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Spin Seebeck effect and thermal properties of zigzag graphene nanoribbons with edge magnetism
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Zigzag graphene nanoribbons (GNRs), demonstrating edge magnetism, are fascinating materials for electronic
and spintronic applications. In this paper, we investigate with explicit consideration of electron-phonon scattering
the Seebeck effect and thermal conductivity at various carrier densities in zigzag GNRs, which undergo
antiferromagnetic, ferromagnetic, and paramagnetic transitions. Seebeck coefficients are spin dependent in
ferromagnetic zigzag GNRs and can have opposite signs for the majority and the minority spin carriers, which
enables the separation of spin carriers spatially under a thermal gradient. The electronic thermal conductivity is
small compared to the lattice thermal conductivity, except for GNRs in the ferromagnetic state. A 100% increase
in thermal conductivity is expected at antiferromagnetic to ferromagnetic transition. These results demonstrate
that zigzag GNRs are also materials of high interest for spin caloritronics.

DOI: 10.1103/PhysRevB.107.245417

I. INTRODUCTION

Graphene nanoribbons (GNRs), ribbons of graphene with
a width in the nanometer range, are attractive materials for
many applications, such as electronics and spintronics [1–3].
Made of carbon with sp2 hybridization, GNRs can be obtained
as graphene cuttings or unzipped carbon nanotubes [4,5].
GNRs can also be produced using bottom-up approaches,
which lead to outstanding edge control [6–8]. Indeed, the
edge of a GNR significantly influences its physical properties,
especially its electronic structure, which can be metallic or
semiconducting [9–11]. The edge geometry is defined by the
chiral angle of the ribbon, which can take any value between
0◦ and 30◦. Here we consider zigzag GNRs (chiral angle of
0◦), for which extremely rich electronic and magnetic phases
have been predicted.

Theoretical studies have shown that zigzag GNRs have
strongly localized edge states [10], which bring magnetism
as spins tend to align along each edge [9,12]. But the coupling
between opposite edges depends on GNR width and carrier
density [13,14]. Half filling leads to an antiferromagnetic (AF)
state, i.e., opposite spins on opposite edges. By increasing
carrier density, a ferromagnetic (F) phase can be reached with
the same spin on both edges when edge states remain par-
tially filled, and a paramagnetic (P) phase is finally obtained
when these edge states are fully occupied. Some experiments
indirectly confirmed these predictions. The abrupt vanishing
of the electronic gap in zigzag GNRs with increasing ribbon
width was ascribed to the AF to F transition [15]. A single
conducting channel, characterized by half of the quantum con-
ductance in the ballistic regime and by a mean free path up to
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micrometers at room temperature [16,17], points towards the
GNR in the F state, as was later explained by transport with
spin-dependent electron-phonon scattering [14]. Recently, the
edge magnetism in zigzag GNRs was probed directly by a ni-
trogen atom which substitutes a carbon atom at the GNR edge
[18]. Based on these facts, zigzag GNRs with edge magnetism
are fascinating not only for electronic applications because of
their extraordinary electron transport properties, such as two
orders of magnitude enhancement in electron conduction at
the AF to F transition, but also for spintronic applications, due
to their spin-dependent transport properties such as a 100%
spin-filtering factor [14].

These properties, together with the weak spin-orbit cou-
pling, make zigzag GNRs promising materials for spin
caloritronics, which describes the conversion between heat
and spin current [19]. The spin Seebeck effect or its reverse
effect, namely, the spin Peltier effect, has been observed in
metals, semiconductors, and insulators [20–25]. Experimen-
tal work on spin caloritronics of zigzag GNRs is missing,
and theoretical studies were focused on short ribbon length
in the ballistic regime [26–30], which is hard to realize ex-
perimentally. In this paper, we present a study of the spin
Seebeck effect and thermal properties of zigzag GNRs taking
into account all electron-phonon scattering processes at room
temperature. The mean free paths are also reported, which will
help design devices operating in ballistic or diffusive regimes
depending on their length.

