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Waiting time distributions in quantum spin Hall based heterostructures
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We study the scattering processes and the associated waiting time distributions (WTDs) in heterostructures
based on one-dimensional helical edge states of a two-dimensional topological insulator. In combination with
a proximitized s-wave superconductor and an applied magnetic field a topological transition occurs. Along this
transition the WTD reveals specific features related to the presence of Andreev bound states at finite energy
or Majorana bound states at zero energy under ideal conditions. The effects of several imperfections such as
disorder and finite temperature are discussed.
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I. INTRODUCTION

The quest of Majorana fermionic states in condensed-
matter physics, has been the subject of a strong interest during
the past decades, in particular because of their exotic prop-
erties, such as non-Abelian statistics, that open the way to
using them for quantum computation [1,2]. Among many
proposals to create them, heterostructures based on two-
dimensional topological insulators (TIs) are one interesting
path of research. Previous investigations on the topologically
nontrivial bulk band inversion in TIs result in quasi-one-
dimensional TRS protected counterpropagating edge states
[3–5]. While the band structure in quantum well systems is
highly sensitive to its thickness, it remains challenging to
handle the energetic localization of the Dirac point (DP) [6].
These spin-polarized states in combination with an s-wave
superconductor (SC) and a magnetic field can be used to
engineer Majorana bound states (MBSs) within different geo-
metrical setups [7–10]. Induced superconductivity in the edge
states of TIs has experimentally been realized in quantum well
setups [11–18], or alternatively on thin-layer TIs [19–23]. The
combination with a magnetic field for such systems results in
a zero-energy mode in the conductance, potentially allowing
the characterization of a MBS [24]. Topological supercon-
ductivity has also been realized in semiconducting nanowires
[25–27] and has generated a lot of interest [28]. Usual con-
ductance measurements to identify necessary characteristics
of MBSs for such topological setups can be affected by the
presence of trivial states [29–36], such that we are motivated
for alternative measurements. One possibility would be to re-
sort to the waiting time distributions (WTDs) [37–49], namely
the distribution of time delay between the detection of two
consecutive charge carriers, which has been shown to reveal
traces of MBS in such nontrivial systems [46–48]. Whether
this observable may provide a clear signature of the presence
of a MBS is still under debate. However, the influence of
the nature of different resonances in the scattering spectrum
on waiting times is important and deserves to be addressed.
Improving its understanding is the main purpose of this
work.

Necessary techniques for the counting of single particles
have become very precise, allowing a novel measurement
for the processes of specific scattering events [49–58]. The
resulting WTD in turn provides statistics including signatures
that may help to distinguish between topologically trivial and
nontrivial states within the system. WTDs in semiconducting
hybrid systems have recently been studied, providing distinct
features of a one-dimensional p-wave SC in comparison to
an s-wave SC [46]. Further theoretical investigations have
shown results for entangled electrons on a SC interface for
MBSs [47,48].

In this paper we study WTDs in materials based on topo-
logical hybrid junctions as presented on Fig. 1. We combine
the WTD as a statistical characterization tool to detect several
transport effects that appear within such topological junc-
tions. We unpack the complexity of the scattering processes
involved in this setup by increasing smoothly its complexity
until the topological phase transition is reached. This allows
us to discuss features in the WTD related to the presence of
finite energy ABSs or zero-energy MBSs in the setup under
ideal conditions. These features are shown to be robust to
the addition of several parasitic ingredients such as finite
temperature and disorder in the system. However, spurious
zero-energy resonances, such as trivial or partially separated
ABSs, could mimic the effect of a MBS, although we have not
been able to identify mechanisms to create them in TIs in this
work. This clearly deserves further consideration.

The paper is set up as follows. In Sec. II we introduce the
model that is used for the underlying N-S-F-S-N junction. In
Sec. IV C we recap the substance of WTDs. The results are
presented in Sec. IV, where we elaborate WTDs for specific
types of hybrid quantum conductors, closely related to the
Fu and Kane structure [8]. We study in detail the WTDs
of different scattering processes in the presence of ABS or
MBS and identify possible signatures to distinguish them. We
finally discuss the effect of imperfections in the setup such as
finite temperature and disorder. Conclusion and outlook are
given in Sec. V and several technical details are available in
Appendixes.
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(a)

(b)

FIG. 1. (a) Schematic of the setup described by Eq. (1), con-
taining counterpropagating one-dimensional edge states with two
superconducting (blue) regions enclosing a ferromagnet (yellow) and
connected to source and drain electrodes. Further indicated are the
possible scattering states of an incoming spin up electron, which may
be reflected as electron/hole (solid/dotted line) or be transmitted
as electron/hole. (b) Energy spectra indicating the effective paring
amplitudes in the scattering regions.

