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Stacking-induced symmetry-protected topological phase transitions
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We study symmetry-protected topological (SPT) phase transitions induced by stacking two gapped one-
dimensional subsystems in the BDI symmetry class. The topological invariant of the entire system is a sum of
three topological invariants: two from each subsystem and an emerging topological invariant from the stacking.
We find that any symmetry-preserving stacking of topologically trivial subsystems can drive the entire system
into a topologically nontrivial phase for a certain coupling strength. We explain this intriguing SPT phase
transition by conditions set by orbital degrees of freedom and time-reversal symmetry. To exemplify the SPT
transition, we provide a concrete model which consists of an atomic chain and a spinful nanowire with spin-orbit
interaction and s-wave superconducting order. The stacking-induced SPT transition drives this heterostructure
into a zero-field topological superconducting phase.
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The search for exotic topological excitations in symmetry-
protected topological (SPT) phases has been extensively
pursued in the last decades. The classic examples of SPT
phases have become time-reversal symmetric topological in-
sulators [1–5]. Subsequently, SPT phases have been enriched
by considerations of space group symmetries [6,7], a complete
topological electronic band theory [8], and higher-order topo-
logical insulators [9,10]. In addition to material realizations,
quasicrystals [11,12], synthetic dimensions [13,14], stacking
layers of materials [15–17], and non-Hermitian systems [18]
have been studied as platforms hosting SPT phases.

Moreover, SPT phases are connected to unconventional
superconductors. Kitaev has proposed in a seminal work
a toy model stabilizing a one-dimensional topological su-
perconductor (TSC) [19], which is a superconducting SPT
phase [20]. This model is a paradigmatic example, which has
sparked a new research area regarding heterostructures host-
ing SPT phases [21–30]. However, most proposals realizing
SPT phases require a particular type of interaction.

While it is straightforward to analyze whether a SPT phase
is allowed for a combination of symmetries [1,3], it is nontriv-
ial to identify interactions driving systems into SPT phases.
We address this point from a rather general perspective by
stacking two SPT systems. Interestingly, we find that any
symmetry-preserving stacking of topologically trivial sub-
systems exhibits a nontrivial SPT phase. This SPT phase
transition relies on orbital degrees of freedom (ODF) of the
two subsystems and symmetries of the BDI class. Hence, ODF
can be a crucial element of nontrivial SPT phases comple-
menting the search for specific interactions.

In this work, we study SPT phase transitions induced by
stacking two one-dimensional subsystems with arbitrary but
symmetry-preserving coupling. Focusing on the BDI sym-
metry class, we provide a general form of the Hamiltonian
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combining two subsystems with ODF 2Nu and 2Nd , respec-
tively. We derive the winding number of the entire system
as a topological invariant. We show that the winding num-
ber includes a quantized winding number emerging from
the stacking in addition to two individual winding numbers
from each subsystem. Remarkably, any symmetry-preserving
coupling drives two topological trivial subsystems into a
nontrivial SPT phase at a sufficient coupling strength, pro-
vided that (−1)min{Nu,Nd } = −1. The stacking-induced SPT
transition occurs as time-reversal symmetry obstructs the
topologically trivial ground state manifold of two subsystems
to deform continuously to another trivial manifold with in-
creasing coupling strength for a given set of ODF.

We provide a concrete model which consists of an atomic
chain and a spinful nanowire with spin-orbit interaction and s-
wave superconducting order. The atomic chain is topological
trivial and the same is true for the spinful nanowire without
a magnetic field. We show that stacking those two systems
induces a nontrivial SPT superconducting phase. This results
in a zero-field TSC hosting Majorana bound states.

We identify a physical mechanism responsible for the for-
mation of a one-dimensional helical state. In the pioneering
works, a magnetic field has been proposed to lift Kramer’s
degeneracy and mimic helicity [26–29]. In our model, the
symmetry-preserving stacking prevents the system from being
symmetric with respect to the time-reversal operator T̂ satisfy-
ing T̂ 2 = −1̂. Hence, the stacking lifts Kramer’s degeneracy
and yields a helical state.

