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Plasma instability and amplified mode switching effect in THz field effect
transistors with a grating gate

G. R. Aizin ,1,* J. Mikalopas ,1 and M. Shur 2,†

1Kingsborough College, The City University of New York, Brooklyn, New York 11235, USA
2Rensselaer Polytechnic Institute, Troy, New York 12180, USA

(Received 24 March 2023; revised 8 June 2023; accepted 9 June 2023; published 21 June 2023)

We developed a theory of collective plasma oscillations in a dc current-biased field effect transistor with
an interdigitated dual grating gate and demonstrated a new mechanism of electron plasma instability in this
structure. The instability in the plasmonic crystal formed in the transistor channel develops due to conversion
of the kinetic energy carried by the drifting plasmons into electromagnetic energy. The conversion happens at
the opposite sides of the gate fingers due to the asymmetry produced by the current flow, and occurs through
the gate finger fringing capacitances. The key feature of the proposed instability mechanism is the behavior
of the plasma frequency peak and its width as functions of the dc current bias. At a certain critical value of the
current, the plasma resonant peak with a small instability increment experiencing redshift with increasing current
changes to the blue-shifting peak with a large instability increment. This amplified mode switching effect has
been recently observed in graphene-interdigitated structures. The obtained theoretical results are in very good
qualitative agreement with these experiments and can be used in future designs of the compact sources of THz
electromagnetic radiation.
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I. INTRODUCTION

Application of sub-THz and THz technology ranging
from 6G communications [1], homeland and hardware cyber
security [2], industrial controls [3], very large-scale inte-
gration testing [4] to biomedical applications [5], including
cancer detection [6] and, possibly, even treatment [7] all
require portable, efficient, and inexpensive detectors, and
sources. The state-of-the-art THz sources include Schottky
diode frequency multipliers [8], impact ionization avalanche
transit time diodes [9], quantum cascade lasers [10], reso-
nant tunneling diodes [11], and femtosecond laser systems
for time domain spectroscopy [12]. These sources cannot
simultaneously satisfy the requirement of cost, efficiency,
and portability. The plasmonic THz field effect transistors
(TeraFETs) [13] have emerged as a prime candidate for com-
pact, efficient, and inexpensive sub-THz and THz detectors
and sources [14]. These devices use the excitation and insta-
bilities of plasma waves in the transistor channels. Achieving
efficient, portable, and tunable THz sources is an especially
challenging and important technological problem. Different
instability mechanisms, including the Dyakonov-Shur insta-
bility [15] and transit time instability [16], have been explored
theoretically and experimentally, but the demonstrated plas-
monic THz sources all need improvement in power and
efficiency to enable the key application of the 6G communi-
cation [17]. To achieve these improvements, combining these
transistors into arrays [18], using interdigitated structures
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[19,20], and achieving a plasmonic boom instability [21,22]
have been proposed, promising THz output powers in the
100-mW range.

In this work, we explore a new mechanism of electron
plasma instability in the current biased TeraFETs with dual
interdigitated grating gates. This instability occurs in the plas-
monic crystal formed in this structure. In the current biased
electron channel, the drifting plasmons carry both electro-
magnetic (EM) and kinetic energy [23,24]. We show that in
the grating gated channel, the kinetic and EM energy flows
exchange near the edges of the individual gate fingers due
to fringing capacitances between the gate fingers and the
channel. This may result in the partial conversion of the ki-
netic energy carried by drifting plasmons into EM energy,
accompanied by the exponential growth of the plasma wave
amplitude. The energy flow conversion leads to plasmonic
instability in the plasmonic crystal cells. Coherence of the
plasma wave over many elementary cells in the plasmonic
crystal is maintained by the adjustment of the phases of the
waves in the TeraFET sections so that the plasma instability
develops in the entire channel. A similar effect takes place
in a single-gate TeraFET with periodically changing section
width. In this case, conversion between kinetic and EM en-
ergies and the instability are achieved due to the “plasmonic
stubs” playing the same role as the fringing capacitances in the
interdigitated structures [24]. The instability is significantly
improved in TeraFETs with asymmetric dual grating gates.
In this geometry, the asymmetric boundary conditions in the
elementary cells of the plasmonic crystal lead to a further
increase of the instability increment for one preferred direc-
tion of the electron drift velocity. This effect is similar to the
Dyakonov-Shur instability in asymmetric transistors [15]. The
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FIG. 1. (a) Schematics of the graphene FET with a dual asymmetric grating gate. (b) Spatial profile of the 2D electron density in the FET
channel. (c) Equivalent electric circuit diagram for the graphene channel. TL1 and TL2 are transmission lines representing the top-gated and
back-gated plasmonic cavities, and Cb1 and Cb2 are the fringing capacitances.