II. MODEL

The heterostructure we consider consists of helical coun-
terpropagating edge states of a quantum spin Hall insulator,
where only one edge is proximity coupled to a spatially
restricted s-wave superconductor and a magnetic field [see
Fig. 1(a)]. Similar setups have been studied in the literature
[7,8,59–61]. In the basis � = (ψ↑, ψ↓, ψ

†
↑, ψ

†
↓ ), the Hamilto-

nian of the system under consideration is the following:

H =
(

H0 H∗
SC

HSC −H∗
0

)
, (1)

where H0 = HTI + HZ. The Hamiltonian HTI = vFkxσ3 − μ is
the kinetic term of the edge states, with Fermi velocity vF

(h̄ = 1), momentum kx = −i∂x, chemical potential μ and spin
quantization axis along the z direction, while HZ = σ1�Z(x)
is the Zeeman field pointing in x direction. Furthermore,
HSC = −i�(x)σ2 includes the superconductor, which is as-
sumed to be grounded, and the Pauli matrices σ (τ ) act in
spin (Nambu) space. The spatial arrangements of � and �Z

are chosen to have a ferromagnetic region enclosed by two
superconducting regions, such that �(x) = �[�(x) − �(x −
L)] + �eiφ[�(x − L − Lm) − �(x − 2L − Lm)] and �Z(x) =
�Z[�(x − L) − �(x − L − Lm)]. The pairing mechanisms
open a gap in the spectrum of the edge states [see schematic in
Fig. 1(b)], which is either at the DP (�Z) or at the Fermi level
crossing (�). In addition we also assume a superconducting
phase difference φ across the system [see Fig. 1(a)].

For our interests we study two cases. First, no Zeeman field
is applied (trivial phase) and the middle region hosts freely
propagating helical states, acting as a Fabry-Pérot interferom-
eter [62]. Second, we include a finite Zeeman field, which
couples the two spin species and opens a gap in the middle
region, resulting in the emergence of zero-energy MBSs lo-
calized on the interfaces of the superconducting and magnetic
regions [8]. This topological transition takes place above a

certain threshold of the Zeeman field, which depends on the
system parameters. The localization of the zero-energy MBSs
arises due to domain walls with a different mass sign along
the Jackiw-Rebbi model and decay with the inverse of the
gap into the respective region. We check the characterization
of different phases appearing in the heterostructure, by first
presenting the scattering features as a basis to identify dis-
tinct signatures in the WTD. Whereby we use the seminal
work of Blonder, Tinkham, and Klapwijk (BTK) to calcu-
late the corresponding scattering coefficients [63]. We assume
in this work a rather long junction (Lm > vF /�), such that
for �Z = 0 multiple resonances are well defined within the
superconducting gap E < � [see Fig. 2(a)]. Calculating the
wave function with the continuity conditions on the interfaces
at x = 0, L, L + Lm and x = 2L + Lm results in the necessary
transport coefficients. With a preserved TRS (�Z = 0), an
incoming right-moving electron from the source is protected
from backscattering, such that there are only two nonvanish-
ing processes. Namely, the cotunneling of an electron (te) form
source to drain and the local Andreev reflection (rh) on the
SC interface at x = 0. The breaking of TRS in turn then also
allows normal electron reflection (re), including a spin flip,
and the transmission of holes (th). While the gap closing and
reopening is usually used as an indicator of the topological
phase transition, we use only the normal electron reflection
signature, accompanied by its probability at zero energy from
zero to one. Details are presented in Appendixes A and B.
Based on those energy-dependent coefficients, we evaluate the
corresponding WTDs, which we introduce in the next section.