General argument. We derive a general matrix represen-
tation H of the Hamiltonian Ĥ describing a stack of two
one-dimensional BDI systems with Hamiltonians Ĥu and Ĥd

and an arbitrary coupling term Ẑ . In momentum space, we
analyze

H(k) =
(
Hu(k) Z†

Z Hd (k)

)
. (1)
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Since the BDI symmetry class includes chiral symmetry, chi-
ral operators Sμ exist satisfying {Hμ(k),Sμ} = 0 and S2

μ = 1
(μ = u, d). Note that the ODF of each subsystem are even
integers 2Nu and 2Nd according to the eigenvalues ±1 of
chiral operators. Using the eigenstates of the chiral operator
for each block, we can transform the Hamiltonian into

H(k) =

⎛
⎜⎜⎜⎜⎝

0Nu h†
u(k) V † Y †

hu(k) 0Nu X † W †

V X 0Nd h†
d (k)

Y W hd (k) 0Nd

⎞
⎟⎟⎟⎟⎠. (2)

The matrix elements of the coupling term Z are chosen as
V,W, X,Y .

Since the entire system shall respect the chiral symmetry,
we can reduce matrix elements further. The chiral symmetry
operator S for the entire system is

S =
(
Su 0

0 Sd

)
. (3)

From {H(k),S} = 0, we find the symmetry-preserving cou-
pling should satisfy X = Y = 0. By basis transformation, we
can write the full Hamiltonian in the convenient form,

H(k) =
(

0 h†(k)

h(k) 0

)
, h(k) =

(
hu(k) W †

V hd (k)

)
. (4)

The matrix size of h(k) is Nu + Nd . The BDI class includes
time-reversal symmetry T̂ satisfying T̂ 2 = 1̂ so that H∗(x) =
H (x) [31], which is equivalent to H∗(k) = H(−k) in mo-
mentum space [1,2]. Consequently, H(k), V , and W † are real
matrices at the time-reversal momenta k = 0 and k = π .

We calculate the winding number W of the entire system
to study SPT phase transitions. Note that h(k) can be continu-
ously deformed except for singular points z(k) ≡ det[h(k)] =
0, at which the system is gapless. Hence, z(k) can be viewed
as a mapping of a closed loop S1 to another closed loop S1 in
the complex plane, since k ∈ S1 and z(k) = z(k + 2π ). This
defines the fundamental group of π1(S1) ∼= Z, and the number
of times that z(k) winds around z(k) = 0 is given by

W = 1

2π i

∫ 2π

0
dk

∂

∂k
log {det [h(k)]}. (5)

We find that W = Wu + Wd + Wud , where Wμ =
(i/2π )

∫ 2π

0 dk∂k log{det[hμ(k)]} is the winding number
of each subsystem μ = u, d . An additional winding number
Wud emerges from stacking the two subsystems. It can be
written as

Wud = 1

2π i

∫ 2π

0
dk

∂ log
{

det
[
1 − h−1

d (k)V h−1
u (k)W †

]}
∂k

.

(6)
We emphasize that if we stack two topologically trivial
subsystems, Wu = Wd = 0, nontrivial SPT phase transitions
can occur due to the emerging quantized winding number
Wud . Surprisingly, the whole system of two trivial subsys-
tems generically undergoes the SPT phase transitions for any
symmetry-preserving stacking at sufficiently strong coupling,
if (−1)min{Nu,Nd } = −1.

FIG. 1. Symmetry-preserving stacking of two trivial subsystems
induces a nontrivial SPT phase with nonzero winding number Wud

evaluated by the loop zλ(k) (blue). The loops deform by tuning the
coupling strength λ. (a) Deformation of the loop in the presence of
time-reversal symmetry and (−1)min{Nu,Nd } = −1. (b) Same as (a) for
(−1)min{Nu,Nd } = +1. (c) Same as (a) in the absence of time-reversal
symmetry.

We first illustrate the SPT phase transition geometri-
cally by analyzing the winding number Wud as a function
of coupling strength λ. We define a loop zλ(k) ≡ det[1 −
λh−1

d (k)V h−1
u (k)W †] in the complex plane. The winding num-

ber Wud counts the number of times that the loop zλ(k)
winds around the origin with varying coupling strength λ

(see Fig. 1). The ODF of a subsystem let the loop deform
from a loop in the far right (left) complex plane to a loop
in the far left (right) complex plane, as sending λ from −∞
to ∞. In the limits λ → ±∞, the loop becomes zλ(k) ∝
(−λ)min{Nu,Nd } [32]. If (−1)min{Nu,Nd } = −1, the loop is found
at zλ(k) → ∞ as λ → −∞ and at the other side zλ(k) → −∞
as λ → ∞, or vice versa. Time-reversal symmetry sets condi-
tions on the deformation of the loops as we change λ between
the limits. It forces the loops to be symmetrical about the real
axis, i.e., z∗

