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Coherent tunneling processes of multiple Cooper pairs across a Josephson junction give rise to high harmonics
in the current phase relation. In this work, we propose and study Josephson junctions based on semiconductor–
superconductor–ferromagnetic insulator heterostructures to engineer nonsinusoidal current-phase relations. The
gate-tunability of the charge carriers’ density in the semiconductor, together with the adjustable magnetization of
the ferromagnetic insulator, provides control over the content of the supercurrent harmonics. At finite exchange
field, hybrid junctions can undergo a 0 – π phase transition, resulting in a supercurrent reversal. Close to
the transition, single-pair tunneling is suppressed and the current-phase relation is dominated by the second-
harmonic, indicating transport primarily by pairs of Cooper pairs. Finally, we demonstrate that noncollinear
magnetization or spin-orbit coupling in the leads and the junction can lead to a gate-tunable Josephson diode
effect with efficiencies of up to ∼30%.
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I. INTRODUCTION

In Josephson junctions with insulating weak links, the
flow of a dissipationless supercurrent arises from individual
Cooper-pair tunneling events, which is typically characterized
by a sinusoidal current-phase relation (CPR) [1]. For junctions
with high transparency, additional contributions to the super-
current appear thanks to the simultaneous coherent tunneling
of multiple Cooper pairs [2–10]. These tunneling events give
rise to higher harmonics in the CPR, leading to deviations
from the standard sinusoidal form.

In a simple weak link, the Josephson energy is minimized
when the superconducting phases on both sides of the junction
are equal. However, when time-reversal symmetry is broken,
a phase transition can occur, resulting in an equilibrium state
with the relative phase difference of π . This shift in the macro-
scopic degree of freedom leads to a phase transition between
the so-called 0 and π phases [11–15].

Josephson junctions with broken time-reversal symmetry
can be tuned to a regime where both the 0 and the π phases
are local minima of the Josephson potential [16,17]. In this
case, the junction is said to be 0′ or π ′ regime if the global
minimum is at 0 or π phase difference, while the other state is
a metastable phase. The fundamental harmonic changes sign
when moving from 0′ to π ′ and vanishes at the crossover
between the two. At this point, the current is dominated by
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higher harmonics, causing a nonsinusoidal CPR [18]. Other
mechanisms for nonsinusoidal CPRs can be found in out-of-
equilibrium systems, like resonator-induced deviations in a
Zeeman split double quantum dot junction [19] and deviations
induced by spin injection [20]

The study of such nonsinusoidal CPRs has recently gained
significant interest due to potential applications in developing
protected superconducting qubits [21–25] and supercurrent
diodes [26–54]. These novel applications of Josephson junc-
tions require not only a static nonsinusoidal CPR, but also the
ability to control its harmonic content.

In this work, we propose and study a platform for
tunable nonsinusoidal CPRs based on Josephson junctions
comprised of semiconductor–superconductor–ferromagnetic
insulator materials, Fig. 1. Recently, such platforms have been
realized experimentally in InAs nanowires coated with epi-
taxial Al and EuS shells [55], which exhibited signatures of
spin-polarized subgap states [56,57] and supercurrent reversal
[58]. We show that these hybrid materials offer a new way to
control the harmonic content of the CPR by combining the
gate-tunable charge carriers density of the semiconductor and
the adjustable magnetization of ferromagnetic insulator insets.
Additionally, in these devices, both the superconducting pair-
ing and the exchange field are induced in the semiconductor
through proximity effects. This allows for unique regimes
where the exchange field in the superconductor is below the
Chandrasekhar-Clogston limit [59,60], while in the semicon-
ductor it can exceed the induced pairing potential. As a result,
this platform is suited for studying superconductivity under
extreme exchange fields that can surpass the induced pairing
potential.

To illustrate the prospects of this platform, we discuss
an approach for realizing a pure second-harmonic CPR
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FIG. 1. Josephson junction in a semiconductor–ferromagnet–
superconductor device. (a) Sketch of a ferromagnetic hybrid junction
and (b) the one-dimensional continuum model considered in this
paper. The semiconductor (Sm) nanowire divides into three regions:
the lateral left (L) and right (R) regions feature proximity-induced
superconductivity from the superconductor (Sc) shells, while in the
central (C) region the superconductor is etched. All the regions are
subjected to the ferromagnetic proximity effect due to the ferromag-
netic insulator inset (FI). The electron density in the central region
and the barriers between the central and the lateral ones can be
controlled by gates (G).

characterized by the coherent tunneling of pairs of Cooper
pairs. We find this condition to be present both in the open and
in the quantum dot regime. We show that noncollinear mag-
netization, or, alternatively, noncollinear spin-orbit coupling
fields in the leads and the junction allow for a gate-tunable
Josephson diode effect with efficiencies up to ∼30%. Our
work expands on the possible technological applications
of ferromagnetic hybrid devices beyond the realization of
topological superconductivity by exploring the tunability of
nonsinusoidal CPR in hybrid Josephson junctions.

II. MODEL

The system we are considering can be conceptually split
into three regions: two lateral (L and R), and a central region
(C), see Fig. 1(a). The superconductor primarily induces a
superconducting pairing potential �(x) in the semiconduc-
tor through the proximity effect. It also contributes to the
electrostatic potential landscape V (x) = −μ(x). The ferro-
magnetic insulator induces an exchange field h(x) in both
the superconductor and the semiconductor. Given that both
the exchange field and the pairing potential are induced in a
semiconductor with controllable charge carrier density, there
is not a fixed hierarchy of energy scales, and, in principle,
all regimes can be realized in the system. We consider that
the exchange field is sufficiently weak in the superconductor
such that superconductivity persists. This condition is relaxed
in the semiconductor, where the induced exchange field can
overcome the induced pairing potential. Therefore, ferromag-
netic hybrid junctions allow exploring the parameter space
beyond the conventional regime (μ � � > |h|). Note that
we do not refer to a particular arrangement of the layers

in the lateral region, as different combinations of interfaces,
for instance, tripartite arrangement [61,62] and tunneling ar-
rangement [63,64], allows induction of both superconducting
pairing and exchange field in the semiconductor.