III. WAITING TIME DISTRIBUTION

For the sake of clarity, we recap in this section the formal-
ism used for the calculation of WTDs [37–40] as well as some
well-established results that will serve as reference. The WTD
W (τ ) denotes the probability distribution for the time delay
τ between the detection of two consecutive charge carriers.
They can be electrons or holes for instance. This quantities
give precise and transparent information about correlations in
a transport process. In general, it is customary to calculate it
from the idle time probability (ITP) 
(τ ), namely the prob-
ability to detect zero particles during a time interval τ . For
stationary processes these two distributions are connected by
the following expression:

W (τ ) = 〈τ 〉∂
2
(τ )

∂τ 2
. (2)

For noninteracting systems, the ITP is given by the determi-
nant formula [39]


(τ ) = det(1 − Qτ ), (3)

where Qτ is a projector over the time window τ whose ex-
pression depends on the detection scheme (measurement of
consecutive electrons, holes, etc.) and the scattering matrix
of the system. Explicit formulas are given below for the pro-
cesses of interest. In addition, the mean waiting time is in
general given by

〈τ 〉 = − 1


̇(τ = 0)
, (4)
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FIG. 2. (a) Energy dependence for the scattering coefficients Te(E ) (blue) and Rh(E ) (red dotted) for φ = 0 and �Z = 0. Resonances reflect
ABS in the normal region. (b) WTD between holes (Andreev reflected electrons with Rh(E )) flowing back to the source for the indicated energy
windows referring to (a). (c) WTD for transmitted electrons flowing to the drain. Each distribution covers an increasing number of resonances.
The parameters are chosen to be L = 2/�, Lm = 6L, �Z = 0.

with 
̇(τ = 0) = ∂
(τ )
∂τ

|τ=0. To continue, we specify a detec-
tion procedure for the WTD. Thus, we calculate the ITP with
the projection of a single-particle scattering state on a discrete
voltage window around the Fermi level. In the range of the
applied voltage V , the linear energy spectrum is discretized
into N compartments with wave vectors k = n

N
eV
h̄vF

. A station-
ary process is then reached by the limit N → ∞. We label
the matrix elements of Qτ with the four possible scattering
processes as[

Qte
τ

]
nm ≈ κte(κn)t∗

e (κm)

2π
Kτ [κ (n − m)], (5)

[
Qth

τ

]
nm ≈ κth(κn)t∗

h (κm)

2π
Kτ [κ (n − m)], (6)

[
Qre

τ

]
nm ≈ κre(κn)r∗

e (κm)

2π
Kτ [κ (n − m)], (7)

[
Qrh

τ

]
nm ≈ κrh(κn)r∗

h (κm)

2π
Kτ [κ (n − m)], (8)

where κ results from the discrete energy compartment to 1
N

eV
h̄vF

in the measured energy window eV and the kernel is given by

Kτ [κ (n − m)] = 2e−iκ (n−m) vF τ

2 sin
(
κ (n − m) vF τ

2

)
κ (n − m)

. (9)

Thus, we can measure the distribution of waiting times for
outgoing electrons or holes from source to drain with Eq. (5)
or Eq. (6). Similarly, with the assumption of a grounded
superconductor, we calculate the WTDs of reflected elec-
trons Eq. (7) or holes Eq. (8). The corresponding scattering
coefficients, te/h and re/h, are in general strongly energy de-
pendent and can be seen as an energy filter within the transport
window, which will be described later in the text. With this
framework we are able to calculate the energy-dependent ITP
from the determinant of the matrix in Eq. (3), needed for the
WTD [Eq. (2)]. Depending on the point of interests, we focus
in the next sections on specific scattering processes and their
features appearing within the designated WTD.

Before going further in the analysis of our model, we first
recall some important results that will be useful to understand
our work. A reference case is the one of a single quantum
channel subjected to a voltage eV in the presence of an energy-
independent barrier of transmission T [40]. If we look at the
WTD of electrons transmitted through the scatterer, it dis-
plays a crossover from a Wigner-Dyson distribution at perfect

transmission to an exponential at low transmission. Indeed,
for a perfectly transmitting channel, in which the scattering
state can be seen as a train of noninteracting fermions, the
average waiting time in which electrons are separated is given
by τ̄ = h/eV . This separation is due to the Pauli exclusion and
the statistical distribution is approximated by a Wigner-Dyson
surmise.