λ(k) = zλ(2π − k). Additionally, it causes the loops
to intersect with the real axis at the time-reversal invariant mo-
menta of k = 0 and k = π . Hence, when min{Nu, Nd} is odd,
time-reversal symmetry obstructs two loops z∞(k) and z−∞(k)
to continuously deform into each another without passing the
origin [see Fig. 1(a)]. Thus, any symmetry-preserving stack-
ing drives the combined system into nontrivial SPT phases
with nonzero Wud for certain coupling strengths. However, if
min{Nu, Nd} is even, the continuous deformation by λ does
not guarantee a nonzero Wud [Fig. 1(b)]. Likewise, if time-
reversal symmetry is broken, the loop is able to circumvent
the origin [Fig. 1(c)].

We support the above geometric picture of the SPT phase
transition by studying analytical properties of the wind-
ing number Wud . Note that the necessary condition for
a SPT phase transition is a gap closing: zλ(k) = det[1 −
λh−1

d (k)V h−1
u (k)W †] = 0 for a real-valued coupling strength

λ. Due to time-reversal symmetry, zλ(k) = 0 becomes a poly-
nomial equation of the variable λ with real coefficients when
k = 0 and k = π . According to the fundamental theorem of
algebra, there exists at least one real solution λ0 if the degree
of the polynomial equations is odd [32]. This condition is
satisfied for an odd integer min{Nu, Nd}. The gap closing
occurs for a certain symmetry-preserving coupling strength.
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FIG. 2. (a) Two loops of zλ0+ε (k) and zλ0−ε (k) yield δWud : The
sum of contour integrals along the loops shown in (b) and (c) equals
δWud .

Since the gap closing alone does not guarantee SPT phase
transitions, we show that the winding number changes after
the gap closing: δWud = limε→0[Wud (λ0 + ε) − Wud (λ0 −
ε)] 	= 0 [see Fig. 2(a)]. We prove a nonzero δWud on the
basis of the loops in Figs. 2(b) and 2(c). Due to time-reversal
symmetry, we find zλ0+ε (δk) = −xε + iyδk with nonzero real
numbers x and y close to a gap closing momentum k = 0 [33],
where ε and δk are infinitesimally small. We derive the po-
sitions of the other vertices of the loop in Fig. 2(b) in the
complex plane as zλ0+ε (−δk) = −xε − iyδk, zλ0−ε (−δk) =
xε − iyδk, and zλ0−ε (δk) = xε + iyδk. Since x and y are
nonzero, the loop in Fig. 2(b) encloses the origin with a
nonzero winding number. The winding number of the loop
in Fig. 2(c) is zero instead.

Zero-field TSC. We now present a specific example for the
general result on the stacking-induced SPT phase transition.
We consider a heterostructure formed by stacking two topo-
logically trivial one-dimensional subsystems (Fig. 3). One
of the subsystems resembles a semiconductor nanowire with
spin-orbit coupling and s-wave superconducting order in the
absence of an external magnetic field. We show that stacking
another spin-polarized wire to the first one induces a nontriv-
ial SPT phase, resulting in zero-field TSC without external
magnetic fields.

The Hamiltonian of the heterostructure is ĤBdG = Ĥu +
Ĥd + Ẑ + Ẑ†. Ĥu = ∫

dk[ψ̂†(k)Hu(k)ψ̂ (k)] is the standard
Hamiltonian of semiconductors with the spin-orbit coupling
and superconducting order, regarding real materials such as
InAs and InSb [23,24,26], Ĥd = ∫

dk[φ̂†(k)Hd (k)φ̂(k)] is

FIG. 3. Stacking of two topologically trivial subsystems yields a
zero-field TSC phase. (a) Spinful (top) and spin-polarized (bottom)
quantum wires are stacked with arbitrary coupling strength (dashed
lines). (b) The spinful wire exhibits an s-wave superconducting gap
along with spin-orbit coupling. (c) The chemical potential gaps out
the spin-polarized wire. The lower branches Eu,d < 0 depict the hole
band.

