a redistribution of energy through the harmonics in the
spectrum, thus resulting in a more complex picture that could
offer some degree of control over the frequency conversion
process in such materials.

Our results show that by suitably engineering 2D Weyl
materials to possess specific tilting properties and by control-
ling the applied magnetic field (for example, through strain
and bending), it is possible to realize efficient THz-to-visible
frequency converters or to employ such devices (in particular,
their sensitivity to the magnetic field) for sensing applications,
where, for example, a local change in the lattice structure (due,
for example, to the adsorption of a certain molecule) could
vary (via artificial gauge) the intensity of the magnetic field
and therefore the response of the material.
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APPENDIX: SECOND-ORDER CORRECTION
TO THE LANDAU SPECTRUM

In this Appendix, we briefly present the general form of
the first nonzero correction to the LLs as a function of the
perturbative tilt parameter τ . As stated in the main text, it is
fairly easy to show that ε(1) = 0. Therefore, the first nonzero
correction to the LL energy spectrum would be quadratic in
τ . To achieve this, we need to consider also second-order
contributions to Eq. (15), i.e.,

(Ĥ0 + τV̂ )
(∣∣ψ (0)

n

〉 + τ
∣∣ψ (1)

n

〉 + τ 2
∣∣ψ (2)

n

〉)
= (

ε(0)
n + τε(1)

n + τ 2ε(2)
n

)(∣∣ψ (0)
n

〉 + τ
∣∣ψ (1)

n

〉 + τ 2
∣∣ψ (2)

n

〉)
,

(A1)

from which the second-order correction to the energy eigen-
values ε(2)

n can be calculated using the first-order results
discussed in Sec. III B together with the requirement that

2
〈
ψ (0)

n

∣∣ψ (2)
n

〉 + 〈
ψ (1)

n

∣∣ψ (1)
n

〉 = 0 (A2)

to obtain the following expression for the second-order cor-
rection to the energy (the interested reader can check out
the whole calculation in any standard quantum mechanics
textbook, for example, Ref. [37]):

ε(2)
n =

∑
m �=n

∣∣〈ψ (0
m

∣∣V̂ ∣∣ψ (0)
n

〉∣∣2

ε
(0
n − ε

(0)
m

, (A3)

where, as before, V̂ = Ĥtilt/τ and Ĥtilt is given by Eq. (14). To
calculate the argument of the modulus square of the numera-
tor, we can use Eq. (19) to get

∣∣〈ψ (0
m

∣∣V̂ ∣∣ψ (0)
n

〉∣∣2 = |αn,n+1δm,n+1 − αn,n−1δm,n−1|2

= |αn,n+1|2δm,n+1 + |αn,n−1|2δm,n−1. (A4)

Note that in going from the first to the second line of the
expression above, we have used the fact that the mixed
term coming from the modulus square is proportional to
δm,n+1δm,n−1 = δn−1,n+1 = 0 and therefore can be neglected.
Using the result above, we can then write the second-order
correction as follows:

ε(2)
n = |αn,n+1|2

ε
(0)
n − ε

(0)
n+1

+ |αn,n−1|2
ε

(0)
n − ε

(0)
n−1

. (A5)

We leave to the reader the rather cumbersome task of finding
the explicit expression of ε(2)

n as an explicit function of the
index n and the energy scale λ. Per se, this task is not par-
ticularly difficult; one, in fact, only needs to substitute in the
expression above the explicit expressions for the coefficients
αn, n ± 1 given by Eqs. (20) and the expression for εmn(0)

given by Eq. (11). The resulting expression is quite compli-
cated and cannot easily be simplified to a nice and compact
form.

Finally, we can then write the explicit form of the depen-
dence of the Landau energies on the tilting parameter τ as the
following second-order-accurate form:

εn = sn

√
λ2 + |n| + τ 2 Bn[

ε
(0)
n − ε

(0)
n+1

][
ε

(0)
n − ε

(0)
n−1

] , (A6)

where

Bn = |αn,n+1|2
[
ε(0)

n − ε
(0)
n−1

] + |αn,n−1|2
[
ε(0)

n − ε
(0)
n+1

]
. (A7)
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quasirelativistic electrons in graphene with an inplane electric
field and in tilted Dirac cones in α-(BEDT TTF)2I3, Phys. Rev.
B 92, 035306 (2015).