II. THEORY

A. Two current model

The two current model describes independent majority and
minority spin channels [31,32]. Defining majority carriers as
spin up, the charge current Iα , where α represents spin (↑,↓),
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and heat current Q̇α are described by the following equation:

⎡
⎢⎢⎢⎣

I↑
Q̇↑
I↓
Q̇↓

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

L1,1
↑ L1,2

↑ 0 0

L2,1
↑ L2,2

↑ 0 0

0 0 L1,1
↓ L1,2

↓
0 0 L2,1

↓ L2,2
↓

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ξ e
↑
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⎤
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where ξ e
α is an effective electric field and −∇Tα is a tempera-

ture gradient. The effective electric field comprises the electric
field ξ and the gradient of spin-dependent chemical potential
[33], ∇μα , i.e.,

ξ e
α = ξα + ∇μα

e
, (2)

where e is the unit charge. The absence of a spin-flip mech-
anism [zero nondiagonal blocks in the matrix of Eq. (1)] is
justified by the weak spin-orbit coupling that leads to long-
distance spin transport in graphene [34,35].

The matrix elements L1,1
α and L2,1

α are determined by [36]

L1,1
α = −e2

∑
b

∫
g(ξ e )

b,α (k)vb,α (k)dk, (3)

L2,1
α = e

∑
b

∫
(Ek,b,α − μα )g(ξ e )

b,α (k)vb,α (k)dk, (4)

where vb,α (k) is the group velocity of the electronic state at
wave vector k in band b, and g(ξ e )

b,α (k) is the first-order response
of the carrier distribution function to the effective electric
field, namely,

f (ξ e )
b,α (k) = f 0(Ek,b,α ) + eξ e

αg(ξ e )
b,α (k), (5)

with f 0 the Fermi-Dirac distribution function, and Ek,b,α the
energy of the electronic state |k, b, α〉. Similarly, L1,2

α and L2,2
α

are expressed as

L1,2
α = −e

∑
b

∫
g(−∇T )

b,α (k)vb,α (k)dk, (6)

L2,2
α =

∑
b

∫
(Ek,b,α − μα )g(−∇T )

b,α (k)vb,α (k)dk, (7)

where g(−∇T )
b,α (k) is the first-order response to a temperature

gradient:

f (−∇T )
b,α (k) = f 0(Ek,b,α ) − ∇Tαg(−∇T )

b,α (k). (8)

These four matrix elements characterize the transport prop-
erties. The spin-dependent electric conductivity is simply

σα = L1,1
α . (9)

The spin Seebeck coefficient is the ratio between the gen-
erated effective electric field and the temperature gradient,
evaluated in an open circuit (Iα = 0):

Sα = − ξ e
α

−∇Tα

= L1,2
α

L1,1
α

. (10)

The spin-dependent thermal conductivity by charge carriers
is the ratio between the heat current and the temperature

gradient, also evaluated at an open circuit:

Kα = Q̇α

−∇Tα

= L2,2
α − L2,1

α

(
L1,1

α

)−1
L1,2

α , (11)

where the term −L2,1
α (L1,1

α )−1L1,2
α accounts for the heat current

driven by the effective electric field generated by the temper-
ature gradient through the Seebeck effect.

B. Spin-charge representation

In spin-charge representation, the charge current Ic and
spin current Is are defined as

Ic = I↑ + I↓ Is = I↑ − I↓. (12)

The charge heat current Q̇c and spin heat current Q̇s are de-
fined similarly:

Q̇c = Q̇↑ + Q̇↓ Q̇s = Q̇↑ − Q̇↓. (13)

The charge and spin components of the effective electric field
and temperature gradient are given by the following averages
and differences:

ξ e
c = ξ e

↑ + ξ e
↓

2
, ξ e

s = ξ e
↑ − ξ e

↓, (14)

Tc = T↑ + T↓
2

, Ts = T↑ − T↓. (15)

With the above definitions, Eq. (1) turns into
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where Li, j
± = Li, j

↑ ± Li, j
↓ with i, j = 1 or 2. The off-diagonal

block Li, j
− describes the conversion between charge and spin

by a temperature gradient or an effective electric field.