The system Hamiltonian is H = 1
2

∫
ψ†Hψ , where the

Bogoliubov–de Gennes (BdG) Hamiltonian H in the Nambu
spinor basis ψ† = (ψ†

↑ ψ
†
↓ −ψ↓ ψ↑) is

H =
[

h̄2kx

2m∗ − μ

]
τz + h · σ + �τ+ + �†τ− + HSOC. (1)

Here, kx = −i∂x is the momentum operator (we consider a
single mode in the junction), m∗ is the effective mass, and
σ j and τ j are the Pauli matrices in the spin and particle-hole
space, respectively. The spin-orbit coupling (SOC) Hamilto-
nian HSOC is given in Eq. (9) and discussed in Sec. III D.

The proximity-induced exchange field h is due to the cou-
pling to the ferromagnetic insulator and, in principle, can be
spatially inhomogeneous due to the micromagnetic configu-
ration. The magnitude of the h field can also vary due to
a nonuniform coupling strength. Moreover, recent theoreti-
cal investigations of ferromagnetic InAs-Al-EuS nanowires
showed that the electrostatic environment is crucial in modu-
lating the effect of the EuS on the InAs [61,62,64], suggesting
that, in principle, it is possible to tune the induced exchange
field electrostatically.

In this work, we consider that the exchange field h takes
a constant value h j in each of the three regions j ∈ {L,C, R}.
We will call collectively the L and R lateral regions, with an
exchange field hL = hR = hlat while we will use the symbol
hall when considering a homogeneous value for the exchange
field. We use the same notation for the chemical potential μ of
the three regions. In addition, we introduce potential barriers
with height VB at the interfaces between the central and the
lateral regions, tuning the system from the open (VB = 0) to
the quantum dot regimes (VB � −μlat). The induced pairing
potential is � j = �0, jeiφ j with the modulus �0, j taking finite
value only in the L and R regions while the superconducting
phase difference between the two leads is φ = φR − φL.

In all the simulations we use realistic parameters for
InAs-Al-EuS heterostructures, taking �0 = 0.250 meV and
effective mass m∗ = 0.026 me. We consider a nanowire of
total length including both the lateral and central regions of
	W = 3 µm. To obtain numerical results, we discretize the
Hamiltonian using a finite-differences scheme with a lattice
spacing of a = 2 nm implemented using the KWANT package
[65]. The code and the results of the simulations are available
at Ref. [66].

We focus on the short junction limit and we consider a
central region of length 	C = 180 nm, such that the quanti-
zation energy is comparable to the other energy scales. We
fix the chemical potential in the lateral regions to be μL =
μR = 16 � = 4 meV. Directly solving for the quasiparticle
spectrum of the continuum model allows treating on equal
footing the current carried by Andreev bound states (ABSs)
and the quasicontinuum of states above the gap. Usually, the
continuum current is subdominant, except for strong exchange
fields, where its contribution is comparable to or even larger
than the ABS one [58,67–70].
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The supercurrent in a Josephson junction is an equilibrium
phenomenon that can be described by a function EJ(φ), called
the Josephson potential or phase dispersion relation. This can
be evaluated from the quasiparticle spectrum, assuming that
the quasiparticles are in thermal equilibrium and calculating
the free energy at a fixed phase

EJ(φ) = −kBTp ln tre− H
kBTp

= −kBTp

∑
n

ln

[
2 cosh

(
ωn(φ)

2kBTp

)]
, (2)

where ωn is the quasiparticle spectrum, kB is the Boltzmann
constant, and Tp is the quasiparticle temperature [71]. From
EJ, the CPR is calculated through the thermodynamic relation

〈I〉 = 2e

h̄

∂EJ(φ)

∂φ
. (3)

The maximum current that can flow in the junction in
equilibrium is called the critical current Ic, while we define the
critical phase φc as the phase difference where this is reached

Ic = |I (φc)|, φc ≡ argmax
φ∈[0,π]

|I (φ)|, (4)

where we restricted the search domain to [0, π ] in the recip-
rocal case. We define the quantity I0 ≡ 2e�/h̄ as the relevant
current scale that has the numerical value I0 = 122 nA for Al.
The sign of I (φc) defines the direction of the supercurrent at
the critical phase.

It is useful to decompose the phase dispersion in its har-
monic components

EJ(φ) =
∞∑

k=1

[Ck cos(kφ) + Sk sin(kφ)], (5)

since each harmonic corresponds to the tunneling of mul-
tiplets of Cooper pairs between the two superconducting
regions. To see this, it is necessary to interpret the phase
in Eq. (5) as an operator and rewrite the expression in the
charge basis by interpreting exp(ikφ) as a translation operator.
Neglecting the constant term, the result is

HJ =
∑

n

∑
k

Ck + iSk

2
|n + k〉〈n| + H.c., (6)

where |n〉 is the state with a difference of n Cooper pairs in the
two leads. In this way, it is easy to see how the terms cos(kφ)
mediate the tunneling of k Cooper pairs.

A purely cos (2φ) Josephson junction can be used to cre-
ate a qubit with nearly degenerate ground states that are a
superposition of only states with the same parity of Cooper
pair number [21,23]. In this setup, cos (φ) and sin (φ) per-
turbations can be used to implement rotation in the Bloch
sphere [25].

If time-reversal and inversion symmetries are not simul-
taneously broken, the Josephson junction is reciprocal and
EJ(φ) = EJ(−φ). It subsequently results in the absence of the
Sk components, called anomalous. These anomalous compo-
nents are necessary for φ0 junctions and the diode effects.

In the reciprocal case, assuming all the components
{Ck} with k > 2 are negligible, the only minima of the
Josephson potential are located at φ = 0 and π only if

|C1| � 4C2. For |C1| < 4C2, the minima can be found at
φ = ± arctan(C1/

√
16C2

2 − C2
1 ). This case, dubbed the ±φ0

junction, does not require an inversion-symmetry breaking
mechanism [72].