[11] J. Wyzula, X. Lu, D. Santos-Cottin, D. K. Mukherjee, I.
Mohelský, F. Le Mardelé, J. Novák, M. Novak, R. Sankar,
Y. Krupko, B. A. Piot, W.-L. Lee, A. Akrap, M. Potemski,

245425-8

https://doi.org/10.1126/science.1102896
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1038/nature04235
https://doi.org/10.1007/BF01397213
https://doi.org/10.1103/PhysRevB.78.045415
https://doi.org/10.1209/0295-5075/85/57005
https://doi.org/10.1103/PhysRevB.92.035306


TWO-DIMENSIONAL WEYL MATERIALS IN THE … PHYSICAL REVIEW B 107, 245425 (2023)

M. O. Goerbig, and M. Orlita, Lorentz-boost-driven magneto-
optics in a Dirac nodal-line semimetal, Adv. Sci. 9, 2105720
(2022).

[12] S. Tchoumakov, M. Civelli, and M. O. Goerbig, Magnetic-
Field-Induced Relativistic Properties in Type-I and Type-II
Weyl Semimetals, Phys. Rev. Lett. 117, 086402 (2016).

[13] A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer,
X. Dai, and B. Andrei Bernevig, Type-II Weyl semimetals,
Nature (London) 527, 495 (2015).

[14] M. Yan, H. Huang, K. Zhang, E. Wang, W. Yao, K. Deng,
G. Wan, H. Zhang, M. Arita, H. Yang, Z. Sun, H. Yao, Y.
Wu, S. Fan, W. Duan, and S. Zhou, Lorentz-violating type-
II Dirac fermions in transition metal dichalcogenide PtTe2,
Nat. Commun. 8, 257 (2017).

[15] L. L. Tao and E. Y. Tsymbal, Two-dimensional type-II
Dirac fermions in a LaAlO3/LaNiO3/LaAlO3 quantum well,
Phys. Rev. B 98, 121102(R) (2018).

[16] H. J. Noh, J. Jeong, E. J. Cho, K. Kim, B. I. Min, and B. G.
Park, Experimental Realization of Type-II Dirac Fermions in a
PdTe2 Superconductor, Phys. Rev. Lett. 119, 016401 (2017).

[17] Y. Xu, F. Zhang, and C. Zhang, Structured Weyl Points in
Spin-Orbit Coupled Fermionic Superfluids, Phys. Rev. Lett.
115, 265304 (2015).

[18] K. Koepernik, D. Kasinathan, D. V. Efremov, S. Khim, S.
Borisenko, B. Büchner, and J. van den Brink, TaIrTe4: A
ternary type-II Weyl semimetal, Phys. Rev. B 93, 201101(R)
(2016).

[19] T. E. O’Brien, M. Diez, and C. W. J. Beenakker, Magnetic
Breakdown and Klein Tunneling in a Type-II Weyl Semimetal,
Phys. Rev. Lett. 116, 236401 (2016).

[20] G. Autès, D. Gresch, M. Troyer, A. A. Soluyanov, and O. V.
Yazyev, Robust Type-II Weyl Semimetal Phase in Transition
Metal Diphosphides XP2 (X = Mo, W), Phys. Rev. Lett. 117,
066402 (2016).

[21] J. Ma, Q. Gu, Y. Liu, J. Lai, P. Yu, X. Zhuo, Z. Liu, J.-H. Chen,
J. Feng, and D. Sun, Nonlinear photoresponse of type-II Weyl
semimetals, Nat. Mater. 18, 476 (2019).

[22] Y.-Y. Lv, J. Xu, S. Han, C. Zhang, Y. Han, J. Zhou, S.-H.
Yao, X.-P. Liu, M.-H. Lu, H. Weng, Z. Xie, Y. B. Chen, J.
Hu, Y.-F. Chen, and S. Zhu, High-harmonic generation in Weyl
semimetal β-wp2 crystals, Nat. Commun. 12, 6437 (2021).

[23] Y. Tamashevich, L. D. M. Villari, and M. Ornigotti, Nonlinear
optical response of type-II Weyl fermions in two dimensions,
Phys. Rev. B 105, 195102 (2022).

[24] Z. Lan, N. Goldman, A. Bermudez, W. Lu, and P. Öhberg,
Dirac-Weyl fermions with arbitrary spin in two-dimensional
optical superlattices, Phys. Rev. B 84, 165115 (2011).

[25] T. He, X. Zhang, Y. Liu, X. Dai, G. Liu, Z.-M. Yu, and Y.
Yao, Ferromagnetic hybrid nodal loop and switchable type-I
and type-II Weyl fermions in two dimensions, Phys. Rev. B 102,
075133 (2020).