C. Numerical simulations

The electronic structure of zigzag GNRs is described by a
mean-field Hubbard tight-binding model [14,15]:

H =
∑

i

Ei,σ n̂i,σ +
∑
i, j,σ

ti, j ĉ
†
i,σ ĉ j,σ

+ U
∑

i

(n̂i,↑〈ni,↓〉 + n̂i,↓〈ni,↑〉 − 〈ni,↑〉〈ni,↓〉), (17)

where ĉ† (ĉ) is the creation (annihilation) operator, n̂ is the
number operator, and i ( j) is the index of an atomic site. The
term Ei is the on-site energy, and ti, j is the hopping energy
between nearest-neighbor atoms that depends on the bond
length [37]. Tight-binding parameters are from Ref. [37].
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The Hubbard potential U is set to the value of 3.24 eV,
which reproduces the experimental band gap of zigzag GNRs
[15]. The electronic structure and spin densities are solved
self-consistently. Multisolutions, corresponding to different
self-consistent fixed points, are obtained by using symmetric,
antisymmetric, and random wave functions as initial guesses.
The ground state is chosen as the solution with the minimum
free energy:

� = −U
∑

i

〈ni,↑〉〈ni,↓〉

− kBT

Nk

∑
k,b,α

ln

[
1 + exp

(
Ek,b,α − μ

kBT

)]
, (18)

where kB is the Boltzmann constant, μ is the chemical poten-
tial, and Nk is the total number of k points sampling the first
Brillouin zone.

The transport properties are determined by solving the
Boltzmann equation accounting for electron-phonon scat-
tering, which is beyond the relaxation time approximation.
All electron-phonon scattering processes satisfying wave-
vector conservation are taken into account explicitly. The full
phonon bands of zigzag GNRs are obtained from a fourth-
nearest-neighbor force-constant model [37]. Scattering rates
computed using Fermi’s “golden rule” are injected into the
Boltzmann transport equations (BTEs). The term g(ξ e )

b,α (k) is
the solution of a linearized BTE under an effective electric
field [38]. Similarly, the term g(−∇T )

b,α (k) is the solution of the
following linearized BTE under a temperature gradient:

2π

l
vb(k)

(
∂ f 0

∂T

)
Ek,b

=
∑

b′

∫
g(−∇T )

b (k){Wkb,k′b′ [1 − f 0(Ek′,b′ )] + Wk′b′,kb f 0(Ek′,b′ )}

− g(−∇T )
b′ (k′){Wk′b′,kb[1 − f 0(Ek,b)] + Wkb,k′b′ f 0(Ek,b)}dk′, (19)

where l is the length of the unit cell, and Wk′b′,kb is the
scattering matrix element determined from Fermi’s “golden
rule” [see Eq. (3) in Ref. [38]]. With the terms g(ξ e )

b,α (k) and

g(−∇T )
b,α (k), the matrix elements Li, j

σ in Eq. 1 are determined.

III. RESULTS AND DISCUSSION

Transport properties of a zigzag GNR depend significantly
on its magnetic phase, which is sensitive to the carrier density,
temperature, and ribbon width [14]. In the following, we focus
on a 5-nm-wide zigzag GNR at room temperature (300 K)
with variable carrier density. The matrix elements of Eqs. (1)
and (16), calculated numerically as described in Sec. II C, are
presented in Fig. 1. It is important to note that our calculations
give L1,2

α = T L2,1
α as required by Onsager reciprocal relations,

which translates into the relationship between Seebeck and
Peltier coefficients [39].

A. Electric conductivity

With the increase of carrier concentration, the magnetic
phase goes from an AF state to an F state, back to an AF
state, and then to a P state [14]. The band structures and
mean free paths for six selected carrier densities are shown in
Fig. 2(a). The electric conductivity L1,1 shown in Fig. 1(a) has
been discussed in previous work [14]. In AF states, a finite
electronic band gap exists, as shown in Figs. 2(a) and 2(e).
The presence of a band gap tends to increase the effective
mass and reduce the group velocity of the electrons located in
the nearby band. Also, the band edge provides abundant elec-
tronic states, enhancing electron-phonon scattering. Therefore
the electric conductivity is small in AF states.

