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Searching for iron nanoparticles with a general-purpose Gaussian approximation potential
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We present a general-purpose machine learning Gaussian approximation potential (GAP) for iron that is
applicable to all bulk crystal structures found experimentally under diverse thermodynamic conditions, as well
as surfaces and nanoparticles (NPs). By studying its phase diagram, we show that our GAP remains stable
at extreme conditions, including those found in the Earth’s core. The new GAP is particularly accurate for
the description of NPs. We use it to identify new low-energy NPs, whose stability is verified by performing
density functional theory calculations on the GAP structures. Many of these NPs are lower in energy than those
previously available in the literature up to Natoms = 100. We further extend the convex hull of available stable
structures to Natoms = 200. For these NPs, we study characteristic surface atomic motifs using data clustering and
low-dimensional embedding techniques. With a few exceptions, e.g., at magic numbers Natoms = 59, 65, 76, and
78, we find that iron tends to form irregularly shaped NPs without a dominant surface character or characteristic
atomic motif, and no reminiscence of crystalline features. We hypothesize that the observed disorder stems
from an intricate balance and competition between the stable bulk motif formation, with bcc structure, and the
stable surface motif formation, with fcc structure. We expect these results to improve our understanding of the
fundamental properties and structure of low-dimensional forms of iron and to facilitate future work in the field
of iron-based catalysis.
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I. INTRODUCTION

Iron nanoparticles (NPs) are widely used for catalytic
purposes, e.g., for the hydrogen evolution reaction (HER)
[1,2], the oxygen reduction reaction (ORR) [2], or light olefin
synthesis [3,4]. To enable an economy not relying on crude
oil for energy or base chemicals, the development of cost-
effective and scalable catalysts for these reactions is crucial.
Nonprecious catalysts such as iron NPs are of special interest
because of their high reactivity and low cost compared to
Pt- and Pd-based catalysts.

To study the atomic-level processes of these reactions
in detail, while considering a wide variety of NPs and ac-
tive sites, an accurate but also computationally cheap model
is necessary. However, among the existing models, density
functional theory (DFT) is too expensive for such comprehen-
sive studies and the different classical interatomic potentials
lack in accuracy and general applicability. Early on, many
embedded atom method (EAM) potentials were developed
for general application to body-centered cubic (bcc) α-Fe
[5–8]. These were followed by a bond-order potential (BOP)
[9], even able to describe magnetic interactions [10] and, to
some extent, face-centered cubic (fcc) γ -Fe. Later, poten-
tials for special purposes were created, for instance to study
radiation defects [11] or the conditions in the Earth’s core
[12]. Recently, different flavors of machine learning (ML)
potentials [13] have been trained for iron, including neural
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network potentials [14,15] and Gaussian approximation po-
tentials (GAPs) [16,17].

Some of the potentials mentioned above claimed general
applicability, but are not truly general as they are not ap-
plicable to all crystal phases, surfaces, NPs and disordered
structures (including the liquid). Rather, they are typically
designed to describe a wide range of properties of α-Fe, with
no guarantee of transferability outside of this range. In this
work, we present a new GAP ML potential (ML) trained on
a much wider range of structures for true general applica-
bility and transferability across a wide range of problems in
atomistic modeling of iron. The results are compared to the
GAP potential by Dragoni et al. [16], as the current state
of the art, and the EAM potential by Mendelev et al. [5],
as one of the most used classical alternatives with a lower
computational cost. These were chosen as representative of
two different philosophies for deriving interatomic potentials:
empirical potentials fitted to material properties and MLPs
trained on energies and forces computed from DFT. While
both types of potentials are ultimately designed to reproduce
the material properties, which are in turn linked to the ener-
gies and forces of atomic configurations, the two approaches
should be distinguished as they lead to different tradeoffs
between accuracy and computational cost.

We showcase the ability of our GAP to accurately de-
scribe the potential energy surface (PES) of crystalline and
nanostructured iron, including a reasonable description of
different surfaces and phase transformations at extreme ther-
modynamic conditions. The highlight application of this paper
is the search for stable iron NPs of different sizes, a task for
which our GAP achieves accuracy remarkably close to that of
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DFT. We hope that this work will speed up the discovery of
efficient iron-based nanocatalysts.

II. DATABASE GENERATION

There are three critical steps in training a GAP: (1) training
database generation, (2) selection of model architecture and
hyperparameters, including the choice of atomic descriptors
and data regularization, and (3) the computation of the fit-
ting coefficients. These have been covered in detail in the
literature, and we refer the reader to Refs. [18,19] for an
in-depth discussion. Here, we will only give a brief account
of the technical ingredients of our GAP and focus mostly on
accuracy benchmarks and applications.

Ensuring the accuracy and transferability of a GAP, or
any other MLP, for that matter, relies on the availability of a
database of atomic structures covering the relevant regions of
configuration space. For a general-purpose MLP, this means
that comprehensive sampling of the PES needs to be done.
Our iron database contains dimers and trimers, crystalline
structures [bcc, fcc, hexagonal close-packed (hcp), simple cu-
bic (sc) and diamond] over a wide range of cell parameters and
with “rattled” atomic positions (i.e., atoms slightly displaced
about their equilibrium positions), transitional structures be-
tween bcc-fcc and bcc-hcp, surface slabs cleaved from the
relaxed bulk structures, NPs and liquid configurations. For
each structure, the magnetic configuration with the lowest
energy was chosen for inclusion in the database. In this way,
our GAP is fitted to the DFT ground state with regard to
the magnetic degrees of freedom, which are otherwise not
explicitly taken into account in our PES description. Detailed
types and numbers of structures in our training database are
given in Table S1 of Ref. [20].

The energy, forces, and virials for the atomic structures
in our training database were computed at the DFT level
of theory using VASP [21–23]. We used the PBE functional
[24] with standard PAW pseudopotentials [25,26] for Fe (with
eight valence electrons, 4s23d6). The kinetic energy cutoff for
plane waves was set to 400 eV and the energy threshold for
convergence was 10−7 eV. All the DFT calculations were car-
ried out with spin polarization, which can describe collinear
magnetism. While noncollinear magnetic effects can in prin-
ciple be described in VASP, the gain in accuracy in the context
of MLP simulation is only modest compared to the increased
CPU cost and difficulty to systematically converge thousands
of individual calculations in a high-throughput setting.

On this database, we trained our GAP with two-body,
three-body, and many-body smooth overlap of atomic posi-
tions (SOAP) [27,28] atomic descriptors using a cutoff of
5, 3, and 5 Å, respectively. A “core” potential, a tabulated
pairwise interaction at very short interatomic distances, was
added to model the strongly repulsive regime down to 0.1 Å.
The number of sparse configurations and the regularization
parameter were both chosen per configuration type and are
listed in Table S1 of Ref. [20]. The training was carried
out with the QUIP/GAP codes [29,30]. The full command
passed to the gap_fit binary is given in Ref. [20]. We again
refer the reader to the literature for further details on GAP
training [18,19].