Throughout this study, the dominant harmonic is con-
sistently either the fundamental or the second one, with
subdominant contributions from third and higher harmonics.
Nonetheless, all calculations incorporate their effects, even
though they are not showcased in any graphs.

Single-level model

Before proceeding to the numerical results, we introduce a
single-level model in which a level with energy ε couples to
two high-carrier density superconducting lateral regions, see
Appendix A and Ref. [58].

To get an expression for the critical lines separating the
different phases, we consider the condition where an ABS
crosses the Fermi level, obtained from Eq. (A8) for ω = 0.
When a spin-split ABS crosses the Fermi level, its occupation
changes and provides no contribution to the current. There-
fore, the residual current is entirely due to the continuum of
states and has a characteristic π contribution [58].

In the case of equal exchange fields in the leads, hL = hR =
hlat , the Fermi level crossing condition for ABS with spin
σ = ±1 is given by the expression

σhC

γ
+ σhlat√

�2 − h2
lat

= ±
√

ε2

γ 2
+ �2

�2 − h2
lat

[1 − T sin2(φ/2)], (7)

where γ = γL + γR is the tunnel rate to the leads and T =
4γLγR/(γL + γR)2 is the transparency of the junction. When a
spin-split ABS crosses the Fermi level at φ = π , a metastable
π phase appears, marking the transition from 0 to 0′. When
such a crossing happens for φ = 0, the 0 phase becomes
completely unstable, marking the π ′ to π transition. Finally,
the 0′ to π ′ critical line can be approximated by φ = π/2.

The quantum point contact limit, in which the intermediate
state in the junction is strongly hybridized with the states in
the leads, can be obtained from Eq. (A8) for γ → ∞. This
results in a generalization of Beenakker’s formula [2] for spin-
split leads

ω = ±�

√
1 − T sin2(φ/2) − σhlat. (8)

III. CONTROLLABLE CPR

A. Quantum dot regime

The quantum dot regime is reached when large barriers at
the edge of the central region are introduced, see Fig. 1. In this
regime, electrons are confined in the central region. The quan-
tum dot regime is optimal for the electrostatic controllability
of the 0–π transition. When the quantum dot levels align with
the chemical potential in the leads, the π phase appears at low
exchange fields and the critical line takes the form hC ∝ ε, see
Fig. 2(c). This work does not consider the electrostatic repul-
sion in the central region (Coulomb blockade). We expect the
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FIG. 2. Phase diagram in the quantum dot regime. (a) Phase
diagram and (b) critical current for a system in the dot regime as
a function of the chemical potential in the central region μC and the
exchange field hall considered homogeneous in the heterostructure.
The dashed lines are an overlay of the analytical model in Eq. (7)
where we selected ε = 16 � and γ = 0.2 �. (c,d) show the Joseph-
son potential and the CPR for some selected points in the parameter
space [crosses in (a,b)]. Parameters for the continuum BdG model:
μlat = 4 meV, 	B = 15 nm, VB = 3 meV.

mean-field picture to be valid for large exchange fields and
the Coulomb repulsion to enhance the exchange field in the
central region.

In this regime, Ic is maximal when the dot levels align with
the chemical potential of the leads, as shown in Fig. 2(b).
In the off-resonance condition, the critical lines converge to
the spectral gap closing point h = �. The phase diagram can
be understood using the single-level model, which predicts the
hyperbolic critical lines [see the dashed lines in Fig. 2(a)].
The Josephson potential and CPRs on resonance are shown
in Figs. 2(c) and 2(d). The fundamental harmonic dominates
the junction properties in both the 0 and the π phases (top
and bottom panels). In contrast, high-harmonic contributions
become important in the 0′ and π ′ phases because of the
double minima Josephson potential.

To better understand the harmonic composition of the
Josephson energy, we present the lowest harmonic compo-
nents of the CPR in Fig. 3. For a small value of the exchange
field, in the 0 and 0′ phases, the harmonic component co-
efficients show a peak corresponding to an energy level in
the quantum dot aligning with the Fermi level of the lateral
regions. These peaks have widths that decrease for higher-
order components, allowing the relative strength of the first
two harmonics, δC21 = |C2| − |C1|, to be tuned by slightly
changing the energy of the quantum dot levels electrostat-
ically. In contrast, the sensitivity of EJ to the chemical is
almost negligible in the π phase and the suppression of C2

is significant, resulting in a sinusoidal CPR, as shown in
Fig. 2(d). When the system is tuned to the vicinity of the 0′–π ′
transition, the fundamental harmonic is suppressed, leading to
a regime dominated by the second harmonic and a double-well
Josephson potential.

(a) (b)

(c) (d)

FIG. 3. Harmonic components in the dot regime. (a) Fundamen-
tal and (b) second harmonic for a ferromagnetic hybrid junction in
the dot regime. The transition from 0 to π appears close to the gap
closing (h/� = 1) for a detuned dot, while, near resonance, the π

phase can appear at lower magnetic fields. In the regions of the
metastable phases, a strong C2 component can be observed while the
C1 component vanishes. In panels (c) and (d), we show two cuts of
the harmonic components [blue and red ticks in (a) and (b)]. For
constant hall the Ck components show a peak when a dot level crosses
the Fermi level of the leads, but the width is increasingly smaller
for higher harmonics. For constant μC, the CPR shows a sinusoidal
behavior until the system reaches the 0–π transition, where the
second harmonic dominates. The parameters are equal to those in
Fig. 2.