In the F state, majority carriers have only one chan-
nel near the Fermi level, experiencing long-range ballistic
transport, with a mean free path up to micrometers, thanks
to the large group velocity [nearly linear dispersive band

structure; see Figs. 2(b)–2(d)] and spin-protected transport
(weak scattering). In contrast, minority carriers have three
channels involved in the transport, suffering from scattering
to edge bands. Two channels have a very short mean free path
(approximately tens of nanometers). The other channel with
a larger group velocity has a longer mean free path (approx-
imately hundreds of nanometers). For the above reasons, the
magnetic phase transition from AF to F state is accompanied
by two orders of magnitude enhancement in electric conduc-
tivity [Fig. 1(a)], thanks to the long mean free path of the
majority carrier in F states [14].

In P states, the Fermi level cuts bands with linear dispersion
[Fig. 2(f)]. These states are far above the edge states, and
below the edge of the second band, which has a large density
of states. These features of the electronic structure induce a
substantial reduction of the electron scattering by phonons,
resulting in two conducting channels with a long mean free
path up to several hundred nanometers for each spin.

B. Seebeck effects

The Seebeck effect generates an open-circuit voltage from
a temperature gradient. Electrons above the Fermi level carry
excess energy, flowing from the hot to the cold side. In con-
trast, electrons below the Fermi level flow in the opposite
direction, as described by the driving force ∂ f /∂T induced
by the temperature gradient shown in Figs. 3(b) and 3(d), in
contrast to the unidirectional electron transport induced by the
effective electric field [Fig. 3(c)]. A material with balanced
electron transport below and above the Fermi level would
not create open-circuit voltage, hence no Seebeck effect. The
Seebeck coefficient of graphene is, therefore, zero at the Dirac
point, and reaches a peak value of about 90 μV/K at room
temperature by varying the carrier density [40].

Figure 3(a) describes the Seebeck effect in zigzag GNRs.
At low carrier density in the AF state, the Seebeck coefficient
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FIG. 1. Transport matrix elements defined in Eqs. (1) and (16) for a 5-nm-wide zigzag GNR at 300 K vs carrier density. Magnetic states
are indicated for each density at the top of each figure by symbols (blue cross, AF; red circle, F; green triangle, P). The electrical conductivity
is L1,1 shown in (a). In (b) and (c), a symmetrical log scale is used for the y axis to represent both positive and negative values.

is large, about −250 μV/K (the negative sign denotes an
n-type carrier) because the Fermi level lies in the band gap,
slightly below the bottom of the conduction band [Fig. 2(a)]
from which nearly all the conductivity comes. At larger car-
rier density in AF and P states, although a band gap exists,
the Fermi level lies in the conduction band [Figs. 2(e) and
2(f)]. Both electronic states below and above the Fermi level
contribute to electric conduction, leading to a smaller Seebeck
coefficient.

Spin Seebeck effect treats majority and minority carri-
ers separately. In the F state, the spin-up channel (majority
carriers) with a long mean free path has almost balanced
conductivity above and below the Fermi level [Fig. 2(b)],
which yields a small Seebeck coefficient [Fig. 3(a)]. For the
spin-down channel (minority carriers), at low carrier density,
the electron conduction suffers strong scattering by phonons
due to the edge states above the Fermi level. Therefore most
of the electric conduction occurs below the Fermi level. For
this reason, the Seebeck coefficient is large, about 100 μV/K.
Remarkably, S↓ is positive (minority p-type carriers), opposite
to S↑ (majority n-type carriers), which means that spin-up and
spin-down electrons move in opposite directions [see inset of
Fig. 3(a)] and separate spatially. By increasing carrier density,
the Fermi level goes into the edge states, and the conduction
below the Fermi level is suppressed by the presence of edge

states too [Figs. 2(c) and 2(d)], resulting in a small Seebeck
coefficient of the reversed sign.