W (τ ) = 32

τ 3π2
τ 2 exp

[
− 4

π

τ 2

τ 2

]
. (10)

This shape is easily understood by a mapping between
one-dimensional fermions to random matrices of the Gaus-
sian unitary ensemble [40]. Another important indicator of
fermionic statistics is the fact that the WTD vanishes at τ = 0.
As T is reduced, the WTD spreads to longer waiting times
and develops oscillations similar to Friedel oscillations with
period h/eV . Close to pinch off (T 
 1) WTD approaches an
exponential distribution which is the signature of uncorrelated
events. Indeed, in that case the detection time of scattered
electrons is very long and conclusively detected electrons are
no longer correlated. The mean waiting time is simply given
by 〈τ 〉 = τ̄ /T , while the corresponding current reads e/〈τ 〉 =
e2

h V T , well known as the Landauer formula [64]. Another
interesting benchmark is the case of a single channel with
a resonant transmission of Lorentzian shape. If the applied
voltage is larger than the width of the resonance, the WTD
can be shown [40] to be well approximated by a function of
the form W (τ ) = 2τ exp(−τ ), with  a parameter linked
to the width of the resonance (see Appendixes C and D for
details). If several resonances are present in the voltage win-
dows, oscillations in the WTD show up due to interferences
between different energy paths [40].

IV. RESULTS

We present in this section the WTDs found for two differ-
ent situations. First, we consider the setup in Fig. 1(a) without
a Zeeman field (�Z = 0), hosting ABSs, and second with a
Zeeman field lifting the Kramers degeneracy at the DP in the
normal region. In the later situation MBS appear on the two
interfaces between the superconducting and magnetic regions
above a certain value of the Zeeman field, which induces a
topological transition (see Appendix A for details). Our goal is
to discuss the different effects between the two characteristic
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phases (trivial vs. topological) in terms of their WTDs and
finally identify a possible distinction between the two.

A. Andreev bound states: �Z = 0

We begin with the study of a TRS Josephson junction
by considering the system without a Zeeman field (�Z = 0).
Following the BTK scattering formalism [63], we calculate
the scattering probabilities for an incoming electron from
the source (see Appendix A) with boundary conditions at
x = 0, L, L + Lm and x = 2L + Lm. To relate the scattering
coefficients to the respective WTDs in detail, we first present
in Fig. 2(a) the energy dependence (at φ = 0) of the two co-
efficients Te(E ) = |te|2 (blue) and Rh(E ) = |rh|2 (red dotted),
namely the probability that an incoming electron is trans-
mitted as an electron or reflected as a hole. There, we find
resonances with a energy difference �E ∝ vF /Lm. The trans-
mission probability Te(E ) arises due to the structure of the
junction, which can be seen as a Fabry-Pérot interferometer
with the two SC regions acting as barriers [62]. After the
transmission of an electron through the first barrier, multiple
Andreev reflections within the region enclosed by the two SCs
allow those resonances to appear, and are known as Andreev
bound states. The shape of the peaks can be modulated by
the choice of the SC regions, such that a rather short re-
gion (L < ζSC , with the SC coherence length ζSC = vF,s/�)
broadens the spectra. The length of the normal region (Lm)
modifies the energy distance (and the number of states) of
states within the SC gap. The Andreev reflection Rh(E ) shows
dips at the corresponding resonances, which follows directly
from the normalization condition, Te(E ) + Rh(E ) = 1. Next,
we evaluate the WTD [Eq. (2)] for these processes and present
in Fig. 2(b) the WTD, where an incoming electron gets An-
dreev reflected for several voltage windows (V+ > 0). For
small voltages (black line) the Andreev reflection is unity.
Conclusively, the WTD of reflected holes is well approxi-
mated by a Wigner-Dyson distribution, given by Eq. (10).
Note that the indicated reference time is chosen by τ̄� = h/�,
while the WTDs have their maximum around the mean wait-
ing time 〈τ 〉 = τ̄ = h/eV . With increasing voltage (red dotted
and blue dashed lines), the WTD remains a Wigner-Dyson
distribution, since the dips in the reflection coefficient [see
Fig. 2(a)] are negligibly small and the channel can be seen as a
perfectly reflecting one. Since the scattering coefficient Rh(E )
tends to zero for E � �, a further increase of the voltage
would result in an effective smaller reflection within the full
window, thus the WTD would evolve towards an exponential
distribution (not shown).