[26] H. Isobe and N. Nagaosa, Coulomb Interaction Effect in Weyl
Fermions with Tilted Energy Dispersion in Two Dimensions,
Phys. Rev. Lett. 116, 116803 (2016).

[27] Y. Guo, Z. Lin, J. Q. Zhao, J. Lou, and Y. Chen, Two-
dimensional tunable Dirac/Weyl semimetal in non-Abelian
gauge field, Sci. Rep. 9, 18516 (2019).

[28] J.-Y. You, C. Chen, Z. Zhang, X.-L. Sheng, S. A. Yang, and G.
Su, Two-dimensional Weyl half-semimetal and tunable quan-
tum anomalous Hall effect, Phys. Rev. B 100, 064408 (2019).

[29] Q. Lin, M. Xiao, L. Yuan, and S. Fan, Photonic Weyl point in
a two-dimensional resonator lattice with a synthetic frequency
dimension, Nat. Commun. 7, 13731 (2016).

[30] K. Bender, I. Hennig, D. Schweitzer, K. Dietz, H.
Endres, and H. J. Keller, Synthesis, structure and
physical properties of a two-dimensional organic metal,
di[bis(ethylenedithiolo)tetrathiofulvalene] triiodide,
α-(BEDT-TTF)2 I3, Mol. Cryst. Liq. Cryst. 108, 359 (1984).

[31] H. Kino and T. Miyazaki, First-principles study of electronic
structure in α-(BEDT-TTF)2I3 at ambient pressure and with
uniaxial strain, J. Phys. Soc. Jpn. 75, 034704 (2006).

[32] N. Tajima and K. Kajita, Experimental study of organic zero-
gap conductor α-(BEDT-TTF)2I3, Sci. Technol. Adv. Mater. 10,
024308 (2009).

[33] M. Vozmediano, M. Katsnelson, and F. Guinea, Gauge fields in
graphene, Phys. Rep. 496, 109 (2010).

[34] L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-
relativistic Theory (Butterworth-Heinemann, Oxford, England,
1981).

[35] M. I. Katsnelson, Graphene: Carbon in Two Dimensions
(Cambridge University Press, Cambridge, 2012).

[36] M. O. Goerbig, Electronic properties of graphene in a strong
magnetic field, Rev. Mod. Phys. 83, 1193 (2011).

[37] A. Messiah, Quantum Mechanics (Dover, Mineola, NY, 2014).
[38] D. S. L. Abergel and V. I. Fal’ko, Optical and magneto-optical

far-infrared properties of bilayer graphene, Phys. Rev. B 75,
155430 (2007).

[39] M. Ornigotti, L. Ornigotti, and F. Biancalana, Generation of
half-integer harmonics and efficient THz-to-visible frequency
conversion in strained graphene, APL Photon. 6, 060801
(2021).

[40] C. Rackauckas and Q. Nie, Differentialequations.jl–A per-
formant and feature-rich ecosystem for solving differential
equations in julia, J. Open Res. Software 5, 15 (2017).

245425-9

https://doi.org/10.1002/advs.202105720
https://doi.org/10.1103/PhysRevLett.117.086402
https://doi.org/10.1038/nature15768
https://doi.org/10.1038/s41467-017-00280-6
https://doi.org/10.1103/PhysRevB.98.121102
https://doi.org/10.1103/PhysRevLett.119.016401
https://doi.org/10.1103/PhysRevLett.115.265304
https://doi.org/10.1103/PhysRevB.93.201101
https://doi.org/10.1103/PhysRevLett.116.236401
https://doi.org/10.1103/PhysRevLett.117.066402
https://doi.org/10.1038/s41563-019-0296-5
https://doi.org/10.1038/s41467-021-26766-y
https://doi.org/10.1103/PhysRevB.105.195102
https://doi.org/10.1103/PhysRevB.84.165115
https://doi.org/10.1103/PhysRevB.102.075133
https://doi.org/10.1103/PhysRevLett.116.116803
https://doi.org/10.1038/s41598-019-54670-5
https://doi.org/10.1103/PhysRevB.100.064408
https://doi.org/10.1038/ncomms13731
https://doi.org/10.1080/00268948408078687
https://doi.org/10.1143/JPSJ.75.034704
https://doi.org/10.1088/1468-6996/10/2/024308
https://doi.org/10.1016/j.physrep.2010.07.003
https://doi.org/10.1103/RevModPhys.83.1193
https://doi.org/10.1103/PhysRevB.75.155430
https://doi.org/10.1063/5.0049678
https://doi.org/10.5334/jors.151