III. GAP VALIDATION

In this section, we validate our GAP against a wide range
of simulation problems and compare it to existing potentials.
We first motivate the need and usefulness of a general-purpose
MLP for iron. We then benchmark the GAP for the description
of bulk iron, phase transitions, elastic properties, and surface
calculations.

A. General-purpose versus bcc-specific iron potential

While ferromagnetic bcc is the ground-state structure of
bulk iron at room temperature and pressure, iron transitions
to other stable structures as the thermodynamic conditions
change. In addition, surfaces cleaved from the bulk look dif-
ferent depending on the bulk crystal structure. Nanostructured
iron, in particular NPs, will not necessarily have a bcc or, for
that matter, ordered structure, even at room temperature and
pressure. Finally, liquid iron is simply disordered and thus its
structure differs significantly from bcc or any other crystal
structure. Interatomic potentials trained from bcc data can
be very useful to accurately describe the properties of α-Fe,
but their accuracy deteriorates rapidly as they extrapolate in
regions of configuration space away from the training data.
Here we show how our GAP overcomes these issues and
provides a consistent prediction of the PES of iron for widely
different problems, enabling an accurate description of NPs
of varying sizes. We will also show that, in the absence of
an explicit inclusion of the magnetic degrees of freedom, this
transferability is achieved at the cost of sacrificing accuracy in
the description of some of the properties, e.g., of the surface
energetics of the different crystal phases.

Figure 1 shows the energy and force errors of (a) the GAP
potential developed in this work, (b) the GAP potential by
Dragoni et al. [16] and (c) the EAM potential by Mendelev
et al. [5] against the corresponding DFT values in two training
databases: the training database of our GAP on the left and
that of the Dragoni GAP on the right. The energy values
have been referenced to the bulk energy of bcc iron for each
potential, to make the results comparable between the poten-
tials. Each panel shows the RMSE for the respective data.
Importantly, Fig. 1 is not intended as an accuracy test of our
GAP, for which reporting the training-set RMSE is meaning-
less. We rather use it to showcase the difficulty encountered
by bcc-specific iron potentials to reproduce the PES of other
structures, on the one hand, and to quantify the ability of
the GAP framework to learn the PES within a significantly
more comprehensive region of configuration space than that
corresponding to bcc, on the other. In this regard, our GAP
is able to learn our general-purpose training database to an
accuracy of 20 meV/atom which, while satisfactory for many
purposes, is significantly higher than the 2 meV/atom with
which the Dragoni GAP can learn its own bcc-specific train-
ing database. At the same time, our GAP only significantly
deviates in the predictions of high-energy structures in the
Dragoni database, with an overall RMSE of 60 meV/atom,
mostly arising from outliers in the high-energy regions of
the bcc PES, whereas the Dragoni GAP struggles to capture
the energetics of many low-energy structures in our database
(as well as the high-energy ones), with an overall RMSE of
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RMSE on our training database (general) RMSE on Dragoni et al.’s database (bcc-specific)

FIG. 1. Energy and force RMSE of (a) the GAP potential developed in this work, (b) the GAP potential by Dragoni et al. [16] and (c) the
EAM potential by Mendelev et al. [5] compared to DFT. On the left are the RMSEs computed on our training database and on the right are
the RMSEs on the training database of Dragoni et al. [16]. The energy values have been referenced to the bulk energy of bcc iron for each
potential. Note that on the left, only the panel for our GAP includes the diamond and sc structures.

128 meV/atom. The EAM’s performance is more predictable,
with reasonably good RMSE’s for bcc iron.

We note that the test in Fig. 1 (left) was done only for
physically meaningful structures. The diamond and simple
cubic structures used in the training of our GAP are not
included in the plots for the reference potentials, as these
structures are high in energy and not physically meaningful
and would not make for a fair, nor instructive, comparison.
They are included in the plot for our GAP, though, increasing
the RMSE from 12 to 20 meV/atom there. Dimer and trimer
structures are excluded from the plots as well, as they reach
very high energies and would obscure the more important data
ranges. All other configurations used in the training are shown
here, including the different bulk crystal structures, surfaces,
melt, vacancies and NPs.

Unsurprisingly, the energies in our training database are
very well reproduced by the GAP potential developed in this
work. The GAP potential by Dragoni et al. [16] reproduces
the energies almost to the same RMSE as the EAM potential
by Mendelev et al. [5]. For both potentials, nucleation clus-
ters, NPs and structures derived from hcp pose the greatest
problems, with RMSEs of 312, 171, and 151 meV/atom for
the Dragoni GAP, and 460, 343, and 119 meV/atom for the
Mendelev EAM. The energies of structures derived from bcc
on the other hand are predicted best, with RMSEs of 8 and
11 meV/atom, respectively.

Again, unsurprisingly, the forces in our training database
are reproduced very well with the GAP potential developed in
this work. Both the GAP potential by Dragoni et al. [16] and
the EAM potential by Mendelev et al. [5] predict forces that
are systematically too large by factors of approximately 1.1
and 1.6, respectively.

The energy and force errors shown in Fig. 1 are signifi-
cantly lower with our GAP than with the reference potentials,
which had to be expected as the data contains many types of
structures that the reference potentials were never intended
for. It is still not a given that our GAP would reproduce
the energies and forces so well in the different regions of
configuration space, as we have observed that the addition
of training data in one region usually leads to a very slight
degradation in the other regions, a phenomenon that we as-
cribe to the absence of explicit magnetic degrees of freedom
in our GAP. Also note the slopes of the force error data for
the two reference potentials, especially the Mendelev EAM.
This shows a typical behavior of empirical potentials to have
too strong a driving force towards stable configurations, by
design, in order to avoid unstable trajectories in molecular
dynamics (MD) simulations.

B. Description of bulk iron

Figure 2 shows the relative stability of the bulk crystal
phases versus the atomic volume for all three potentials.
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FIG. 2. Energy of different Fe crystal phases over a wide range
of atomic volumes: (a) the GAP of this work, (b) the GAP potential
by Dragoni et al. [16], and (c) the EAM potential by Mendelev et al.
[5]. Vertical black lines mark the equilibrium atomic volumes of the
bcc and fcc phases. DFT data for each crystal phase are underlayed
as thick dashed lines in each panel.

Curves over a larger range of atomic volumes and additional
diamond and sc structures are shown in Ref. [20], Fig. S1.
The shaded dashed curves represent DFT reference values.
The atomic volumes of the DFT minimum structures for bcc
and fcc are marked in each panel.