new and key feature of the proposed instability mechanism
is the involvement of two plasmonic modes intersecting at a
certain critical excitation dc current. At this current, a low-
increment plasmonic peak redshifting with the excitation dc
current bias becomes a higher increment blue-shifting peak.
This amplified mode switching (AMS) effect has been ob-
served in interdigitated graphene structures [25].

If the collisional and viscous damping of the plasma modes
exceed the plasma wave growth increment, our theory predicts
the red and blue shifts of THz plasma frequency and imping-
ing THz wave attenuation changes caused by a dc current flow.
We show that these predictions are in good qualitative agree-
ment with the recent measurements of the THz absorption
in interdigitated graphene structures [25,26]. We analyze the
conditions necessary for the experimental observation of the
instability and the developing compact and efficient sources of
THz radiation based on the mechanism analyzed in this work.

The rest of the paper is organized as follows. In Sec. II, we
derive the basic equations for the plasmonic crystal formed
in the graphene TeraFET with an interdigitated grating gate.
In Sec. III, we present solutions of the plasmon dispersion
equations and analyze the plasma instability effect. Section IV
compares the predictions of our theory with the available ex-
perimental data [25,26]. Concluding remarks and a discussion
of possible device applications are in Sec. V.

II. BASIC EQUATIONS

We consider plasma oscillations in the two-dimensional
(2D) electron gas in graphene field effect transistor (FET) with
the geometry shown in Fig. 1(a). The graphene FET channel
is sandwiched between two dielectric layers of thickness d .
The back gate is used to change the electron density in the
2D channel uniformly, and the two top grating gates serve
to provide the periodic modulation of the electron density
with suitable profiles. These interdigitated dual-grating-gate
graphene FETs were used recently to study various THz
plasmonic effects in the graphene conducting channel with
periodically modulated electron density [25–27]. A distinctive
feature of this structure compared to the FET with a single
grating gate is the built-in asymmetry provided by the asym-
metric positioning of the two top grating gates. As shown in
a number of publications, this asymmetry is critical for the

detection of THz EM radiation [27,28] and can potentially be
used for a generation as well [25, and references therein].

We restrict our consideration to the case when the equilib-
rium electron density profile in the graphene channel consists
of periodically repeated segments 1 and 2 with high elec-
tron density n01 and low electron density n02 having lengths
L1 and L2, respectively, as shown in Fig. 1(b). This density
distribution can be easily achieved, for example, by applying
the proper gate biases to the back gate and one of the top
grating gates while keeping another top grating gate at zero
potential [25,27]. In this case, the electron system in the
channel represents a periodic plasmonic medium forming a
one-dimensional (1D) plasmonic crystal [21,22,24,29,30]. We
also assume that a dc current passes through the FET and is
characterized by the electron drift velocities v01 and v02 in
segments 1 and 2, with n01v01 = n02v02. In the following cal-
culations, we consider the graphene layer in the plane z = 0,
choose the x-axis in the source-drain direction, and assume
that all characteristics of the 2D electron system depend on
the x coordinate only.

Plasma waves in the 2D electron gas with periodically
modulated electron density can be described in the hydro-
dynamic approximation, provided that the electron-electron
scattering length is the shortest characteristic length in
the system—in particular, shorter than the lengths of the
channel segments L1,2 and the length of the transient region
between segments, ∼ d . In the hydrodynamic approximation,
the system of equations for the electron density n(x, t ) and
velocity v(x, t ) in the 2D electron fluid in graphene consists
of the equation of continuity

∂n

∂t
+ ∂ (nv)

∂x
= 0, (1)

representing conservation of the number of electrons, and the
Euler equation describing the electron fluid dynamics. The
latter equation for the graphene electron fluid at arbitrary
values of the fluid velocity v(x, t ) � vF , where vF is graphene
Fermi velocity, was derived in Refs. [31,32] and can be written
in the form

2 − β2

2(1 − β2)

∂v

∂t
+ v

2(1 − β2)