More interesting are WTDs between transmitted electron
for the resonances in the scattering coefficient Te(E ). For
a better understanding, we choose several V+, such that we
cover with each step one more resonance peak of the electron
transmission [see blue resonances in Fig. 2(a)]. We highlight
the results in Fig. 2(c) by presenting the WTDs for several
numbers of the transmitting resonances. In analogy to the
Fabry-Pérot interferometry, we find for two resonance (red
line) oscillations in the WTD with a period dictated by the
energy difference of the two states [40]. For an increasing
number of resonances we find on top of those oscillations
additional oscillations. Those smaller oscillations allow, in

principle, a counting of the resonances within the applied volt-
age window V+ and are interpreted as interference between
different paths in energy space [40]. We find that the overall
shape of the WTD changes abruptly as an additional reso-
nance is included in the voltage window, which can be readily
understood in terms of transport through a finite number of
resonances as described analytically in Appendix D.

We conclude this section by discussing the phase depen-
dence of the SC pairing potential for the scattering coefficients
and the WTDs in the absence of a Zeeman field. The phase
dependence of the electron transmission [for details see Ap-
pendix A, Fig. 6(a)] is due to the spin momentum locking
and the assumption of a right moving, incoming electron
only symmetric in energy [Te(E ) = Te(−E )] for φ = nπ , with
integer n ∈ Z0. Thus, depending on the applied voltage, the
superconducting phase difference can either keep the number
of included states fixed (voltage is exactly in the middle of two
states), or changes it by ±1 (voltage is above/below the mid-
dle of two states). Note, since we consider the long junction
limit, the transmission resonances have a linear dependency
and conclusively the phase does not change the period of
oscillations. Concerning the WTD of Andreev reflected holes,
it is almost unaffected by the superconducting phase φ.

So far we have studied the situation of a time-reversal
symmetric system and have not specifically considered the
zero-energy state at φ = π . For a better understanding, we
will then break the TRS and determine the characteristic fea-
tures in the WTDs.

B. Ideal Majorana bound states: �Z �= 0

In this section we elaborate the results of the WTDs across
the topological transition from trivial ABS at finite energies to
topological protected zero-energy MBS, localized in between
or on the interfaces between the ferromagnetic and supercon-
ducting regions. The inclusion of a finite Zeeman field �Z

lifts the Kramers degeneracy at the DP and splits the spin
degenerated states into their spin up/down components, such
that the TRS is broken and normal electron reflection (with
spin flip) is now allowed. The splitting is most pronounced
for states at lower energy (at the DP, note that μT I = 0). A
stronger rise of the Zeeman field leads to the appearance of the
nontrivial MBSs, where all other states get pushed to higher
energies, while the zero-energy anomaly pushes the amplitude
of Re(0) to unity. As a consequence, normal electron reflection
Re(E ) (with spin flip) is the major indicator for a topological
transition. Note that the criterion for a phase transition in
this type of setup depends on the effective length scales of
the superconducting and magnetic regions [65]. Furthermore,
since both transmission probabilities (te, th) start to vanish
with increasing �Z, we calculate the WTDs for the transport
channels of normal reflected electrons. As before, we first
present the electron reflection Re(E ) for an increasing Zeeman
field in Fig. 3(a) at energies within the SC gap and without
phase difference φ = 0.

For the corresponding signal in the WTD we choose an
energy window of −0.15� to 0.15� for three values of �Z

[see the bars in Fig. 3(a)]. The resulting WTDs for φ = 0 are
shown in Fig. 3(b). There, we find for �Z = 0.1� (black line)
an oscillatory behavior in the WTD, since the applied voltage
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FIG. 3. (a) Scattering coefficient Re(E ) depending on E and �Z

at φ = 0. The colored bars indicate the measured energy window
used in (b), where the respected WTDs of reflected electrons are
presented. The grey line denotes the analytical result for the rate
equation (see Appendix C). The inset shows the results for φ = π .
The rest of the parameters are those from Fig. 2 and  = 0.077�.

window includes the two lowest-energy states [see the corre-
sponding black line in Fig. 3(a)]. The period of the oscillations
is proportional to the energy distance of the two states and
can be described by two shifted Lorentzian resonances (see
Appendix D).