B. Open regime

In contrast to the quantum dot regime, the open regime
shows a weak dependence on chemical potential, except
close to the edge of the band (μ = 0), Fig. 4(a). The open
regime shows a π phase for hall > �, as predicted by the
analytic expression in Eq. (7). The system shows extended
metastable 0′ and π ′ regions compared to the quantum
dot regime. In the open regime, the transition happens for
hall = �/

√
1 − T/2. For transparent junctions, this critical

line coincides with the zero-temperature paramagnetic limit
for superconductors, meaning that this regime cannot be
achieved in materials with intrinsic superconductivity. In-
stead, semiconductor–superconductor devices are ideal for
reaching the π ′ and π regimes. At the 0′–π ′ transition point,
the CPR is dominated by the sin(2φ) term, leading to a
Josephson potential with two equivalent minima within the
φ ∈ [0, π ] range. We note that the robustness against local
fluctuations in μC is a unique feature of the open regime. The
other two transitions lines, for 0–0′ and π–π ′, are also almost
independent of the chemical potential once μC � 10, taking
place close to hall = 0 and hall = �

√
1 − T .

In both the open and dot cases, when C1 reaches the
crossover point and becomes zero, C2 has a negative sign.
This satisfies the condition |C1| > 4C2 discussed before,
resulting in minima at 0 and π . For what concerns temper-
ature dependence, since the higher harmonic components are
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FIG. 4. Open regime. (a) Phase diagram and (b) difference
between the second and first CPR harmonic components for a fer-
romagnetic hybrid junction in the open regime. The overlaid dashed
lines are the prediction of the analytic model in the γ → ∞ limit
and T = 1. The sensitivity of the phase boundaries to μC is strongly
suppressed in this limit, while the phase space occupied by 0′ and π ′

phases is increased. Parameters: μlat = 4 meV, 	B = 0 nm.

dictated mainly by the lowest ABS, the main effect of increas-
ing temperatures is a reduction of the metastable 0′ and π ′
regions.

The open and dot regimes have different advantages and
disadvantages for practical applications of ferromagnetic hy-
brid junctions as a cos(2φ) Josephson element. The open
regime is insensitive to noise in the gate voltage but requires
a relatively high exchange field hall � �/

√
2 for the second

harmonic to dominate. Increasing the barriers, and thus mov-
ing toward the dot regime, lowers the required exchange field
toward the theoretical limit hall � 0 at the price of a higher
sensitivity to gate noise. It also allows electrostatic control
of the harmonic content. Indeed, when the C2 component
approaches its maximum location, C1 vanishes linearly. This
opens up the possibility of introducing a gate-controllable
cos(φ) component. Additionally, the ability to change from
a dot to an open regime is controlled by the electrostatic
environment, allowing to tune the system between the two
regimes.

C. Inhomogeneous exchange field

The exchange field in the lateral and central regions affects
CPR differently. To reveal this difference, we now analyze
the case where the exchange field in the central (hC) and
lateral regions (hR = hL = hlat) have different values while
being still aligned in the same direction, see Figs. 5(a) and
5(b). In the case of small magnetization in the lateral regions
(hlat ∼ 0), we find that a strong polarization in the central one
hC � � is needed to induce the transition to the π state in the
open regime.

The exchange-field strength necessary to induce a 0–
π transition crucially depends on other parameters of the

FIG. 5. Effect of inhomogeneous exchange field and spin-orbit
coupling. (a) Phase diagram and (b) critical current for a ferromag-
netic hybrid junction with an inhomogeneous exchange field. The
overlaid dashed lines are the prediction of the single-level model,
Eq. (7). The system shows the alternation of 0 and π phases as
a function of hC with sharp transitions. A transition from 0 to π

can also be obtained by gap closing (h/� = 1). (c) Phase diagrams
and (d) critical current of the ferromagnetic hybrid junction in the
presence of spin-orbit coupling such that κ · h = 0. Spin-orbit cou-
pling leads to general suppression of the π phase and the expansion
of the metastable phases. Parameters: μC = 1 meV, μlat = 4 meV,
	B = 0 nm.

system. In particular, longer junctions and low density in the
central region are associated with transitions at lower fields.
The length dependence can be understood using a semiclas-
sical model, where hC adds an extra phase accumulated by
quasiparticles in a round trip between the leads. This phase
is proportional to the hC 	C product, explaining why longer
junctions exhibit switches from the 0 to the π phase at lower
exchange field values. In addition, it leads to a periodic pattern
of 0 and π phases along the hC axis. A similar effect can be
obtained by reducing μC, which reduces the Fermi velocity.
This is further discussed in Appendix B.

A sharp transition from 0 to π can also be obtained near
gap closing (|hlat| = �). In this case, the transition is asso-
ciated with a strong reduction in the magnitude of Ic. This
behavior can be understood using the simplified one-level
model in Eq. (7), which explains the transition to the π phase
as the disappearance of the contribution of the lowest ABS,
thus reducing the total supercurrent in the junction. The fact
that the 0–π transition is associated with a decrease of critical
current only in the case of gap closing can be potentially used
to infer the dominant mechanism in experiments.

D. Spin-orbit coupling in the semiconductor

So far, we neglected the effect of spin-obit coupling. Here,
we consider a simple model for linear spin-orbit coupling that,
for a quasi-one-dimensional system, takes the form

HSOC = kx[αzσy + βσx]τz = kx[κ · σ]τz, (9)

where we define a spin-orbit coupling vector κ = (βx, αz, 0)
[73]. In the simplest setup, αz arises from the Rashba field
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and β from the Dresselhaus term. We note that the distinction
between the two terms is artificial in a one-dimensional
model, as the two terms can be mapped onto each other by
a unitary transformation

U = exp(−iθ/2σzτ0), (10)

that is a rotation in spin space around the z axis by an angle θ ,
potentially inhomogeneous in space. Using θ = arctan(β/αz ),
we can always remove the term proportional to σx and align
the spin-orbit vector in the y direction. This transformation,
however, also rotates the exchange field. This result illustrates
the equivalence between inhomogeneous spin-orbit fields and
exchange fields.

We first focus on the homogeneous spin-orbit coupling
case, displayed in Figs. 5(c) and 5(d). Although spin-orbit
coupling splits the Fermi surface, Cooper pairs do not acquire
a finite momentum unless time-reversal symmetry is broken.
Thus, the oscillation between triplet and singlet components is
absent and it is impossible to obtain a π phase. At a finite mag-
netic field, the Rashba term couples the two spin-split ABSs
reopening the gap, unless the field aligns with the spin-orbit
vector κ. The effect on the CPR of a transverse Rashba field is
a substantial reduction of the π regions and an enlargement of
the metastable phases. When the exchange field h is instead
aligned with κ, the spin-rotation symmetry is unbroken. This
allows for π phases, but simultaneously, the system remains
gapless for h > �.