∂v

∂x
+ v

2n

∂n

∂t
+ v2

F

2n

∂n

∂x

+ vF (1 − β2)1/4

√
π h̄

√
n

eE ind = 0, (2)
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where β(x, t ) = v(x,t )
vF

is the dimensionless local drift velocity,
E ind is the self-consistent electric field induced by the plasma
charge fluctuations, and −e is the electron charge. In Eq. (2),
we neglected the collision term due to random scattering of
plasma fluctuations, assuming that ωτ � 1, where ω is the
plasmon frequency and τ is the characteristic scattering time.
The Euler Eq. (2) is significantly simplified in the limit of
the small local drift velocities when β2 � 1. In this limit,
we linearize Eqs. (1) and (2) for the small fluctuations of
electron density and the local drift velocity n(x, t ) = n0 +
δnqωe−iqx+iωt and v(x, t ) = v0 + δvqωe−iqx+iωt . In the qua-
sistatic limit, the induced electric field δE ind

qω and the charge
fluctuation −eδnqω are connected via the local gate capaci-
tance C = εε0

d as

δE ind
qω = − iqeδnqω

C
, (3)

where ε is the dielectric constant of the gate dielectric. With
these approximations, Eqs. (1) and (2) yield the following
system of linear equations for the Fourier harmonics δnqω

and δvqω :

qn0δvqω − (ω − qv0)δnqω = 0

ωδvqω − q

(
e2vF√

π h̄
√

n0C
+ v2

F

2n0

)
δnqω = 0. (4)

This system has a nontrivial solution if and only if ω = v(±)
p q,

where

v(±)
p = v0

2
± vp, vp =

√
v2

F

2
+ e2√n0dvF√

πεε0h̄
. (5)

Here, v(±)
p are velocities of the plasmons traveling down-

stream (+) and upstream (–) in the graphene electron fluid
drifting with velocity v0, and vp is the plasma wave velocity
in the absence of drift [33]. The general solution of Eq. (4)
can be expressed in terms of the total plasmonic current in
the channel of width W, Iqω = −e(n0δvqω + v0δnqω )W , and
the electric potential in the channel Vqω = − eδnqω

C . For the
plasmon of frequency ω, we obtain

Iω(x) = I1e−iq1x + I2e−iq2x

Vω(x) = 1

CW

(
I1

vp(1 + β0/2)
e−iq1x − I2

vp(1 − β0/2)
e−iq2x

)
,

(6)

where β0 = v0
vp

, q1,2 = ω
v0/2±vp

, and constants I1,2 are deter-
mined by the boundary conditions.

Equation (6) describes the spatial distribution of the plas-
monic current Iω and potential Vω in the gated graphene
channel at the frequency ω. It follows from Eq. (6) that the
values of Iω and Vω at the opposite ends of the gated plasmonic
cavity of length 	 (x = 0, 	) are connected by the transfer

matrix t̂ : (
Vω(0)
Iω(0)

)
= t̂

(
Vω(	)
Iω(	)

)
, (7)

t̂ = e−i β0ω	

2vp

(
cos ω	

vp
− 1

2 iβ0 sin ω	
vp

iZ0 sin ω	
vp

i
Z0

sin ω	
vp

cos ω	
vp

+ 1
2 iβ0 sin ω	

vp

)
,

(8)

where Z0 = 1
WCvp

is the characteristic impedance of the plas-
monic transmission line representing the cavity [29].

Equations (6) through (8) describe the plasmon dynamics
in the gated segments 1 and 2 of the graphene channel in
Fig. 1. To obtain dispersion relation for the 1D plasmonic
crystal formed in the graphene FET, these solutions should be
matched at the boundaries between the segments. The custom-
ary boundary conditions include continuity of the plasmonic
current in the transistor channel. However, in the transistor
with the grating gate, this current continuity breaks down at
the boundary between the gated and ungated (back-gated)
parts of the channel, because part of the ac plasmonic current
branches off into the gate due to fringing capacitive coupling
between the gate fingers and the ungated part of the electron
channel. If the lengths of the gate finger L1 and the ungated
(back-gated) section of the channel L2 are much larger than
the distance between them (∼ d), this fringing capacitance
Cb is essentially the capacitance of the coplanar capacitor,
Cb = αεε0W where α ∼ 1 is the geometric factor depending
on L1,2 and d , as shown in the Appendix. The presence of
this capacitance largely went unnoticed in the previous studies
of the plasmonic transistor structures with the grating gate.
The second grounded grating gate with a length much shorter
than L1 has no direct effect on the electron gas in the channel,
but changes the fringing capacitance on one side of the gated
plasmonic cavity in comparison with the other one, making
the cavity boundaries asymmetric. As we show in the next
section, this asymmetry strongly affects the plasma instability
in the system.