The GAP developed in this work and the GAP by Dragoni
et al. capture the bcc curve very well, including the minimum.
The EAM by Mendelev et al. has the minimum at a slightly
too large volume and diverges from the DFT reference data at
lower and higher atomic volumes. The fcc energies are only
reproduced well throughout the whole range considered by
our GAP. The GAP by Dragoni et al. only gives the correct
energies from approximately 11.5 to 16 Å3/atom. Towards
lower atomic volumes the slope is much too steep, erroneously
predicting fcc iron to be less stable there than bcc iron. The
EAM by Mendelev et al. does not capture fcc well at all, with
an exception around 12 Å3/atom where it gives approximately
the correct energies (but wrong trends). However, there the
hcp energy is much too low, with both phases predicted as

having similar energy. From 8 to 10 Å3/atom, where hcp
should be the stable crystal phase, either bcc appears as more
stable or all three crystal phases are practically identical in
energy. With the Dragoni GAP, hcp is never the most stable
structure in the atomic volume range shown here. At even
larger volumes (see Fig. S1 in Ref. [20]), hcp becomes more
stable, but spuriously so, with a predicted energy almost as
low as for the bulk bcc minimum. The GAP developed in this
work predicts the correct energies also for the hcp structure
over the whole volume range studied.

Therefore both the Dragoni GAP and the Mendelev EAM
show strong deviations from the DFT stabilities and predict
the bcc phase as the stable one over too wide a volume
range, with the high-pressure hcp phase missing. This can
be easily attributed to the fact that the reference potentials
were developed for the bcc phase, neglecting the other crystal
structures. Of the problems at very high volumes (see Fig. S1
of Ref. [20]), only one seems important: the unphysical behav-
ior of hcp beyond 16 Å3/atom could lead to configurations
blowing up during MD. (This has been fixed in the fracture
GAP [17], based on the Dragoni GAP, see Fig. S2.)

Figure 3 shows the energies for strained bulk cells at
different cell parameters for all three crystal structures and
the three different potentials, each as the difference to the
corresponding DFT value. For bcc, the energy landscape is
reproduced equally well by the GAP potential by Dragoni
et al. [16] and the GAP developed in this work. The EAM
potential by Mendelev et al. [5] shows larger disagreement
with the DFT reference, especially at low atomic volumes.
Both for fcc and hcp, the energy error is significantly lower
for the GAP developed in this work compared to the other two
potentials. Noticeably, the Mendelev EAM performs slightly
better than the Dragoni GAP. Both potentials overestimate the
energy at low and underestimate it at high atomic volumes.

The lowest-energy structure is marked in black in each
panel of Fig. 3 for the respective potential [ferromagnetic
(FM) bcc, antiferromagnetic (AFM) fcc, and nonmagnetic
(NM) hcp]. The lowest DFT energy structure is marked in
green in all panels for reference. Local minima with higher
energy are marked in grey and purple for the interatomic
potentials and DFT, respectively. The minima for the GAP
developed in this work coincide with the DFT minima for
bcc and hcp. For the Dragoni GAP the bcc minimum differs
only marginally from the DFT reference, for the Mendelev
EAM slightly more. The hcp cell parameters predicted by the
Dragoni GAP and the Mendelev EAM deviate substantially
from the DFT reference.

For the fcc cell, multiple minima exist for DFT [9,31]. The
lowest in energy is the AFM magnetic configuration with a
tetragonal cell (c longer than a), but two FM minima with
cubic cells exist as well, usually called ferromagnetic low
spin (FMLS) and ferromagnetic high spin (FMHS). Of the
three potentials, only the GAP developed in this work repro-
duces more than one minimum structure correctly: the AFM
and the FMLS. The Dragoni GAP does have a cubic and a
tetragonal minimum structure as well, but with a = 3.416 Å
and c = 4.042 Å, the tetragonal minimum is outside of the
plotting range of Fig. 3. The Mendelev EAM does not have
a tetragonal cell minimum at all, but just a cubic cell mini-
mum corresponding to the FMHS at approximately the correct
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FIG. 3. Energy error (difference between interatomic potential
and DFT energies) over a space of structural parameters. Rows
contain bcc, fcc and hcp crystal structures and columns contain the
three different potentials: the GAP potential developed in this work,
the GAP potential by Dragoni et al. [16] and the EAM potential by
Mendelev et al. [5]. The first structural parameter is always the cell
parameter a and the second is the cell parameter c for bcc and fcc, but
the aspect ratio c/a for hcp. Marked in black are the lowest-energy
structures in each panel for the corresponding potential, marked in
green the lowest DFT energy structures. Interatomic potential and
DFT data agree when green and black rectangles overlap on the
graph. Additional local minima are marked in grey and purple for
the interatomic potentials and DFT, respectively.

cell parameter, with cell parameter slightly too large at a =
3.658 Å, compared a = 3.634 Å from DFT. All cell parame-
ters are given in Table S2 in Ref. [20].

The reproduction of the cell parameters of the crystalline
phases shown in Fig. 3 works well for the bcc phase with all
three potentials. Still, for the Mendelev EAM the deviation
from the DFT cell parameters and the errors in the surround-
ing energy landscape are larger than with the Dragoni GAP
and the GAP developed in this work. However, for the fcc
and hcp phases, both reference potentials yield large errors in
the energy landscape and cell parameters far from the DFT
ones, while our GAP gives very low errors and the correct
cell parameters. While multiple local minima exist for the
cell parameters of the fcc cell, one for the tetragonal AFM
configuration and two for the cubic FMLS and FMHS states,

FIG. 4. Transition between (a) bcc and fcc and (b) bcc and hcp
crystal structures calculated with DFT, the GAP potential developed
in this work, the GAP potential by Dragoni et al. [16] and the EAM
potential by Mendelev et al. [5]. Energies are referenced to the bcc
bulk energy for each potential.

no potential has a minimum for all three of these. Thus, for
our GAP, the only shortcoming here is that it does not have a
minimum for the FMLS structure. The reason for this is the
way that GAP fits the underlying data smoothly, potentially
removing shallow minima in some instances. Note that, even
if the FMHS minimum is missing, the error is still low.

We remark here that the inability of the Dragoni GAP
and Mendelev EAM potentials to accurately describe crystal
phases other than bcc is to be expected, and not an artifact,
since they were designed to correctly describe bcc iron only.
An accurate description of the low-pressure bcc structures
can still be obtained with these potentials, especially with the
Dragoni GAP, which should be able to indeed outperform our
GAP for simulation of single-phase bcc iron.

C. Phase transitions

So far we have discussed the accuracy of our GAP to
describe (meta) stable structures. However, a general-purpose
potential to be used in dynamic structure generation, e.g., in-
volving MD simulation, also needs to accurately describe the
PES along important transition paths between crystal phases.
Since the initial and final states, as well as the minimum
energy path for a transition, depend on the specific force
field used, we choose the following approach to be able to
compare the potentials to DFT and among them. For the
transformations from bcc to fcc and from bcc to hcp, transition
structures were created by linear interpolation between the
cell parameters and atomic positions of the endpoint structures
at 19 points along the path as shown in Fig. 4. The minimum
DFT energy structures were used for all potentials, i.e., to the
two reference potentials these endpoints are not the minimum
energy structures, but for our GAP they are, as there the cell
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FIG. 5. Elastic constants for all crystal structures and potentials,
compared with DFT results. Note that the Mendelev EAM predicts
a cubic symmetry for the fcc structure, that is predicted tetragonal
by DFT.

parameters are identical to the DFT ones. Thus, at the fcc and
hcp endpoints, the Dragoni and Mendelev energies differ from
the DFT reference values. All curves are referenced to the bcc
bulk energy.