The increase of the Zeeman field to �Z = 0.2� [red dotted
line in Figs. 3(a) and 3(b)] still covers the two states with
a smaller splitting of the states and conclusively induces a
slower period of the oscillations in the WTD. Most strik-
ingly, in the topological phase, (here at �Z = 0.5�) [blue
dashed line in Figs. 3(a) and 3(b)] the oscillations in the
WTD disappear and the latter is similar to the distribution of
a single channel with a single resonance (see Appendix C).
More precisely it is given by W (τ ) = 2τ exp(−τ ) (see
gray line) with a maximum at τ = 1/, while  = 2γπ

is proportional to the full width at half-maximum (2γ ) of
the resonance. Thus, for φ = 0 the phase-transition from the
nontopological to the topological situation changes the WTD
from oscillatory to nonoscillatory behavior, which can be used
as an alternative indication of the presence of a zero-energy
MBS. Furthermore, we present in the inset of Fig. 3(b) the
WTDs for the same values of �Z at φ = π [see Figs. 6(b)–
6(d) in Appendix A for details of the reflection coefficients].
There, the previous oscillations at �Z = 0.1 and 0.2� are
barely visible, since the electron reflection amplitudes of the
higher-energy states are negligibly small due to the lifted spin

degeneracy of the ABSs at E �= 0. The exceptional point of
the phase transition at Re(0, φ = π ) = | tanh(Lm�Z )|2 in turn,
stays robust and is shifted to lower values of the threshold
for �Z [see Appendix A, Fig. 7 and Eq. (A4)]. Conclusively,
while the states for �Z = 0.1� and �Z = 0.2� are strongly
phase dependent, the zero-energy states at �Z = 0.5� re-
mains unaffected. Finally, we have checked (not shown) that
intermediate values of the superconducting phase difference
φ do not alter the picture established at φ = 0 except for
the precise location of the topological transition, which is φ

dependent (this can be easily understood from the structure of
the scattering coefficients displayed in Fig. 6 of Appendix A).
Note that trivial ABSs at zero energy could possibly mimic
those consequences imposed by a MBS, as it was shown in
nanowires [29–36]. Due to the limitations of the model, we
could not find such trivial states in the setup. To identify the
mechanism to create the corresponding resonances in WTDs
deserves additional investigation in order to present a clear
distinction.

C. Nonideal Majorana bound states: �Z �= 0

The previous results were calculated under ideal as-
sumptions. We now discuss the effect of several parasitic
ingredients that are inerrant to realistic experiments such as
finite temperature, disorder or the influence of smooth in-
terfaces on our findings. Details are given in Appendix B.
We begin with the discussion of finite temperature in the
leads, as well as in the SC. The finite temperature in the
leads can be easily incorporated in the kernel as explained
in Ref. [40]. We assume the temperature dependence in
the superconducting potential following an approximated
dependence [66],

�(T ) = � tanh

(
1.74

√
Tc

T
− 1

)
, (11)

where the critical temperature is given by kBTc = 0.568�.
We focus on the trivial and topological WTDs [black and
blue dashed line in Fig. 3(b)] and present them for increas-
ing temperature in Fig. 4. In both cases, the WTD evolves
smoothly from the ideal situation of Fig. 3 to a Wigner-Dyson
distribution. This is simply attributed to the fact that, in both
situations, the resonant states in between the two SC disappear
because the system becomes effectively a single region with
the corresponding Zeeman gap. As a consequence, electron
reflection is perfect and therefore the stream of reflected elec-
trons is described by Wigner-Dyson statistics. However, as
long as the temperature remains smaller than about of few
tens of percent of the critical temperature, the typical features
discussed in the previous section remain visible.