The electric circuit diagram for the dual-grating-gate
graphene channel is shown in Fig. 1(c), in which plasmonic
transmission lines TL1 and TL2 describe the top-gated and
back-gated cavities 1 and 2, respectfully, and the impedances
Cb1 and Cb2 correspond to the fringing capacitances at the
boundaries between the cavities (see Appendix). The presence
of the second grounded gate changes the fringing capacitance
on one side so that Cb1 �= Cb2, and we assume that Cb2 = γCb1,
where the asymmetry factor γ is the fitting parameter of the
model. The transfer matrix connecting the voltage Vω and the
plasmonic current Iω across the capacitors Cb1,2 can be found
from the continuity of the voltage and conservation of the total
current as

ŝ(Zb1,2) =
(

1 0
1

Zb1,2
1

)
, (9)

where Zb1,2 = 1
iωCb1,2

.
Using Eqs. (7) through (9) one can connect the values

of Vω and Iω at the opposite ends of the plasmonic crystal
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elementary cell at x = 0 and = L = L1 + L2,

(
Vω(0)
Iω(0)

)
= t̂1ŝ(Zb1)t̂2ŝ−1(Zb2)

(
Vω(L)
Iω(L)

)
, (10)

where matrices t̂1 and t̂2 defined in Eq. (8) correspond to the
gated and back-gated cavities with different electron densities.
In the general form, the dispersion relation for the 1D drifting

plasmonic crystal can be found from Eq. (10), and the Bloch
boundary conditions (Vω(L), Iω(L)) = e−ikL (Vω(0), Iω(0))
as [24]

detT̂ − eikLTr T̂ + e2ikL = 0, (11)

where T̂ = t̂1ŝ(Zb1)t̂2ŝ−1(Zb2) and kε[−π
L , π

L ] is the plasmon
Bloch wave vector. Substituting expressions for the t- and
s-matrices given by Eqs. (8) and (9) into Eq. (11) after some
lengthy but straightforward calculations, we finally obtain

cos

(
kL + 1

2
M1θ1 + 1

2
M2θ2

)
= cos θ1 cos θ2 − 1

2

[
η

1
4 + η− 1

4 + 1

2

(
1

Zb1
+ 1

Zb2

)
(M1Z02 − M2Z01) − Z01Z02

Zb1Zb2

]
sin θ1 sin θ2

+ i

2

(
1

Zb1
− 1

Zb2

)
(Z02 cos θ1 sin θ2 + Z01 cos θ2 sin θ1). (12)

Here, η = n02
n01

, θi = ωLi
vpi

, Mi = v0i
vpi

, and Z0i = 1
WCvpi

, where the
index i = 1, 2 refers to the top-gated and back-gated cavities,
respectively. Equation (12) determines the energy spectrum
of the drifting 1D plasmonic crystal in the graphene transistor
with the grating gate. This equation is analyzed in the next
section.

III. RESULTS

In this section, we use the dispersion Eq. (12) to analyze
the energy spectrum of the drifting plasmonic channel.

In Fig. 2, we plot the plasmonic band spectrum ω(k) =
ω′(k) + iω′′(k), −π � kL � π , found from Eq. (12) at differ-
ent values of the drift velocity. In this calculation, we assumed
L1 = L2 = L/2, d

L = 0.005, η = 0.1, and the asymmetry fac-
tor γ = 2. The spectra shown on different panels of Fig. 2
correspond to the different drift velocities described by the
Mach number M in the back-gated cavities, M = v02

vp2
. The

plots of ω′(k) demonstrate that the discrete plasmon energy
levels in the cavities are broadened into the energy bands as
expected. At finite M, the bands are shifted because of the
Doppler effect.