Along the bcc to fcc path shown here, our GAP and the
Mendelev EAM reproduce the energy barrier reasonably well,
our GAP a little too low and the Mendelev EAM a little too
high. The Dragoni GAP energies along the path are consid-
erably higher than with the other potentials. Along the bcc to
hcp path, the Dragoni GAP and the Mendelev EAM trace the
DFT curve up to x ∼ 0.3 (where x is the reaction coordinate),
but then quickly diverge and reach an endpoint far from the
DFT one (more so for the Dragoni GAP than the Mendelev
EAM). Our GAP’s curve has a slightly different shape, with
a steeper incline at low x and a higher maximum, but still fits
the DFT curve much better than the other two potentials.

We note again that these curves were not obtained through
the minimum energy path, e.g., by performing a nudged
elastic band (NEB) calculation [32], but rather by linear inter-
polation between the endpoint structures. Hence, the maxima
in the transition curves cannot be interpreted as “barriers”
(i.e., the energy calculated at the saddle point along the mini-
mum energy path), as lower-barrier paths might exist.

D. Elastic properties

The elastic constants of all three DFT minimum-energy
structures have been computed with all potentials by straining
the structures in all relevant directions (depending on the
symmetry) in 5 steps with strain increments in the range of
10−5 to 10−2 to check for consistency, as implemented in the
Atomic Simulation Environment (ASE) [33]. The results are
shown in Fig. 5.

The elastic constants of the bcc structure are generally
reproduced well by both the GAP by Dragoni et al. and our
GAP. With the Mendelev EAM, C11 is noticeably too low by
approximately 10% and for C44 the difference to the DFT

reference value is about twice as large as for the two GAP
potentials. The error for C12 is only half as large as with the
Dragoni GAP potential, though. For the hcp elastic constants,
our GAP also yields low errors with respect to the DFT data.
Both the reference potentials significantly underestimate the
elastic constants. For the fcc elastic constants, the results are
much more mixed: while most of the Mendelev EAM values
are significantly too low, our GAP and the Dragoni GAP give
values that are a mix of too low or high ones with some that
are spot on.

For the elastic constants shown in Fig. 5, again only the
bcc phase is represented well by all three potentials, with
the Mendelev EAM showing the largest errors compared to
the DFT reference values. However, the elastic constants of
the hcp phase are only reproduced well by our GAP and the
fcc phase is not reproduced well by any of the potentials.
While the reference potentials were not developed for these
crystal structures, our GAP does have the necessary structures
in the training database and still fails in the prediction for
the fcc phase. Although we tried extensively to train a GAP
that could correctly reproduce the elastic constants of all three
crystal phases by fine tuning the regularization parameters and
sparse set configurations of the strained+rattled structures,
we did not manage to obtain a fit that predicted all of them
accurately at the same time. We attribute this to the fact that
each crystal structure belongs to a different magnetic branch
with possibly significantly different energetics, including the
energy derivatives (i.e., forces and the stress tensor, used to
compute the elastic constants). Different magnetic configura-
tions exist for the fcc phase, depending on the stained state.
Without the explicit treatment of the magnetic moments, the
underlying energy landscape has discontinuities where the
lowest energy magnetic state changes. Our GAP can resolve
these branches, but only implicitly, whenever the structures
are sufficiently different in terms of atomic arrangements.
While it should be possible to train a dedicated potential
to reproduce the elastic constants of any one crystal phase
and magnetic configuration, predicting all of them accurately
with a general potential seems impossible within our current
methodological framework, especially when many other types
of configurations are also considered. We speculate that only
an iron MLP which explicitly accounts for the magnetic struc-
ture of iron will be able to accurately capture all of these
features simultaneously. Augmenting the GAP framework to
incorporate magnetism is far beyond the scope of this work,
but we expect advances in this area within the next few years.

E. Surfaces

Another stringent test for an interatomic potential is the
prediction of surface energies cleaved and reconstructed along
various crystallographic planes, since these structures look
significantly different from the bulk. To calculate the energies
of surfaces with various Miller indices cleaved from the bcc,
fcc and hcp bulk structures, slabs with a number of layers
between 4 and 16 were set up using ASE [33]. These were
then relaxed using DFT calculations with a fixed box size. We
ensured that the amount of added vacuum perpendicular to
the slabs was sufficient to allow for relaxation in this direction
and rule out any interaction between the periodic copies of
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the slabs. We observed these slabs to have nontrivial magnetic
structure, e.g., showing a strong dependence on the number of
atomic monolayers. Thus converging these DFT relaxations
was not possible in every case and, even when the calculations
converged, local energy minima were found that were not
necessarily also the global minima.

The result of the DFT relaxations is primarily dependent on
the setup of the initial magnetic moments and the final mag-
netic configuration resulting from those. Large differences up
to ∼100 meV/atom for the same slab with different magnetic
configurations were found. The fcc surface slabs proved more
problematic than those of the other crystal structures in this
regard. Typically, the fcc magnetic configurations consisted of
layers with opposite local magnetic moments (not necessarily
all with the same magnitude), one or more atomic layers
thick.

To extract meaningful surface energies from the energies
of the slabs, convergence of the surface energy with respect
to the slab thickness would be expected. This was found for
many surface indices, but in some cases no convergence could
be observed, indicating that only local minima were found
for at least some of the slabs. To improve the performance
of our GAP for surfaces, surface slabs relaxed with DFT
were further relaxed with earlier versions of our GAP and
single-point DFT calculations of the resulting structures fed
back into the training set in an iterative manner (known as
“iterative training” [34]).

The surface structures in our database were split into two
categories: thin slabs that are too thin to have a bulklike region
in the center and thicker slabs that do contain such a bulklike
center. For the thin slabs, the regularization parameter during
training was chosen 25 times higher than the default (the
higher the regularization parameter the less stringently the
GAP is required to follow the data). This was done to keep
the structures in the database, but focus on the more realistic
surfaces from the thicker slabs.

The surface energies for all three crystal structures and
various surface indices are shown in Fig. 6, for our GAP and
the GAP by Dragoni et al., compared against the DFT values.
Data points for a given surface index are connected by lines
between the different potentials and the indices are encoded
in color for easier tracking. An equivalent plot comparing our
GAP to the EAM by Mendelev et al. is shown in Fig. S3 of
Ref. [20].