C. Thermal conductivity

The electronic contribution to the thermal conductivity
[Fig. 4(a)] has the same magnetic phase dependence as the
charge transport. We therefore define spin-dependent Lorenz
factors as Lα = Kα/(T σα ). For metals where the Wiedemann-
Franz law applies [41], L↑ and L↓ take the same universal
value:

L0 = π2

3

(
kB

e

)2

. (20)

Figure 4(b) shows that the Lorenz factor in zigzag GNRs
can deviate from L0, possibly because of Umklapp intervalley
scattering involving phonons with long wave vector [42]. This
is the main scattering process for majority carriers in the F
state, where the Lorenz factor is only half of L0.

The lattice thermal conductivity of zigzag GNRs is about
10−13 W cm/K [43,44] if we consider a thickness of 3.4 Å.
This is comparable to the electronic thermal conductivity in
the F state. Therefore, during the AF to F transition, the total
thermal conductivity doubles.
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FIG. 2. Band structures (left panels) and mean free paths (right panels) of a 5-nm-wide zigzag GNR at (a) n2D = 2 × 1012 cm−2 in the
AF state; (b) n2D = 6 × 1012 cm−2 in the F state; (c) n2D = 10 × 1012 cm−2 in the F state; (d) n2D = 30 × 1012 cm−2 in the F state; (e)
n2D = 40 × 1012 cm−2 in the AF state; and (f) n2D = 60 × 1012 cm−2 in the P state. Blue (red) dots correspond to majority (minority) spin-up
(spin-down) states. Black dots represent spin degenerate situations. The bands near Fermi level with k � 0.35 × 2π/l correspond to edge
states, which are less dispersive [14]. The Fermi level is indicated by a horizontal dash-dotted line. The two green solid lines in mean free path
plots are placed at the extrema of ∂ f /∂T at T = 300 K, as shown in Fig. 3(b).

The generation of electricity from a thermal gradient is
described by the second term of Eq. (11), i.e.,

L2,1
α (L1,1

α )−1L1,2
α = PαT, (21)

which is the power factor Pα = S2
ασα multiplied by the tem-

perature. This quantity is shown in Fig. 4(c), indicating more
than one order of magnitude difference between the two spin

channels in F states, which can be highly interesting for spin
caloritronics. This term normalized by the thermal conduc-
tivity gives the figure of merit for thermoelectric applications
[Fig. 4(d)]:

ZT = S2σT

Ke + Kl
. (22)

FIG. 3. (a) Spin Seebeck coefficients in a 5-nm-wide zigzag GNR at 300 K vs carrier density. Magnetic states are defined as in Fig. 1.
Inset of (a): Electrons of opposite spin flow in opposite directions when spin Seebeck coefficients have opposite signs. (b) Comparison of
electron flows driven by an effective electric field, ∂ f /∂E , and by a temperature gradient ∂ f /∂T at T = 300 K. (c) Electrons below and above
the Fermi level flow towards a high voltage terminal under an effective electric field. (d) Electrons below and above the Fermi level flow in
opposite directions under a temperature gradient.
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FIG. 4. (a) Thermal conductivities resulting from charge transport in a 5-nm-wide zigzag GNR at 300 K vs carrier density. The horizontal
dashed line indicates lattice thermal conductivity. (b) Lorenz number, which is K/(σ · T ). The horizontal dashed line indicates L0 as defined
by Eq. (20). (c) The second term in Eq. (11), which is the thermoelectric power factor Pα multiplied by temperature vs carrier density (P+ =
P↑ + P↓). (d) Electronic thermoelectric figure of merit for spin-up (ZTe↑) and spin-down (ZTe↓) channels, the sum of them (ZTe), and the
total figure of merit including lattice thermal conductivity (ZT ).