The most remarkable result is the appearance of the imag-
inary part of the plasma frequency at M �= 0. These finite
values of ω′′ added to the positive imaginary part of the
plasma frequency due to ordinary collisional damping that
may either increase (at ω′′ > 0) or decrease (at ω′′ < 0) the
overall damping of the drifting band plasmons [34]. If ω′′ < 0
and |ω′′| exceed the collisional damping, the plasma instability
is developed. The physical reason for finite ω′′ in the energy
spectrum of the plasma excitations drifting in the plasmonic
medium comprised of periodically repeated different sections
was discussed in Refs. [23,24]. The total power flow in the
drifting plasmon consists of EM and kinetic powers. If the
total power flow at both ends of the crystal elementary cell
in the channel is the same, the plasmon remains stable, and
ω′′ = 0 (ω′′ > 0 if the collisional damping is accounted for).
The presence of the fringing capacitors breaks this continuity
because part of the plasmonic current branches off the channel
into the gate and vice versa. The most striking example of
this behavior is the Dyakonov-Shur instability in the tran-

sistor channel with asymmetric boundaries [15]. The sign of
ω′′ depends on the phase-matching conditions of the plasma
waves in different elementary cells, i.e., ω′′ can have opposite
signs in different finite intervals of the Bloch wave vector
values for one plasma mode. It can also change the sign for
different plasma modes at the same value of the Bloch wave
vector [24,30]. This qualitative explanation is confirmed by

FIG. 2. Complex frequencies ω = ω′ + iω′′ of the band plas-
mons versus the Bloch wave number k in the density-modulated FET
channel at different values of the Mach number M = v02/vp2. Here,
v02 and vp2 are the drift velocity and the plasma velocity, respectively,
in the back-gated cavities, ω0 = vp2/L, L is the crystal period. All
other parameters are defined in the text.
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FIG. 3. Evolution of the plasmonic spectrum at the center of the Brillouin zone (k = 0) with increasing electron density n01 in the grating
gated cavities. Here, n02 = const is the electron density in the back-gated cavities, ω0 = vp2/L. All other parameters are defined in the text.

the results presented in Fig. 2. Our calculations (not shown
here) also demonstrate that ω′′ disappears in the absence of
the fringing capacitances (Cb1,2 = 0) at any value of M.

Plasma modes at the center of the Brillouin zone (k =
0) present special interest because these modes are probed
by the external EM radiation incident on the transistor with
the grating gate. In Fig. 3, we plot the evolution of these
modes with increasing electron density n01 proportional to the
grating gate voltage. In this calculation, we take M = 0, so
that ω′′ = 0, and γ = 2. Without density modulation (n01 =
n02), the plasma modes at the center of the Brillouin zone have
frequencies ωn = 2πvp

L n, n = 1, 2, . . . , where vp1 = vp2 =
vp is defined in Eq. (5) (the empty lattice limit). When n01

increases, the two types of quantized plasma modes localized
in either the top-gated or the back-gated cavities emerge. The
frequencies of the back-gated plasma modes do not depend
on n01 and are presented by nearly horizontal lines in Fig. 3.
The frequencies of the top-gated modes increase with n01

as ω ∼ n1/4
01 . This dependence is characteristic of the gated

plasma modes in graphene [35]. Due to mode coupling, the
final plasmon spectrum is formed after multiple anticrossings
of the original modes, with splitting depending on the mode
parity. The final plasma modes are spread over multiple ele-
mentary cells and cannot be assigned to only the top-gated or
the back-gated interacting plasmonic cavities.

In Fig. 4, we plot the frequencies ωL
vp2

of several low-lying
plasma modes at the center of the Brillouin zone as a function
of the dimensionless drift velocity v02

vF
at different values of

the asymmetry factor γ = Cb2
Cb1

. In this calculation we used
vF = 1 × 106 m/s and n01 = 1 × 1016 m−2. All other param-
eters are the same, as in Fig. 2. The most noticeable feature
of this dependence is either a red- or blueshift of the mode
frequencies with changing drift velocity. Physically, the shift
occurs due to shifting the plasmon dispersion curves in the
k-space with increasing M, cf. Fig. 2. It has the same nature
as the red- or blueshift of the frequencies of the upstream and
downstream plasmons in Eq. (5) due to the Doppler effect.

These shifts cause additional anticrossings of different
modes shown in Fig. 4. Near the anticrossing points, there are
two plasma modes with the same frequency ω at two different
values of the drift velocity. One of these modes is subject to
the redshift and another one to the blueshift with increasing
drift velocity. This type of plasma mode behavior was recently
observed in the experiment [25] and will be discussed in more
detail in the next section.