For the bcc surface energies, both Dragoni’s and our GAP
give results that are comparable and match the DFT references
reasonably well. While the overall value range for the Dragoni
GAP better matches the one found using DFT (especially
for high-energy surfaces, which our GAP overestimates), our
GAP performs better in terms of reproducing the correct or-
der of the low-energy surface indices, i.e., there are fewer
crossings of the connecting lines. For the fcc surfaces, both
GAPs predict the DFT reference values poorly. While the
energies come out too high with our GAP, the one by Dragoni
shows energies that are too low. Recall the issues already men-
tioned with convergence of fcc slab calculations with DFT
as a function of the number of atomic layers; this is likely
a problem that necessitates the explicit inclusion of magnetic
structure and cannot be fully solved within the standard GAP
framework.

FIG. 6. Surface energies of a wide range of surface indices for
the GAP by Dragoni et al. and our GAP, compared with the DFT
values.

The hcp surface energies are predicted much too low with
the Dragoni GAP, for some indices even negative, a clear sign
of extrapolation outside of the training set. Our GAP, on the
other hand, predicts all surface energies in a range similar to
the one predicted by DFT, although with sizable errors. The
EAM by Mendelev et al. gives bad predictions for the surface
energies of all three crystal structures (Fig. S3 of Ref. [20]).

The calculation of the surface energies shown in Fig. 6
was challenging for some of the surface indices, as finding
the magnetic ground state for these systems is much harder
than for small bulk unit cells. In a few instances, it was not
even possible to converge the DFT calculation at all. In other
cases the magnetic layering changed erratically between slabs
with a different number of layers, so that no convergence
of the surface energy with increased slab thickness could be
found. There, even trying to use the magnetic configuration of
one slab to inform the initial configuration for a similar slab
failed. This and the interpolation between different magnetic
states in the fitting of our GAP led to mixed results. Conse-
quently, the surface energies are more accurate for bcc where
only the FM state exists and fewer convergence problems
occurred in the creation of the training database. Still, our
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GAP performs noticeably better than the other two potentials,
giving a reasonable range of values for all surface energies
and the correct order of the lowest-energy surfaces for bcc.
The Dragoni GAP performs only slightly worse than our GAP
for bcc (where it was trained), but gives even negative surface
energies for hcp, which could lead to instabilities in dynamics
simulations. Lastly, the Mendelev EAM yields high errors for
the surface energies of all crystal structures, as it was fitted
only to properties of the crystalline bulk and liquid.

IV. APPLICATION TO SELECTED PROBLEMS

In this section, we benchmark our Fe GAP with represen-
tative use cases. We go beyond simple numerical scores, like
RMSE and mean absolute error (MAE), and focus on how
the potential performs when trying to reproduce experimental
trends in (1) thermal expansion, (2) the solid-liquid phase
transition, and (3) the temperature-pressure phase diagram.

A. Thermal expansion

The thermal expansion was studied using MD calculations
with ASE [33,35]. Systems with 1024 atoms were set up in the
minimum DFT bcc structure and kept initially at 200 K (the
lowest temperature in the series) for 1 ps to equilibrate and
for another 2 ps for averaging with a time step of 1 fs. This
procedure was repeated, step by step, increasing the tempera-
ture in intervals of 200 K up to 1600 K. Detailed simulation
parameters are specified in Ref. [20] (see also Refs. [36,37]
therein).

The data for the Dragoni GAP lines up almost perfectly
with their DFT data [38], which is itself at lower volume
than the experimental data by, e.g., Basinski et al. [39] and
Ridley et al. [40]. The Mendelev EAM comes closest to the
experimental data, but only really agrees around 200 K and
between 1190 and 1660 K (where Basinski et al. found fcc
Fe, as opposed to the bcc Fe predicted by EAM). Our GAP
predicts the lowest atomic volumes at all temperatures, lower
than the DFT data reported by Dragoni et al., consistent with
our DFT data. We note the two discontinuities in experimental
data by Basinski et al. that take place first at the α to γ and
then at the γ to δ phase boundaries. The only one of these
happening where simulation data is available (α to γ ) is not
captured by any of the potentials.

The coefficients of thermal expansion were fitted around
400 to 600 K, where data points were available. The fitting
ranges are shown in Fig. 7 as solid lines and the coefficients
are noted next to the curves. From the three potentials studied,
the Dragoni GAP comes closest to the experimental values
and our GAP differs the most. All three potentials underesti-
mate the experimental values.

The thermal expansion curve for our GAP starts at lower
atomic volume than the reference potentials, in accordance
with the cell parameters shown in Fig. 3. Also note the much
larger sampled range of temperatures and volumes around the
1600 K data point for our GAP. We attribute this to the fact
that the potential is exploring the energy landscape above the
melting point (which is underestimated by our GAP, com-
pared to experiment), but is missing a nucleation center for the
liquid phase. We deal with the solid-liquid phase transition in
Sec. IV B.

FIG. 7. Atomic volume over a wide range of temperatures to
show the thermal expansion. Experimental results [39,40] and DFT
calculations [38] shown as empty circles. For the calculations done in
the scope of this work, volume and temperature along the trajectories
are shown below the average values (full circles). For all curves, the
coefficients of thermal expansion were fitted over the temperature
ranges marked with solid lines. The coefficients are noted next to the
curves.

B. Solid-liquid phase transition

The melting temperature of bcc iron was calculated us-
ing the two-phase method [41,42] with all three potentials.
Systems with ≈11000 atoms were set up as bcc crystals and
heated to 4000 K for 15 ps to melt half of the system, while
the positions of the other half were kept fixed. These half
crystalline and half molten systems were then run at different
target temperatures for 100 ps of MD with a time step of
1 fs to find the temperature where both phases coexisted.
MD simulations were carried out using LAMMPS [43] for the
Mendelev EAM [5] and Dragoni GAP [16] reference po-
tentials and TurboGAP [28] for the GAP developed in this
work. In the LAMMPS calculations, temperature and pressure
were controlled with the Nosé-Hoover [44,45] thermostat and
barostat with damping constants of 1 ps and 2 ps, respectively.
In TurboGAP, a Berendsen [46] thermostat and barostat with
the same damping constants and a gamma_p1 of 55 were used.

Crystalline and molten states in the systems were identified
with the Steinhardt parameter Q8 [47]. Figure 8 shows the

1In TurboGAP, the bulk modulus for the barostat is expressed in
units of the inverse compressibility of liquid water. For example,
gamma_p= 55 means that the material is assumed to be 55 times
as incompressible as liquid water for the purpose of barostating.
This allows the user to provide an intuitive value for this parameter
whenever the compressibility factor of the system is not known a
priori (as is usually the case).
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FIG. 8. Steinhardt parameter Q8 [47] over time for MD simula-
tions at various temperatures in the range of 1400–1550 K, around
the melting temperature Tm. The inset shows the transition from the
crystallizing to the melting state as a function of temperature.

results for our GAP, each line indicating a separate MD
run. (For the results using the Mendelev EAM potential, see
Fig. S5 in Ref. [20].) Decreasing values of Q8 indicate a melt-
ing system, while increasing values indicate a crystallizing
one. This gives approximate melting temperatures of 1760 and
1438 K for the Mendelev EAM and our GAP, respectively.