Anomalous Josephson effects can occur when a spin-orbit
coupling vector is aligned with a magnetic field [74]. How-
ever, it is not observed in the homogeneous case as the
combination of various spin-rotation symmetry-breaking ef-
fects is necessary for its manifestation [75]. This can occur,
for instance, due to finite spin-splitting with a nonzero com-
ponent in both the junction direction and the transverse one
[76], or multiple modes that can hybridize [77]. The presence
of anomalous currents in similar systems was considered in
Refs. [78,79].

The spin-orbit field depends on the local electrostatic en-
vironment. For this reason, the spin-orbit direction can have
different magnitudes and directions in different regions of the
ferromagnetic hybrid junction. We consider this situation in
Fig. 6. The spin-orbit direction is misaligned in the central
region by an angle θC with respect to the lateral ones, while
we consider a homogeneous exchange field. Since the Rashba
field is proportional to the electric field, this scenario might
appear in Josephson junctions due to a varying electrostatic
environment. This is equivalent to a homogeneous spin-orbit
coupling field and a misaligned exchange field in the three
regions. In this case, the CPR shows a nonreciprocal behavior
I (φ) �= I (−φ) due to the presence of anomalous sin(kφ) terms
in the Josephson potential. The nonreciprocal supercurrent
has been recently reported in superconductor–semiconductor
nanowires [33]. The critical phase in the nonreciprocal case
reads as φc ≡ argmax[0,2π )|I|. To measure the nonreciprocal
behavior, we define the critical current in the two directions,
I+
c ≡ max I and I−

c ≡ − min I , and the corresponding diode
efficiency as η ≡ (I+

c − I−
c )/(I+

c + I−
c ). For the parameters

considered, the efficiency can be as high as 30% in the region
close to the 0–π transition. For this point, the CPR shows a
characteristic form I (φ) ∼ sin(φ − φ0) + cos(2φ).

FIG. 6. Nonreciprocal behavior. We introduce a spin-orbit cou-
pling κ = 2 nmeV, misaligned with an angle θC between the central
and the lateral regions. Panel (a) shows the current at the critical
phase, while the diode efficiency is shown in (b). (c) The Josephson
potential and (e) CPR for a specific point of the parameter space
[black cross in (a)] are displayed for increasing temperature from
zero to 500 mK. Nonreciprocal behavior shows a nonmonotonic
temperature dependence, evident in panel (f). This can be explained
by the ABS spectrum [panel (d)] that comprises a reciprocal lowest
state. Therefore, increasing the temperature suppresses the recipro-
cal contribution increasing the efficiency. Parameters: μC = 1 meV,
μlat = 4 meV, 	B = 0 nm, hlat = 0.8�, κ = 2 meVnm.

The rectification effect exhibits a nonmonotonic temper-
ature dependence η(Tp) that shows a maximum at finite
temperature. This can be explained by the ABS spectrum,
see Fig. 6(d): the lowest state is dominated by the cos(2φ)
contribution, with a weak nonreciprocal behavior. The first ex-
cited state has a predominant sin(φ) contribution. Therefore,
increasing the temperature suppresses the reciprocal contribu-
tion of to the low-energy ABS. At higher temperatures, more
states become populated, washing out the contribution from
the harmonics and leading to a sinusoidal CPR, Fig. 6(e).

The nonreciprocal behavior persists for Josephson junc-
tions that feature a different magnitude of the exchange field
in both leads, with a diode efficiency that even increases in
some cases. This is illustrated in Fig. 7, where we take the
parameters of the maximum efficiency in Fig. 6, marked by
the black cross, and tune the magnitude of the exchange fields
in both leads, hL and hR, independently.

IV. CONCLUSION

In this work, we analyzed the higher harmonics in the
current-phase relation appearing in ferromagnetic hybrid
junctions. The induced exchange field in the semiconductor
can overcome the induced pairing potential without causing
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FIG. 7. Nonreciprocal behavior for junctions with asymmetric
exchange fields. Panel (a) shows the supercurrent at the critical
phase, while the diode efficiency is shown in (b). The black cross
represents the point of maximum efficiency of Fig. 6. Parameters:
μC = 1 meV, μlat = 4 meV, 	B = 0 nm, κ = 2 meVnm, θC =
0.56π .

a transition to the normal state. This results in spin-polarized
Andreev bound states with opposite spin crossing the Fermi
level, leading to the 0–π phase transition and supercurrent
reversal.

Higher harmonics in the current-phase relation become
dominant close to the 0–π transition, where the supercurrent
changes sign. In the dot regime (weak coupling to the leads),
the π depends on the relative position of the dot levels with
respect to the leads chemical potential. In case the junction is
tuned into the open regime (large coupling to the leads), the
onset of the π phase is less sensitive to changes in chemical
potential.

We find that the spin-orbit coupling increases the co-
existing region between 0 and π phases with considerable
amplitudes of higher-harmonic components. Finally, we find
that noncollinear spin-orbit coupling in the junction, due to
a varying electrostatic environment, results in a supercurrent
rectification effect whose efficiency peaks around the 0–π

transition.
Despite the model’s simplicity, it captures the main as-

pects of physical phenomenology This becomes evident when
analyzing extreme scenarios. If the two barriers are finite, a
quantum dot is formed, resulting in a low-field 0–π transition
that agrees well with previous experiments [13,80]. In the case
of single-level regimes, a significant spin splitting from either
magnetic proximity or field is required to induce the π phase,
consistent with previous findings [58,81,82].

For ferromagnetic hybrid junctions, the CPR is determined
by the domain configuration. Therefore, achieving the 0′ and

π ′ phases would require control of the magnetic properties
of the materials involved. Deterministic individual domain
flipping might be complicated to control, but there is evidence
[58] that it occurs naturally in nanowires.