The imaginary part of the plasma frequency ω′′ peaks near
the anticrossing points, making these points most susceptible
to the nonmonotonic changes in the plasmon damping or in-
stability. The absolute value of ω′′ depends on the asymmetry
of the fringing capacitances at the edges of the top-gated cavi-
ties characterized by the parameter γ , and also on the direction
of the drift velocity v0 in asymmetric structures. Comparison
of the results obtained for the symmetric structures (γ = 1)
in Fig. 4(a) with that for the asymmetric structures (γ = 10)
in Figs. 4(b) and 4(c) shows that in the asymmetric struc-
tures, the absolute value of ω′′ increases, though the plasmon
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FIG. 4. Plasmonic spectrum at the center of the Brillouin zone (k = 0) as a function of the drift velocity v02/vF at different values of the
asymmetry factor γ = Cb2/Cb1 and direction of the drift velocity v0: (a) γ = 1, v0 ≶ 0; (b) γ = 10, v0 > 0; (c) γ = 10, v0 < 0.

frequency ω′ remains essentially the same. In asymmetric
structures, the value of ω′′ also depends on the direction of
the drift velocity. It follows from the comparison of Fig. 4(b)
and 4(c), where in both figures γ = 10, but v0 > 0 in Fig. 4(b)
and v0 < 0 in Fig. 4(c).

The analysis in this section demonstrates a number of
new promising features in the plasmon spectrum in the THz
graphene transistor with the interdigitated grating gate, which
can make this system attractive for experimental studies for
both fundamental and applied purposes.

IV. DISCUSSION

The interaction of the THz EM radiation with plasmons in
the graphene transistors with interdigitated grating gates was
recently studied experimentally in several works [25–27]. In
this section, we analyze the experimentally verifiable predic-
tions of our theoretical model and compare the results with
current experimental data.

In Fig. 5, we plot the frequencies f and the instability
increments/decrements ω′′ of the plasma modes at the cen-
ter of the Brillouin zone as a function of the electron drift
velocity v02/vF in the back-gated sections of the graphene
channel. These modes are excited by an external THz EM
wave incident on the periodic transistor structure. In this
calculation, we used the grating gate period L = 4 μm, the
thickness of the gate dielectric d = 20 nm, and the dielectric
constant ε = 4.5. We also assumed that the electron densities
in the top-gated and back-gated sections of the channel are
n01 = 1 × 1016 m−2 and n02 = 0.1 × 1016 m−2, respectively;
the Fermi velocity in graphene vF = 1 × 106 m/s; and the
asymmetry factor γ = 2. The strength of the resonant interac-
tion between the plasma mode of frequency ω and an external
EM wave is determined by the quality factor Q = ωτ , where
τ is the mode relaxation time. For a typical experimental
relaxation time τ ∼ 0.1 ps, the first six modes (dashed gray
lines in Fig. 5) have the quality factor Q < 1, and these modes
are suppressed due to excessive damping. For illustrative pur-
poses, we chose τ = 0.09 ps so that the quality factor Q = 1
corresponds to the threshold plasma frequency fs = 1.77 THz
(black horizontal line in Fig. 5). In this configuration, the

frequency of the lowest active plasma mode (the red line in
Fig. 5) first experiences the redshift when the electron drift
velocity becomes finite and increases. The Q-factor of the
mode decreases and, at some value of the drift velocity vA

02,
reaches the critical value Q = 1 (see Fig. 5). At v02 > vA

02,
the height of the resonant peak effectively reduces to zero

FIG. 5. Frequencies ( f ) and increments/decrements (ω′′) of the
plasma modes exited by an external EM wave in the graphene dual-
grating-gate TeraFET as a function of the drift velocity v02. Both the
damped modes (dashed gray lines) and the active mode (red and blue
lines) are shown, fs is the threshold mode frequency with the quality
factor Q = 1, and vA,B

02 are the drift velocities at the boundaries
(dashed vertical lines) of the gap in the detected plasmonic spectrum.
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due to increased damping. However, when the drift velocity
continues to increase, the resonant peak reemerges at a larger
value of the drift velocity vB

02 (see Fig. 5). The frequency of
this reemerged mode experiences the blueshift with increasing
drift velocity, and its Q-factor increases as well. This interest-
ing switching behavior together with the finite gap with no
plasmonic absorption peak at vA

02 < v02 < vB
02 was recently

observed in Ref. [25].
In Ref. [25], the authors also reported decreased resonant

absorption of external EM radiation in the plasmonic crystal
in comparison with the same absorption that occurred without
the electron density modulation by the grating gate. This effect
was interpreted as an amplification of the THz EM radiation
by the plasma excitations in the density-modulated electron
system. This unusual behavior can be explained in our theo-
retical model as follows.