For our GAP, this is well below the experimental value of
1811 K. (The experimental value is for the δ phase, which
is also bcc as in our simulations.) We attribute this deviation
to the properties of the DFT functional used for the train-
ing, which has in previous works been shown to predict too
low melting points. Partáy computed the phase diagram for
the Mendelev EAM using the nested sampling method [8],
believed to be the most comprehensive and accurate method
for this purpose. She found a melting temperature higher than
the experimental value, at approximately 1810–1940 K. The
value of approximately 1760 K we find for the Mendelev
EAM is right in the range of 1750–1775 K they give in their
original paper, somewhat in disagreement with the nested
sampling result. This disagreement can be attributed to a
finite-size effect in the nested sampling calculations, overesti-
mating the temperature of the melting transition compared to
coexistence simulations.

For the Dragoni GAP, we found that the trajectories ex-
panded to very high atomic volumes (about three times the
volumes found with the other potentials for two-phase sys-
tems at the same temperature) upon releasing the crystalline
atoms, immediately melting the crystalline half of the box.
Thus we were not able to stabilize the two-phase state at any
temperature. We attribute this to a spurious local minimum in
the PES for a low-pressure melt, lower than the pressurized
crystal.

FIG. 9. Phase diagram for our GAP up to high temperatures and
pressures. Crystalline structures were identified using XRD spectra
and by comparing SOAP descriptors. For the hcp phase, the c/a-ratio
is given. Encoded in the color is the Steinhardt parameter Q8 [47],
to further highlight the solid-liquid transition. Red lines indicate the
phase boundaries in the experimental phase diagram [8,54]: α, γ , δ

(in increasing T , at low p) and ε (at high p).

We note that our GAP was not trained for thermal proper-
ties specifically, while the Dragoni GAP was trained on data
for thermomechanical properties and the Mendelev EAM was
fitted to the pair correlation function at 1820 K. It is therefore
not surprising that the Mendelev EAM predicts the melting
temperature better than the other two potentials.

C. Phase diagram

To compute the phase diagram we carried out free-energy
calculations within the 2PT framework [48] as implemented
in the DoSPT code [49–51]. 2PT computes the free energy of
an ensemble of atoms from the integral of the density of states
(calculated from MD), which is partitioned between solidlike
and gaslike degrees of freedom. This method is particularly
suited to estimate the thermodynamic properties of liquids. In
this work, we use it both for the liquid and the solid to be able
to directly compare the free energy of the two and draw the
melting curve: at any given set of thermodynamic conditions,
the phase with the lowest free energy is the stable phase.

We calculated the iron phase diagram with our GAP up
to high pressures of 100 GPa (106 bar) and temperatures
of 3000 K, shown in Fig. 9. At each pressure, three MD
trajectories were initialized from 250 K as bcc, fcc and hcp
and one from 3000 K as liquid. The temperature was then
increased/decreased in steps of 250 K using the Bussi ther-
mostat [52] while controlling the pressure with the Berendsen
barostat [46]. The calculations were done in TurboGAP [28]
with equilibration constants of 100 and 1000 fs, respec-
tively, and a gamma_p of 100. At each point, the trajectories
were equilibrated for 80 ps and subsequently sampled for
80 ps. Liquid structures were detected using the Steinhardt
Q8 parameter [47], with low values indicating the liquid. We
detected the crystalline structures by both comparing SOAP
descriptors and x-ray diffraction (XRD) spectra calculated
using the Debyer software package [53]. Example spectra at
p = 10−4 GPa (1 bar) and for the reference structures are
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shown in Fig. S6 of Ref. [20]. For the hcp structures at 10
GPa, the c/a ratio is given in Fig. 9, determined by comparing
to the SOAP descriptors of hcp with c/a ratios in the range
of 1.10 to 1.40. The plot in Fig. 9 shows the structure of the
trajectory with the lowest free energy at each point.

The phase diagram for our GAP shown in Fig. 9 reproduces
very well the trends in the melting curve found experimentally
[54], including the raised melting temperature at 10 GPa and
the missing liquid phase at 100 GPa up to 3000 K. There
is some disagreement between the melting temperature es-
timated using this method, which is located in the range
1500–1750 K, and that estimated using the two-phase method
in Sec. IV B, which is situated a bit below 1450 K. The
fcc phase is missing completely from our phase diagram,
although it is found experimentally within a narrow band of
temperatures, above ∼1180 K and below ∼1670 K (depend-
ing on the pressure).

At the highest pressures studied in this work, all the trajec-
tories led to spontaneous nucleation of hcp up to a temperature
of at least 3000 K (we did not check higher temperatures than
this), also in agreement with the experimental data. In our
phase diagram we also show the c/a ratio, which is much
lower than at ambient pressure. With increased temperature
the spacing between the close-packed planes grows, which
seems sensible. This leads us to believe that our GAP could
be suitable to study iron at the conditions of the Earth’s core
(exceeding 136 GPa and approximately 4000 K [55]). Under
such conditions, the atomic volumes are in the range of the
lowest volumes shown in Fig. 2, corresponding to pressures
in excess of 375 GPa at a temperature of 6000 K [12].

To further elucidate the suitability of our GAP to model
the behavior of iron under extreme conditions, we computed
the (RDFs) of liquid iron at various (p, T ) and compared them
to reference data from ab initio MD (AIMD) calculations [56],
shown in Fig. 10. Our RDFs agree very well with the reference
data, capturing the general shape of the curves as well as the
shift of the first peak towards lower distances.

V. NANOPARTICLES

NPs were created in four distinct ways: (1) by condensation
from a random starting atomic distribution, (2) using the ge-
netic algorithm (GA) implementation by Weal et al. [57], (3)
with the Wulff method [58], and (4) by annealing NPs found
with the other methods at elevated temperature. For the first
method, the atoms were randomly placed in a periodic box
with double the atomic volume of the bcc bulk. The atomic
positions were then relaxed using the current version of the
GAP developed in this work using the algorithm detailed in
the Atomic Simulation Recipes [59]. The suitable selection
of the box volume ensured that the atoms coalesced into a
single NP. The GA was run with a population size of 100
particles for 2500 generations with 20 offsprings per gener-
ation for each NP size. The starting populations were created
using the condensation method. For detailed GA settings, see
Sec. VIII of Ref. [20]. From all NPs evaluated during a GA
run, the 1st, 50th, 100th and 500th lowest in energy (as per
the GAP developed in this work) were then calculated with
DFT to be used in the training of the next iteration of the GAP
potential. In total, four iterations of GA were done to improve

FIG. 10. Liquid iron RDFs at high (p, T ) along the AIMD melt-
ing line [56] (dashed lines). Data computed using our GAP overlaid
(solid lines). Curves offset for clarity.

the performance of the potential for (increasingly) low-energy
NPs. Crystalline NPs were generated using the Wulff method
[58] as implemented in ASE [33], using the surface energies
we calculated using DFT. To augment the search space, NPs
found with the aforementioned methods were also annealed at
1200 K for 20 ps, quenched down to 300 K over another 20 ps
and finally relaxed using gradient-descent minimization.