Gate-tunability of the charge density in a ferromagnetic
hybrid platform is readily available. Electrostatic control of
the ferromagnetic proximity effect, which has been already
demonstrated in superconductor–ferromagnetic insulator het-
erostructures [83], would greatly increase the attractiveness of
the platform by making it possible to have significant control
over the CPR.

The tunability of the harmonic content of CPRs is rele-
vant for a number of applications, including superconducting
diodes [26–54], ferromagnetic transmon qubits [84], and
parity-protected qubits [21–25]. In this context, ferromagnetic
junctions in the open regime are promising thanks to their
robustness against both charge and flux fluctuations.
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APPENDIX A: ANALYTICAL MODEL
FOR THE SHORT-JUNCTION LIMIT

In this Appendix, we introduce a simple analytical model
that describes the transport through the system, employing the
Green’s function formalism outlined in [85].

The retarded/advanced (R/A) Green’s function of the cen-
tral region is given by

ĜR/A
0 (ω) = [

ĝ−1
0 (ω) − �̂

R/A
L (ω) − �̂

R/A
R (ω)

]−1
, (A1)

where ĝ−1
0 (ω) = (ω + σhC)τ̂0 + ετ̂z describes the isolated

normal region as a function of the electron energy ω and �̂R/A
ν

is the self-energy describing the coupling to the lateral regions
ν.

In the wide bandwidth limit, the self-energy of these re-
gions is given by

�̂R/A
ν (ω) =

∑
ν

�ν

[
gR/A

ν (ω)τ̂0 + fR/A
ν (ω)τxeτ̂yφν

]
. (A2)

Here

gR/A
ν (ω) = − ω + σhν ± iη√

�2 − (ω + σhν ± iη)2
, (A3)

fR/A
ν (ω) = �√

�2 − (ω + σhν ± iη)2
, (A4)

while η is the Dynes parameter, controlling the width of the superconducting coherent peaks at ω = ±�, which we take as
infinitesimal in this case. In the short junction case, we can use a minimal model where the central region is described by a single
electronic site with energy ε and exchange splitting hC. To determine the ABS spectrum, we search for the poles of the retarded
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Green’s function by solving det[(GR)−1] = 0. This results in the complicated expression(
ω + σhC +

∑
ν

γν

ω + σhν√
�2 − (ω + σhν )2

)2

= ε2 +
∣∣∣∣∣
∑

ν

�γνeiφν√
�2 − (ω + σhν )2

∣∣∣∣∣
2

. (A5)

The expression becomes more compact if we consider hR = hL = hlat . In this case, the expression simplifies to(
ω + σhC +

∑
ν

γν

ω + σhlat√
�2 − (ω + σhlat )2

)2

= ε2 + �2

�2 − (ω + σhlat )2
b2(φ), (A6)

where we define the phase potential

b(φ) =
∣∣∣∣∣
∑

ν

γνeiφν

∣∣∣∣∣. (A7)

Note that with this minimal simplification, the dependence on the phase is entirely condensed in the function b(φ).
By defining the total coupling γ = γL + γR and the transmission as T = 4γLγR/(γL + γR)2, we get a simplified expression

that reads as

ω + σhC

γ
+ ω + σhlat√

�2 − (ω + σhlat )2
= ±

√
ε2

γ 2
+ �2

�2 − (ω + σhlat )2
[1 − T sin2(φ/2)]. (A8)

The quantum point contact limit is defined for γ → ∞ and
results in a generalization of Beenakker’s formula for spin-
split leads

ω = ±�

√
1 − T sin2(φ/2) − σhlat, (A9)

while the case for ω = 0 gives the Fermi level crossing for-
mula used in Eq. (7).

APPENDIX B: SEMICLASSICAL ANALYSIS
OF A LONG JUNCTION

The conventional regime is described by the energy scale
hierarchy μ � � � h in the lateral regions and μ � h in the
central one. In this case, the device behaves substantially as
a superconductor–ferromagnet–superconductor junction. For
long junctions with a sufficiently high density and small po-
larization, the behavior can be approximately described by a
semiclassical model. This assumption is not met in the system
studied by the numerical model. Nevertheless, this approach
provides a clearer qualitative picture of the physics of this
system. We follow the steps of Refs. [2,3] including a spin
splitting oriented in the wire direction with magnitudes hL and
hR. Later we include a spin-splitting field in the central region
captured by the magnetic phase �M .

The discrete spectrum is obtained by solving the equation

det[1 − SC(ε)SA(ε)] = 0, (B1)

where SA is the scattering matrix at the interfaces while SC is
the scattering matrix for the transmission through the central
region. We use the basis ψ in = [ce

+(0) ce
−(	C) ch

−(0) ch
+(	C)]

and ψout = [ce
−(0) ce

+(	C) ch
+(0) ch

−(	C)] such that SCψ in =
ψout and SAψout = ψ in.

For ε < �, we can assume that no normal reflection hap-
pens at the interface between the central and lateral regions
if the interfaces are clean. In this case, the Andreev reflection

matrix takes the form

SA =
(

0 seh
A

she
A 0

)
, (B2)

where the submatrices are

seh
A = Aεe+iτz

φ

2 , she
A = Aεe−iτz

φ

2 , (B3)

with

Aε =
(

e−i arccos( ε+σhL
�

) 0

0 e−i arccos( ε+σhR
�

)

)
. (B4)

For the central region, we assume a general scattering
matrix that is block-diagonal in the electron-hole subspaces

SC =
(

see
N 0
0 shh

N

)
. (B5)

Both SA and SC satisfy particle-hole symmetry

S(ε) = PS(−ε)P† = σyτyS∗(−ε)σyτy, (B6)

and consequently shh
N (ε) = T see

N (−ε)T †. Using the property

det

(
A B
C D

)
= det(AD − ACA−1B), (B7)

we eliminate the particle-hole blocks to simplify Eq. (B1) to

det(1 − she
A see

N seh
A shh

N ) = 0. (B8)