In Fig. 5, we also plotted the imaginary part of the plasma
frequency ω′′ as a function of the drift velocity. The value of
ω′′ for the active mode (the blue line in Fig. 5) is negative
at almost all values of the drift velocity, indicating that this
mode should be subject to instability with the instability in-
crement |ω′′| depending on the drift velocity. The instability
is countered by the plasmon damping 1

τ
. Since 1

τ
� |ω′′|,

the plasma mode experiences damping, but with the effective
relaxation time τeff defined as 1

τeff
= 1

τ
− |ω′′|. The absorption

of an external EM wave by the plasmons is determined by this
effective damping and therefore depends on the drift veloc-
ity. It follows from Eq. (12) that without density modulation
(n01 = n02), ω′′ = 0 at any drift velocities. In the density-
modulated system (n01 > n02) at finite drift velocities, ω′′ < 0
and the overall damping rate 1

τeff
and absorption are reduced.

This AMS effect was observed in the experiment [25].
As shown in Fig. 5, ω′′ changes nonmonotonically, with

the drift velocity reaching the maximum negative value some-
where between vA

02 and vB
02, where the plasma frequency

switches its behavior from redshifting to blueshifting. How-
ever, the peak in ω′′ is not symmetric, with the values of |ω′′|
noticeably larger at large drift velocities where the plasma
frequency experiences the blueshift. This can explain why
the negative changes in absorption were observed only at
the drift velocities corresponding to the blueshift of the fre-
quency. This qualitative explanation does not account for
the changes in absorption due to increased electron density
in the density-modulated channel, but the latter changes do
not depend on the drift velocity and are not responsible for
the different behavior of the absorption in the regions with
opposite frequency shifts. No absorption decrease with the
dc current excitation was reported in the graphene TeraFETs
with symmetric dual grating gates [26]. This result can be
explained by the very small values of the instability incre-
ments in symmetric structures with asymmetry factor γ = 1,
as shown in Fig. 4(a).

This analysis validates the developed theoretical model.
The presented theory qualitatively explains the experimental
results [25,26]. It also provides general quantitative agree-
ment with the experiment in terms of the predicted plasma
frequencies and the used range of the drift velocities, all with
the Mach number M < 1. The numerical estimates were done
for a system with the material parameters and geometry close

to the values used in the experiment. The gate biasing diagram
shown in Fig. 1(a) differs from the biasing scheme used in the
experiment [25], where both top grating gates were utilized
to control the electron density in the channel. This may affect
the values of the fringing capacitances and change numerical
estimates. However, since the equilibrium electron density
profile remains the same regardless of the biasing scheme, the
theoretical results will not change qualitatively. Also, in the
experiment [25], the length of the top-gated and back-gated
cavities, L1 and L2 in Fig. 1(a), were different. This leads
to additional dependence of the plasma resonant effects on
the ratio L1/L2, which is not captured in our model, where
L1 = L2 was assumed. The theoretical estimates of the drift
velocity necessary to observe the AMS behavior of the plasma
frequencies are larger than the values estimated in the exper-
iment [25]. This discrepancy could be due to uncertainties
in the values of some material parameters we used in our
calculations—in particular, the Fermi velocity in graphene,
the dielectric constant, and the thickness of the gate dielectric
in the experimental samples.

V. CONCLUSION

The presented theory is qualitatively confirmed by the
available experimental data [25] and can be used for designing
compact and efficient THz sources based on the TeraFETs
with interdigitated grating gates. A plasmonic TeraFET ef-
ficiently generates the EM radiation when the instability
increment of the plasma modes exceeds the plasmon damping
rate. So far, this condition has not been reached in experimen-
tal studies. Our theory suggests several paths to overcome this
limitation. The calculated plasma mode increment increases
together with the plasma frequency and can exceed damp-
ing in samples with sufficiently large electron density and/or
smaller grating period. The increment also significantly in-
creases in the samples with asymmetric fringing capacitances
or stubs [24]. The asymmetry could be further enhanced by the
gate finger design, such as threshold voltage profiling under
the gates [36], increasing the asymmetry factor γ . The power
of the THz EM signal generated in transistors with the grating
gate is much larger than in a single-gate transistor because
of the coherent addition of the signals generated in each
elementary cell of the plasmonic crystal formed in the tran-
sistor channel. In this work, we considered the interdigitated
TeraFET graphene structure as an example of the suggested
instability effect because of the available experimental data.
However, this approach could equally apply to conventional
TeraFET materials, such as silicon [37], InGaAs [38], or even
p-diamond [39], and to other structures, with interdigitated
rings being most promising for detection because of the con-
tactless THz excitation inducing fairly high magnetic fields
[40]. Although the developed theory applies to both semicon-
ductor and graphene structures, the record-high mobilities in
graphene at room temperature make it a preferable material
for observation of the instability effects.