the Hamiltonian describing the spin-polarized wire, and Ẑ =∫
dkψ̂†(k)Zφ̂(k) is the coupling Hamiltonian,

Hu = τz[tu cos k − μu + lso sin k σy] + �τx,

Hd = τz[td cos k − μd ],

Z =
(−v2−w2

2
v1+w1

2
−v1+w1

2
−v2+w2

2
−v2+w2

2
v1−w1

2
−v1−w1

2
−v2−w2

2

)
. (7)

ψ̂†(k) = [ĉ†
↑(k), ĉ†

↓(k), ĉ↓(k), −ĉ↑(k)] and φ̂†(k) =
[d̂†(k), d̂ (k)]. Here, ĉ↑(↓)(k) annihilates spin-up (down)
electrons with momentum k in the spinful wire, while d̂ (k)
annihilates electrons with momentum k in the spin-polarized
wire. The Pauli matrices τ and σ act on particle-hole
and spin space, respectively. The spin-orbit coupling and
superconducting order of the spinful wire are described with
real parameters lso and �, respectively. The hopping energy
and chemical potential of each subsystem μ = u, d are given
by tμ and μμ. Finally, the arbitrary symmetry-preserving
coupling Z of both subsystems has four independent real
parameters v1, v2,w1,w2. The matrix elements in the second
row of Z follow from imposing particle-hole symmetry. We
note that the two subsystems alone remain topologically
trivial for any set of physical parameters.

The heterostructure satisfies the right conditions for the
stacking-induced SPT phase transition: ODFs of subsystems
Nu and Nd yield (−1)min{Nu,Nd } = −1, and the stacked system
possesses the symmetries of the BDI class. Evidently, the first
condition is satisfied, as Nu = 2 and Nd = 1 [see Eq. (7)].
Moreover, the heterostructure falls into the BDI symmetry
class. The chiral operators of each subsystem are Su = τyσy

and Sd = τx. We find {ĤBdG, Ŝ} = 0 using the chiral operator
for the whole system as in Eq. (3) [33]. We use the com-
plex conjugate K as the time-reversal operator T̂ satisfying
T̂ ĤBdG(k)T̂ −1 = ĤBdG(−k) with T̂ 2 = 1̂. The particle-hole
symmetry operator is given by � = ST .

We identify the stacking-induced SPT transition of the
heterostructure with the winding number Wud given in Eq. (6).
The block off-diagonal representation of the Hamiltonian of
the whole system as in Eq. (4) can be written as

h(k) =

⎛
⎜⎝

tu cos k − μu −� − ilso sin k w1

� + ilso sin k tu cos k − μu w2

v1 v2 td cos k − μd

⎞
⎟⎠.

(8)
From this expression, the loop zλ(k) = det[1 −
λh−1

d (k)V h−1
u (k)W †], yielding Wud , can be calculated.

Phase boundaries at which the SPT transitions occur are
found using zλ(k = 0) = 0 and zλ(k = π ) = 0 as follows:

λ = (td ± μd )[�2 + (tu ± μu)2]

(tu ± μu) cos χ ± � sin χ
, (9)

where we parametrize v1 = cos(χ + δ), v2 = sin(χ + δ),
w1 = cos δ, and w2 = sin δ. The phase diagram depends on
two parameters: coupling angle χ and coupling strength λ

[Fig. 4(a)]. We obtain the phase diagram from Wud for regions
surrounded by the phase boundaries [Fig. 4(b)].

We find Majorana bound states as a result of the SPT phase
transition. Zero energy bound states appear in the energy
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FIG. 4. (a) Phase diagram of the zero-field TSC (green) in
terms of the coupling angle χ and strength λ. (b) Wud =∫ 2π

0 dk arg{zλ(k)}/(2π ) counts the number of times the loop zλ(k)
winds around the origin. The loops depict the cases (i)–(iii) in panel
(a). (c) Energy spectra of the heterostructure with a finite size (200
unit cells). The Majorana bound states appear at zero energy (red).
(d) Electron bands for λ = 0 (black) and λ 	= 0 (red). We obtain
all figures with tu = −1, td = −0.7, μu = −1.05, μd = −0.8, lso =
0.5, � = 0.3.

spectra of a finite size system [Fig. 4(c)]. The Majorana wave
function, which is particle-hole symmetric �ζ±(x) = ζ±(x),
can be written as