To proceed, we need to introduce some specific assumptions
on the form of SC. For a clean system, we can assume a
free propagation that, in Andreev approximation, results in a
scattering matrix with the form

see
N = shh

N = exp

(
i
π

2

ε + σhC

ET

)(
0 1
1 0

)
, (B9)
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FIG. 8. Dependence of the phase diagram on the length of the
central region. The plots show the (a) phase diagram, (b) critical
current, and (c,d) lowest two harmonics. Parameters: hlat = 0, hC =
0.1875 meV, μC = 3.125 meV μlat = 1.25 meV, VB = 0.5 meV.

where we define the Thouless energy ET = π
2

h̄vF
	C

. This results
in an equation for the bound states

π
ε + σhC

ET
± φ −

∑
lat= L, R

arccos

(
ε + σhlat

�

)
= 2πn.

(B10)

If we take the exchange field in the lateral regions to be equal
hL = hR = hlat , this simplifies to

π

2

ε

ET
+ σ�M ± φ

2
− arccos

(
ε + σhlat

�

)
= πn, (B11)

where we define the magnetic phase �M ≡ π
2

hC
ET

= hC	C
h̄vF

. In
the case of a short central region, we can neglect the spin-
independent phase shift in the central region and get the
simplified relation

ε0,σ = ±� cos

(
± φ

2
+ σ�M

)
− σhlat. (B12)

In the case of a low-density regime, the conduction-band
polarization hC/μC can reach high values and exceed one
at the transition to a half-metallic regime. The presence of
inhomogeneities in the chemical potential or exchange field
causes the breakdown of quasiclassical Andreev solutions that
manifests in the hybridization of the solutions of Eq. (B10)
and the opening of sizable gaps in the spectrum [86,87].

Some features of this simple model can be connected to the
results of the nonlinearized BdG model displayed in Fig. 8.
Even in the short junction limit (	C � ξ ), the junction length
modulates the magnetic phase acquired in the transport in the
normal region. Systems with a longer normal region show an
alternation of 0 and π phases together with 0′ and π ′ regions.
The phase diagram shows a series of π regions with a 	C

μa
C

∼ b
shapes, with a and b constants. This can be understood on
the basis of the semiclassical result where the effect of the
ferromagnetic insulator in the central region enters the ABSs
spectrum through the magnetic phase �M = π

2 hC	C( 2μC

m∗ )−1/2.
Therefore, changing the density can have effects similar to
changing the length of the junction.
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S. Vaitiekėnas, Supercurrent reversal in ferromagnetic hybrid
nanowire Josephson junctions, Phys. Rev. B 107, L081301
(2023).

[59] B. S. Chandrasekhar, A note on the maximum critical field of
high-field superconductors, Appl. Phys. Lett. 1, 7 (1962).

[60] A. M. Clogston, Upper Limit for the Critical Field in Hard
Superconductors, Phys. Rev. Lett. 9, 266 (1962).

[61] S. D. Escribano, E. Prada, Y. Oreg, and A. L. Yeyati, Tun-
able proximity effects and topological superconductivity in
ferromagnetic hybrid nanowires, Phys. Rev. B 104, L041404
(2021).

[62] C.-X. Liu, S. Schuwalow, Y. Liu, K. Vilkelis, A. L. R.
Manesco, P. Krogstrup, and M. Wimmer, Electronic properties
of InAs/EuS/Al hybrid nanowires, Phys. Rev. B 104, 014516
(2021).

[63] A. Maiani, R. Seoane Souto, M. Leijnse, and K.
Flensberg, Topological superconductivity in semiconductor-
superconductor-magnetic-insulator heterostructures, Phys. Rev.
B 103, 104508 (2021).

[64] S. D. Escribano, A. Maiani, M. Leijnse, K. Flensberg, Y.
Oreg, A. L. Yeyati, E. Prada, and R. S. Souto, Semiconductor-
ferromagnet-superconductor planar heterostructures for 1D
topological superconductivity, npj Quantum Mater. 7, 81
(2022).

[65] C. W. Groth, M. Wimmer, A. R. Akhmerov, and X. Waintal,
KWANT: A software package for quantum transport, New J.
Phys. 16, 063065 (2014).

[66] A. Maiani, Nonsinusoidal current-phase relations in
semiconductor-superconductor-ferromagnetic insulator
devices: code and dataset of the simulations, Zenodo (2023),
doi: 10.5281/zenodo.7620143.

[67] A. Krichevsky, M. Schechter, Y. Imry, and Y. Levinson,
Spectrum and thermodynamic currents in one-dimensional
Josephson elements, Phys. Rev. B 61, 3723 (2000).

[68] A. Levchenko, A. Kamenev, and L. Glazman, Singular
length dependence of critical current in superconductor/normal-
metal/superconductor bridges, Phys. Rev. B 74, 212509 (2006).

[69] C. Benjamin, T. Jonckheere, A. Zazunov, and T. Martin, Con-
trollable pi junction in a Josephson quantum-dot device with
molecular spin, Eur. Phys. J. B 57, 279 (2007).

[70] B. Bujnowski, D. Bercioux, F. Konschelle, J. Cayssol, and F. S.
Bergeret, Andreev spectrum of a Josephson junction with spin-
split superconductors, Europhys. Lett. 115, 67001 (2016).

[71] I. Kosztin, Š. Kos, M. Stone, and A. J. Leggett, Free energy of
an inhomogeneous superconductor: A wave-function approach,
Phys. Rev. B 58, 9365 (1998).

[72] E. Goldobin, D. Koelle, R. Kleiner, and A. Buzdin, Josephson
junctions with second harmonic in the current-phase rela-
tion: Properties of φ junctions, Phys. Rev. B 76, 224523
(2007).

[73] A. Maiani, M. Geier, and K. Flensberg, Conductance matrix
symmetries of multiterminal semiconductor-superconductor
devices, Phys. Rev. B 106, 104516 (2022).