We also introduce the electronic figure of merit [45], by only
considering the electronic thermal conductivity:

ZTeα = S2
ασαT

Kα

, (23)

which allows the separation of the two spin channels. At low
carrier density in the AF states, the electronic figure of merit
is large (about 5); however, the lattice thermal conductivity
is two orders of magnitude higher than electronic thermal
conductivity, which results in a small total figure of merit.
In the other magnetic states, the electronic figure of merit is
too low for energy harvesting applications, which typically
require a figure of merit greater than unity.

D. Proposed experiments

The generation of a temperature gradient and the detection
of a Seebeck voltage are two essential factors in measuring
the spin Seebeck effect. A conventional heat reservoir en-
sures the local equilibrium and provides a boundary condition
that electron temperatures are fixed at the phonon tempera-
ture at the contact, namely, T↑ = T↓ = Tph. Hence, the spin
temperature is zero, Ts = 0. Under this condition, minority
and majority spin carriers are under the same temperature

gradient, and their spin voltages can be measured directly
using spin-selective electrodes, such as electrodes made of
magnetic metal. The schematic of the experimental setup is
shown in Fig. 5(a). In the F state, one could measure V↑,↑ and
V↓,↓ by changing the magnetization of the two electrodes to
obtain the spin Seebeck voltages. In practice, the width of two
spin-selective electrodes has to be designed with a coercive
field different than the GNR, which allows the selection of
minority or majority carriers.

Another interesting approach could be to use local probes
like a scanning tunneling microscope (STM) tips. A four-
probe STM has been successfully employed to measure the
mean free path of carriers within GNRs [16]. The same tech-
nique but with spin polarized tips has been used to determine
the chemical spin potential on the surface of topological insu-
lators [46]. It could therefore allow a measurement of the spin
Seebeck effect within a GNR with a temperature gradient, in
addition to measuring the mean free path of the carriers as a
function of their spin.

The spin Seebeck effect in zigzag GNRs can be used to
detect spin temperature. To demonstrate this, a zigzag GNR
can be part of the heat source by passing an electric current
[47]. By injecting a spin-polarized electric current, the spin
temperature will increase, as shown in Fig. 5(b). Similarly
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GNR T2T1 M1 M2

GNRM1 M2M0M

(a)

(b)

I

FIG. 5. (a) Proposed experimental setup to measure the spin
Seebeck coefficients, using conventional thermal contacts at temper-
atures T1 and T2 and spin-selective electrodes M1 and M2, such as
a magnetic metal, to measure spin Seebeck voltage. (b) Proposed
experimental setup to demonstrate the measurement of spin tem-
perature using spin Seebeck effect in zigzag GNR. Spin-polarized
electric current is injected and serves as a heat source. Due to the
weak majority carrier-lattice coupling, the spin temperature could
rise.

to the previous setup, the spin Seebeck voltages could be
measured using spin-selective electrodes. The Seebeck effect

is expected to be very small if the spin Seebeck voltage is
measured for a type of spin carrier different from that in
the injected electric current. This is because no temperature
gradient is supposed to be generated for the electron of that
spin type. In a real situation, the temperature could nonethe-
less rise slightly due to the weak residual coupling with the
lattice. By using the spin Seebeck effect extracted from the
previous setup, one might evaluate the temperature difference
for minority and majority carrier between two electrodes �T↑
and �T↓, and their difference would give the spin temperature
(Ts = �T↑ − �T↓). The minority carrier has stronger cou-
pling to the lattice than the majority carrier, therefore T↓ ≈ Tph

and T↑ can deviate from Tph.

IV. CONCLUSION

In summary, we have demonstrated that the Seebeck co-
efficient of a zigzag GNR strongly depends on its magnetic
states. In the F state, the Seebeck coefficient could have an
opposite sign for electrons with opposite spin, which triggers
the spatial separation of spin-up and spin-down electrons un-
der a temperature gradient. Also, the spin-down channel could
have a larger Seebeck coefficient than the spin-up channel.
Together with weak coupling to the lattice for spin-up carriers,
zigzag GNRs might serve as a spin-temperature source. These
findings suggest zigzag GNRs as interesting materials for spin
caloritronic applications.
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