The region of configuration space corresponding to NPs
displays a rather complex PES, due to the coexistence of
diverse atomic motifs not encountered in the bulk: small sur-
faces, edges and vertices. To make this problem tractable,
we used the iterative training approach [34] combined with
the GA to incrementally improve the accuracy in this region
of configuration space. Figure 11 shows the energies of the
NPs created by and calculated with our new GAP and the
two reference potentials, compared to the energies calculated
using DFT and referenced to the energy of the bcc bulk. The
energies calculated with the two reference potentials differ
significantly from the DFT energy, while our GAP predicts
the energies with good accuracy, regardless of which poten-
tial was used to generate the NPs. The RMSEs are given in
the legend. Note how the Mendelev EAM predicts too low
energies for all the low-energy NPs and the Dragoni GAP
predicts a number of NPs to be lower in energy than the
bcc bulk material, again a sign of extrapolation outside of
the training set, as seen for hcp surfaces. Note that none
of the NPs in Fig. 11 belong to the GAP training set, and
thus this test gives a clear indication of the ability of our GAP
to accurately generate and predict iron NPs, a particularly
challenging modeling task.

In Fig. 11, we show the accuracy of the energy predictions
of our GAP and the two reference potentials for a large num-
ber of NPs over a wide range of stabilities. This is meant to
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FIG. 11. Energy for NPs generated and computed with the GAP
potential developed in this work, the GAP potential by Dragoni et al.
[16] and the EAM potential by Mendelev et al. [5] compared to DFT.
Shapes indicate the potential used to generate the NPs and colors
indicate the potential used to calculate the energies, respectively.
The NPs were generated using the random condensation method (for
details, see text). None of the NPs were used in the training of our
GAP. The inset shows the data at lower energies more clearly.

ensure that our GAP can model small NPs as well as ones
that are far from the lowest energy for their size, as might be
observed at the elevated temperatures of a catalytic process.
The inability of the bcc reference potentials to correctly de-
scribe NPs can be seen for example in the isolated group of
points for the Dragoni GAP at the bottom of the plot: all the
NPs in this group were created with the Dragoni GAP and the
performance on these is clearly different than on the NPs cre-
ated with the Mendelev EAM. In contrast to the two reference
potentials, our GAP performs very well on all the NPs shown
here, regardless of which potential they were created with or
their relative stability. This can be measured in the RMSE
value which is about 30 times lower than for the reference
potentials. More importantly though, there is no region in the
plot where our GAP has substantial errors. This is particularly
important for NP modeling, when we use the GAP to generate
NPs with a few hundred or thousands of atoms, which cannot
be directly validated with DFT due to CPU cost.

In the search for stable NPs, the common practice is to
generate low-energy NPs within a range of sizes which, for
small NPs, is measured in terms of the number of atoms.
The energies are then used to construct a convex hull of
NP stability. Because of the high computational cost of DFT
calculations, the known convex hulls reach only up to a size
of 30 atoms at most [60–63]. More comprehensive convex
hulls, up to a size of 100 atoms, have been computed using
the Finnis-Sinclair [6,64] EAM [65–67]. With our GAP, we
have reconstructed the convex hull of the lowest-energy NPs

FIG. 12. DFT total energy convex hull of the NPs from the
Cambridge Energy Landscape Database [67] and the NPs discovered
in this work. Full circles indicate NPs in the convex hull that were
improved by this work (90 out of 98 particles). Snapshots show a
selection of NPs along the convex hull.

for each size up to a size of 200 atoms, using the search
methods detailed above. The GA was only used up to a size of
100 atoms, due to its comparatively high computational cost.
To validate the GAP results, the energies of the NPs from
the Cambridge Energy Landscape Database (CELD) [67] as
well as the NPs in the convex hull found in this work were
recalculated using DFT up to a size of 200 atoms. The total
energies for both are shown in Fig. 12. In the curve for the
convex hull from this work, empty circles indicate NPs that
are higher in energy than the CELD NP of the same size and
full circles such particles that are lower in energy.

In the size range from 3 up to 100 atoms, where CELD data
is available, 90 out of 98 NPs in our convex hull are lower in
energy than the CELD ones. Most of these were found using
the annealing method, but Fe59 and Fe65 were constructed
with the Wulff method [58] (subsequently relaxed using our
GAP). From these, the two particles created using the Wulff
method stand out from the curve with particularly low energy
(e.g., see snapshot at 65 atoms in Fig. 12). That we found
more stable NPs despite relying on a less sophisticated search
method than Liu et al. [66], in terms of the number of NPs that
could be sampled, can be attributed to the much higher accu-
racy of our potential compared to the Finnis-Sinclair EAM.
This is especially true for very small NPs, where the error for
the Finnis-Sinclair EAM is the highest. (For example, see the
energies for the CELDs convex hull shown in Fig. S7 [20].)

Among the DFT data reported in the literature, the struc-
tures of the NPs are unavailable. We were thus unable to
compute the total energies with our GAP for comparison. The
published binding energies, on the other hand, strongly de-
pend on the exchange-correlation functional used (e.g., BLYP
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FIG. 13. (Top) Fraction of surface sites that resemble [(100),
(110), (120), (112), and (111)] surface motifs from pristine bcc, fcc
and hcp surfaces more than the others for all NPs in our convex
hull. (Bottom) Log-scaled fraction of surface sites that resemble the
reference surfaces most for four example NPs, two crystalline and
two amorphous ones. A video with the panels corresponding to every
NP is available on Zenodo [68].

by Ma et al. [62], BLYP/SDD by Aktürk et al. [63]) and are
not easily comparable to our results. Hence, the convex hulls
derived by Ma et al. and Aktürk et al. were omitted from
Fig. 12.

In the remainder of this section, we try to uncover trends
in the structure of these NPs, in particular regarding surface
features. We first analyze the similarity between NP surface
motifs and selected [(100), (110), (120), (112), and (111)]
surface motifs present in pristine bcc, fcc and hcp surfaces.
As a first step, we identify surface atoms in the NPs with a
rolling-sphere algorithm as implemented in ase_tools [69].
Then, the SOAP descriptors characterizing the environment
of these surface atoms within a 4 Å sphere are computed, as
well as the SOAP descriptors of the atoms in the reference
surfaces. Finally, we calculate the SOAP kernels between
NP and surface descriptors, yielding a measure of similarity
between 0 and 1. These kernels are used to rank the surface
“character” of each NP as a histogram counting the number
of motifs of each type divided by the total number of surface
sites on that NP. The results of this analysis are given in Fig. 13
(top) for the overall bcc/fcc/hcp character, whereas the bottom
panel of the figure shows four examples further resolving the
surface character for Fe59, Fe65, Fe100, and Fe200.