[74] A. Buzdin, Direct Coupling Between Magnetism and Supercon-
ducting Current in the Josephson ϕ0 Junction, Phys. Rev. Lett.
101, 107005 (2008).

[75] A. Rasmussen, J. Danon, H. Suominen, F. Nichele, M.
Kjaergaard, and K. Flensberg, Effects of spin-orbit coupling and
spatial symmetries on the Josephson current in SNS junctions,
Phys. Rev. B 93, 155406 (2016).

[76] J. Baumard, J. Cayssol, A. Buzdin, and F. S. Bergeret, Inter-
play between superconductivity and spin-dependent fields in
nanowire-based systems, Phys. Rev. B 101, 184512 (2020).

[77] A. Zazunov, R. Egger, T. Jonckheere, and T. Martin, Anoma-
lous Josephson Current through a Spin-Orbit Coupled Quantum
Dot, Phys. Rev. Lett. 103, 147004 (2009).

[78] M. Cheng and R. M. Lutchyn, Josephson current through a
superconductor/semiconductor-nanowire/superconductor junc-
tion: Effects of strong spin-orbit coupling and Zeeman splitting,
Phys. Rev. B 86, 134522 (2012).

[79] K. N. Nesterov, M. Houzet, and J. S. Meyer, Anomalous
Josephson effect in semiconducting nanowires as a signature
of the topologically nontrivial phase, Phys. Rev. B 93, 174502
(2016).

[80] D. Razmadze, E. C. T. O’Farrell, P. Krogstrup, and C. M.
Marcus, Quantum Dot Parity Effects in Trivial and Topo-
logical Josephson Junctions, Phys. Rev. Lett. 125, 116803
(2020).

[81] A. M. Whiticar, A. Fornieri, A. Banerjee, A. C. C. Drachmann,
S. Gronin, G. C. Gardner, T. Lindemann, M. J. Manfra, and
C. M. Marcus, Zeeman-driven parity transitions in an Andreev
quantum dot, Phys. Rev. B 103, 245308 (2021).

[82] C. T. Ke, C. M. Moehle, F. K. de Vries, C. Thomas, S. Metti,
C. R. Guinn, R. Kallaher, M. Lodari, G. Scappucci, T. Wang,
R. E. Diaz, G. C. Gardner, M. J. Manfra, and S. Goswami,
Ballistic superconductivity and tunable π–junctions in InSb
quantum wells, Nat. Commun. 10, 3764 (2019).

245415-11

http://arxiv.org/abs/arXiv:2209.14266
https://doi.org/10.1038/s41467-023-38856-0
https://doi.org/10.1088/1402-4896/acd02f
https://doi.org/10.1103/PhysRevB.107.115165
http://arxiv.org/abs/arXiv:2211.14846
http://arxiv.org/abs/arXiv:2301.13740
https://doi.org/10.1021/acs.nanolett.9b04187
https://doi.org/10.1038/s41567-020-1017-3
https://doi.org/10.1103/PhysRevB.105.L041304
https://doi.org/10.1103/PhysRevB.107.L081301
https://doi.org/10.1063/1.1777362
https://doi.org/10.1103/PhysRevLett.9.266
https://doi.org/10.1103/PhysRevB.104.L041404
https://doi.org/10.1103/physrevb.104.014516
https://doi.org/10.1103/PhysRevB.103.104508
https://doi.org/10.1038/s41535-022-00489-9
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.5281/zenodo.7620143
https://doi.org/10.5281/zenodo.7620143
https://doi.org/10.1103/PhysRevB.61.3723
https://doi.org/10.1103/PhysRevB.74.212509
https://doi.org/10.1140/epjb/e2007-00167-6
https://doi.org/10.1209/0295-5075/115/67001
https://doi.org/10.1103/PhysRevB.58.9365
https://doi.org/10.1103/PhysRevB.76.224523
https://doi.org/10.1103/PhysRevB.106.104516
https://doi.org/10.1103/PhysRevLett.101.107005
https://doi.org/10.1103/PhysRevB.93.155406
https://doi.org/10.1103/PhysRevB.101.184512
https://doi.org/10.1103/PhysRevLett.103.147004
https://doi.org/10.1103/PhysRevB.86.134522
https://doi.org/10.1103/PhysRevB.93.174502
https://doi.org/10.1103/PhysRevLett.125.116803
https://doi.org/10.1103/PhysRevB.103.245308
https://doi.org/10.1038/s41467-019-11742-4


ANDREA MAIANI et al. PHYSICAL REVIEW B 107, 245415 (2023)

[83] T. J. Liu, J. C. Prestigiacomo, and P. W. Adams, Electrostatic
Tuning of the Proximity-Induced Exchange Field in EuS/Al
Bilayers, Phys. Rev. Lett. 111, 027207 (2013).

[84] H. G. Ahmad, V. Brosco, A. Miano, L. Di Palma, M. Arzeo, D.
Montemurro, P. Lucignano, G. P. Pepe, F. Tafuri, R. Fazio, and
D. Massarotti, Hybrid ferromagnetic transmon qubit: Circuit
design, feasibility, and detection protocols for magnetic fluc-
tuations, Phys. Rev. B 105, 214522 (2022).

[85] A. Martín-Rodero and A. L. Yeyati, Josephson and Andreev
transport through quantum dots, Adv. Phys. 60, 899 (2011).

[86] J. Cayssol and G. Montambaux, Exchange-induced ordinary
reflection in a single-channel superconductor-ferromagnet-
superconductor junction, Phys. Rev. B 70, 224520 (2004).

[87] J. Cayssol and G. Montambaux, Incomplete Andreev reflec-
tion in a clean SFS junction, J. Magn. Magn. Mater. 300, 94
(2006).

245415-12

https://doi.org/10.1103/PhysRevLett.111.027207
https://doi.org/10.1103/PhysRevB.105.214522
https://doi.org/10.1080/00018732.2011.624266
https://doi.org/10.1103/PhysRevB.70.224520
https://doi.org/10.1016/j.jmmm.2005.10.040