ζ+(x) ∝ (1, 1, 1, −1,
√

2,
√

2)T e
√

2�+λ√
2lso

x
,

ζ−(x) ∝ (i, i, −i, i, i
√

2, −i
√

2)T e−
√

2�+λ√
2lso

x
, (10)

where χ = 3π/2, μu,d = tu,d + λ/
√

2. In Eq. (10),
a continuum version of the Hamiltonian of Eq. (7)
is employed to simplify the expression. Defining
�̂± = ∫

dx�̂†(x)ζ±(x), we explicitly show that Majorana
bound states appear since �̂

†
± = �̂±, where �̂†(x) =

[ĉ†
↑(x), ĉ†

↓(x), ĉ↓(x), −ĉ↑(x), d̂†(x), d̂ (x)].
We elaborate on the physical mechanism of the zero-field

TSC as imitating the one-dimensional helical state using ODF
instead of magnetic fields. It is known that the helical state
stabilizes a TSC phase with an s-wave superconducting or-
der [25]. To mimic the helical state, a magnetic field has been
added to spin-orbit nanowires to lift Kramer’s degeneracy and
open a gap at k = 0 [26–29]. The Kramer’s degeneracy is
often eliminated by adding a time-reversal symmetry breaking
interaction V̂ ′ so that [T̂ , Ĥ + V̂ ′] 	= 0. However, it can also
be lifted by making the system obeying time-reversal symme-
try [T̂ , Ĥ ] = 0 but with T̂ 2 = 1̂. The latter is the case in our
stacked system. Accordingly, the interaction among bands in

our model opens a gap, lifting Kramer’s degeneracy without a
magnetic field [Fig. 4(d)].

To illustrate that the heterostructure mimics helical states,
we provide a low-energy effective Hamiltonian of the electron
band for weak coupling strength,

Heff = tu cos k − μu + lso sin kσy + v2(1 + σx )

4(μd − td cos k)
, (11)

where χ = 3π/2, δ = 0. Heff describes the spinful wire, since
most electrons fill the spinful part below the Fermi energy.
The last term stems from the stacking of the spin-polarized
nanowire and breaks the physical time-reversal symme-
try of the spinful nanowire Tu = iσyK. This replaces the
Zeeman interaction from an external magnetic field. Hence,
the heterostructure mimics one-dimensional helical states at
the Fermi energy and realizes zero-field TSC with s-wave
superconducting order. We emphasize that effective time-
reversal breaking from stacking is momentum dependent.
Especially, if |μd | ∼ |td |, effective time-reversal breaking is
maximized at the time-reversal invariant momentum k = 0
and rapidly decreases at finite momenta. Hence, almost per-
fect helical states can be achieved in combination with a large
energy gap at k = 0. This is an advantage with respect to
the formation of quasihelical states in spin-orbit nanowires
employing Zeeman interaction.

Conclusion. Nontrivial SPT phases can be induced by any
symmetry-preserving stacking of two subsystems in the one-
dimensional BDI symmetry class. We demonstrate that the
only requirement for SPT phase transitions is set on ODF of
each subsystem without particular types of stacking or interac-
tions. We illustrate the general result on the stacking-induced
SPT phase transitions with a concrete example of zero-field
TSC. It consists of an atomic wire coupled to a spin-orbit
nanowire with s-wave superconducting order. Stacking two
systems induces a SPT transition so that the stacked systems
become a TSC in the absence of a magnetic field. Since zero-
field TSC does not require a large g factor, it can stimulate
experimental searches for implementing TSC in a different
range of materials.
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zero-field TSC.

245409-5

https://doi.org/10.1103/PhysRevX.7.041069
https://doi.org/10.1038/nature23268
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1038/s41563-018-0251-x
https://doi.org/10.1364/OME.416552
https://doi.org/10.1007/s11467-021-1100-y
https://doi.org/10.1364/OPTICA.5.001396
https://doi.org/10.1038/s42254-019-0045-3
https://doi.org/10.1103/PhysRevB.85.125309
https://doi.org/10.1103/PhysRevLett.112.146405
https://doi.org/10.1103/PhysRevLett.114.136801
https://doi.org/10.1103/RevModPhys.93.015005
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1103/PhysRevB.84.144522
https://doi.org/10.1088/0953-8984/25/23/233201
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.1259327
http://link.aps.org/supplemental/10.1103/PhysRevB.107.245409