FIG. 14. cl-MDS representation (low-dimensional embedding)
of the surface sites on the NPs in our convex hull clustered by
k-medoids into ten characteristic motifs. The snapshots show the
medoids representing the clusters. Encoded in the color is the atomic
GAP energy of each surface site. The inset shows the same map color
coded according to the k-medoids clusters.

From the figure we infer that, except for very small NPs
with just a couple dozen atoms, the highly symmetric Fe59

and Fe65 corresponding to magic numbers, and the also highly
symmetric Fe76 and Fe78, the motif distribution in these small
NPs is close to random, oscillating around an equal distribu-
tion of bcc, fcc, and hcp sites up to Natoms = 100. Beyond
that, there are slightly more fcc sites and slightly less hcp
sites. Given this degree of disorder, classifying surface sites in
small Fe NPs in terms of the crystalline surface motifs is not
very useful. Instead, we resort to a motif classification scheme
that draws the classes directly from the database of structures.
We do this using k-medoids, a data-clustering technique that
separates data points into classes (“clusters”) according to
their similarity [70]. The most representative data point in
each cluster is called a medoid. In our case, a collection of
medoids provides a catalog of representative motifs found in
our database [71]. We used the fast-kmedoids library for
the k-medoids computation [72] and cl-MDS to graphically
represent the clustering via low-dimensional embedding [73].
The results are shown in Fig. 14.

In the figure we classified the surface sites of all the lowest-
energy NPs for a given number of atoms, from 3 to 200
atoms, into 10 data clusters. The size of the clusters decreases
with their number, i.e., cluster 1 represents the most common
surface motifs and 10 the least common. The color encodes
the local GAP energy of the surface atoms in the big map, and
the cluster index in the figure inset, for better reference. We
observe “burried” (almost sub-surface) motifs to be the most
stable (clusters 6, 7, and 8, ≈ −7.5 eV/atom). Then, motifs
with a six-fold surface coordination (i.e., they appear to be at
the center of a hexagon on the surface) but embedded within
the NP facet are contained in clusters 1 (≈ −7.2 eV/atom)
and 2 (≈ −6.9 eV/atom). Six-fold coordinated motifs that
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FIG. 15. Snapshots of all NPs from our convex hull, shown in Fig. 12. Atoms are colored according to the ten most characteristic surface
site motifs according to the k-medoid clustering shown in Fig. 14. The medoids for the ten motifs are shown as well.

are raised further from the surrounding atoms are higher in
energy, and contained within cluster 5 (≈ −6.5 eV/atom).
Five-fold coordinated motifs are similar in energy to the latter,
with the central atom similarly raised, and belong to clusters
3 and 4. Finally, clusters 9 and 10 contain just a handful of
motifs found in the extremely small NPs.

The atomic GAP energy of bulk bcc iron is ≈ − 8.25 eV/
atom. The energy difference between this bulk value and
the GAP energy of a less stable motif is directly re-
lated to the cohesive energy that could be gained by,
e.g., increasing the coordination of the less stable mo-
tif. Therefore we expect the less stable motifs to readily
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passivate while in contact with a surrounding medium, e.g.,
by forming strong bonds with and effectively capturing hy-
drogen atoms. Opposed to this, some of the motifs (especially
those in clusters 6, 7, and 8) may be too stable to inter-
act with adsorbants via covalent interactions. The sites with
intermediate atomic GAP energies might be the most in-
teresting from the catalytic point of view, e.g., because of
their potential to adsorb or desorb reactants as a function
of applied external bias. We will explore the precise re-
lationship between adsorption energy of typical adsorbants
and atomic GAP energies in subsequent work on Fe NP
reactivity.

Finally, a gallery of all the NPs in our convex hull database
is given in Fig. 15, with each surface site colored according to
the data cluster to which it belongs (the reference motifs are
also shown in the figure). We can easily observe that, except
for the highly symmetric NPs at very small size and magic
numbers 59 and 65, as well as the stability island between
76 and 78 atoms, the distribution of surface motifs is highly
irregular. That is, there is no obvious facet formation in these
NPs. Tests that we carried out for a significantly larger NP
with a few thousand atoms, generated using the condensation
method, also showed lack of significant facet formation. This
contrasts with the very clear facet formation in other metal
NPs, for instance (111) facets in Pt NPs as we have recently
observed using very similar methodology [74]. A possible
explanation for this is that structural disorder in iron NPs is
driven by the interplay between the formation of the stable
fcc surface facets versus the formation of the stable bcc bulk
motifs. Since the bulk motif will nucleate facet formation with
its same crystal structure and vice versa, this may lead to a
nontrivial dynamics which in turn results in highly disordered
NPs. Indeed, it has been shown experimentally that nanostruc-
tured Fe, e.g., Fe thin films on a substrate, can be grown in the
fcc structure even at room temperature [75,76].

VI. CODE AND DATA AVAILABILITY

The GAP is available for free on Zenodo [77] and can
be used with QUIP/GAP, LAMMPS via the QUIP interface,
ASE via QUIPPY, and TurboGAP. Incidentally, we note an
improvement in computational efficiency of our GAP over
the previous state-of-the-art Dragoni GAP by a factor of ap-
proximately 4. This speedup can be attributed mostly to the
use of SOAP descriptor compression [78,79] in our GAP, as
available from the soap_turbo descriptor [80]. When used

with the TurboGAP MD engine [28], better speedups can
usually be achieved.

To facilitate further work in this area, we have made the
structures of the NPs derived in this work available to the
community. A full database is available for download on
Zenodo [68], including the energies computed with the ref-
erence potentials and the Finnis-Sinclair EAM.

VII. SUMMARY

In summary, we created a generally applicable GAP ML
potential for the iron system which is stable in the whole
configuration space and performs well for a wide range of
applications, from bulk to nanostructured iron, from ambient
conditions to those at the Earth’s core. The accurate descrip-
tion of nanoparticles at elevated temperatures is particularly
useful for the simulation of catalytic processes, which often
occur at those temperatures. A straight-forward approach for
such studies would be to combine our GAP with another
GAP for the other involved species and extend the training
databases with mixed structures, followed by some iterative
training. While our GAP cannot beat previously existing spe-
cialized potentials in every case, it can be used reliably for
most problems, including the study of systems where two
or more Fe phases coexist. We found it to be the most ac-
curate for NPs from among the potentials considered. We
have derived a series of low-energy Fe NPs and made these
structures available for further use. The GAP potential itself,
which in addition to accuracy also achieves a sizable speedup
over the previous state-of-the-art potential, has also been made
freely available. We hope that this will enable and stimulate
further work in this field, in particular with regard to catalytic
applications on low-dimensional iron structures.

Some limitations remain from the implicit treatment of
the magnetic states, especially regarding surface energies and
elastic constants. These could be addressed by training a
GAP including an explicit description of atomic magnetic
moments. To this end, the necessary methodology and in-
frastructure to treat magnetism explicitly within the GAP
framework needs to be developed.
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