In summary, we developed a theory of collective plasma
oscillations in the graphene transistor with an interdigitated
dual-grating gate. We demonstrated that in the current-biased
transistor, some plasma modes become unstable and de-
crease the attenuation of the EM wave interacting with the
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FIG. 6. The structure geometry and the static electric field distri-
bution near the boundary between the gated and the ungated parts of
the transistor channel (a) and the equivalent electric circuit describing
this boundary (b).

channel. The plasma frequencies of different plasma modes
can experience either a red- or blueshift with increasing
electron drift velocity. A single plasma mode can switch its
behavior from redshifted to blueshifted with increasing drift
velocity. These two regimes are separated by the interval
of the drift velocities where the plasma mode is completely
suppressed. The theoretical results obtained in this work are
in very good qualitative agreement with recent experiments
[25,26] and have wide-ranging applications for future designs
of the new compact sources of THz EM radiation.
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APPENDIX

In this Appendix, for reference purposes, we estimate the
fringing capacitance between the grating gate finger of length
L1 and the adjacent ungated part of the 2D electron channel of
length L2. The schematic diagram in Fig. 6(a) shows the ge-
ometry modeling the boundary between the gated and ungated
parts of the electron channel. It includes the 2D electron layer
positioned at y = 0 and −∞ � x � ∞, and the metal gate
positioned at y = d and −∞ � x � 0. The gate finger and
the 2D layer are held at electric potentials V = V0 and V =
0, respectively. The relevant electrostatic problem is solved
using the conformal mapping technique for the solution of
two-dimensional potential problems [41]. Complex electric
potential W (x, y) = u + iV (x, y)/V0 in the whole xy plane can

be found by the Schwartz-Christoffel mapping method as [41]

z = d

π
(1 + πW + eπW ), (A1)

where z = x + iy, and u is a real parameter (−∞ � u � ∞)
defining parametric equations of the equipotential lines (V =
const) in Eq. (A1). Some of these lines are shown in Fig. 6(a).
At V = 0, it follows from Eq. (A1) that y = 0 and

x = d

π
(1 + πu + eπu). (A2)

The charge density σ (x) in the 2D layer can be found from
Eq. (A1) as

σ (x) = εε0V0

∣∣∣∣dW

dz

∣∣∣∣
y=0

= εε0V0

d

1

1 + eπu
, (A3)

where ε is the dielectric constant of the surrounding medium.
Equations (A2) and (A3) allow evaluation of the charge Q
accumulated on the capacitor plates by integrating Eq. (A3)
along the x-axis. Since the charge density in Eq. (A3) expo-
nentially decreases at x → ∞ and approaches constant value
at x → −∞ over characteristic distances ∼ d , the integration
can be limited to the interval −L1 � x � L2, provided that
L1,2 � d . In this limit, as it follows from Eq. (A2), points
x1 = −L1 and x2 = L2 on the x-axis correspond to the points
u1 = − L1

d and u2 = 1
π

ln πL2
d on the u-axis. Then,

Q = W
∫ L2

−L1

σ (x)dx = W
∫ u2

u1

σ (u)
dx

du
du = CtotV0, (A4)

where W is the channel width and

Ctot = εε0

d
L1W + εε0W

π
ln

πL2

d
(A5)

is the total capacitance between the gate and the 2D electron
layer. The first term in Eq. (A5) corresponds to the capacitance
Cpl = εε0

d L1W of the plate capacitor formed between the gate
and the electron layer underneath the gate, and the second
term represents the fringing capacitance

Cb = αεε0W, ˜α = 1

π
ln

πL2

d
. (A6)

The equivalent electric circuit corresponding to Fig. 6(a) is
shown in Fig. 6(b). These results are used in our calculations
in Secs. II and III.
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