Next, we include disorder into the Zeeman region, by cut-
ting the region into N slices, each containing a constant �Z

and a chemical potential μ + δμ, while δμ is from slice to
slice Gaussian distributed with zero mean and the standard
deviation σμ. Note, that we set μ = 0, such that δμ acts as
a critical disorder strength to destroy the topological phase.
From that we can numerically evaluate the energy-dependent
scattering coefficient re(E ), and then the WTD. We present
in Figs. 5(a) and 5(b) the WTDs for three different disorder
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(a)

(b)

FIG. 4. WTDs of reflected electrons at finite temperature for the
(a) trivial and (b) topological phase at φ = 0. The color denotes lower
(blue) and higher (red) temperatures.

strengths in the trivial and topological phase, respectively.
Interestingly, in the trivial phase [Fig. 5(a)], the general distri-
bution remains an exponentially decaying function, while the
oscillatory part gets strongly affected by random resonances
within the measurement window. In the topological phase
[Fig. 5(b)], we find the expected WTDs that break down to

FIG. 5. WTDs of reflected electrons for several disorder strength
in the trivial (a), �Z = 0.1� and topological phase (b), �Z = 0.5�,
at φ = 0. The critical disorder strength for �Z = 0.5� is approxi-
mately σ̄μ,crit ≈ 0.17�. We choose N = 1000.

the trivial one, when a disorder strength σ̄μ = √
Nσμ > σ̄μ,crit

is greater then the critical one. Thus, the WTD remains robust
till the critical value of disorder σ̄μ,crit.

Finally, we have also included the effect of a smooth vari-
ation of the superconducting order parameter at the interface.
In Appendix B we show that the only effect that enters is
a renormalization of the scattering region length, which has
no consequences on the qualitative picture but only slightly
modifies the periods of oscillations in the WTD. Since trivial
zero-energy states in nanowires can potentially arise from a
specific shape of the electrostatic potential μ(x) in the normal
part of the junction, the scattering coefficients in TI edge states
remain, up to a phase, unaffected by such a potential.

V. SUMMARY AND CONCLUSION

In this paper we have calculated the WTDs associated
to different scattering processes in a superconducting hybrid
setup on quantum spin Hall edge states, proposed by Fu and
Kane [8], across a topological transition.

At zero Zeeman field, in the topological trivial phase, TRS
only authorizes two scattering processes, which are Andreev
reflection and electron transmission. In the first case, we have
shown that the WTD is well described by Wigner-Dyson
statistics for any value of the applied voltage within the SC
gap �. For the second scattering process, the electron trans-
mission, the existence of resonances at finite energies in the
scattering matrix, namely ABS resonances, induces specific
oscillations in the WTD that we have described analytically
within the formalism of Brandes [37].

Most importantly, we have then considered a finite Zeeman
field in the area between the two superconducting islands,
which is known to induce a topological transition between
a trivial phase at low �Z , characterized by the presence of
ABS resonances in the scattering matrix, to a topological
phase above a certain threshold where MBSs are present.
Across this transition, we have focused on the WTD between
reflected electrons (with spin flip), which is allowed by the
breaking of TRS in the presence of a Zeeman field. We have
shown that the WTD of reflected electrons displays an impor-
tant qualitative change across the transition. In particular, the
WTD has an oscillatory behavior (in time) in the trivial phase,
with a strong Zeeman field dependence, which disappears in
the topological phase. Importantly, this result is generic in
terms of the superconducting phase difference except at the
special point where φ = π . However, in that specific case all
ABS lying at energies greater than zero almost fully prohibits
normal electron reflection, while the state at zero energy stays
robust. The typical waiting time between reflected electrons
in the topological phase is therefore unaffected while the one
in the trivial phase diverges. Conclusively, a transition in the
WTD is also visible in this specific case but with a strongly
reduced threshold of the Zeeman field, which can be important
in experimental implementations of this physics. Finally, we
have discussed the effect of several parasitic ingredients such
as disorder or finite temperature in the system. However, our
study is limited to rather long junctions where both ABSs and
MBSs resonances have the peculiarity to be well defined and
well separated in both real space and energy. For short junc-
tions they may overlap and blur the signature in the WTDs.
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Since the model neglects bulk states of the TI, it was shown
that in quantum well setups the DP is energetically located in
the bulk of the TI. In such a situation we promote a different
geometry of the heterostructure, where the magnetic field
affects only the edges of the TI [61]. Additional limitations
of the model prohibit the creation of trivial zero-energy ABSs
[28], such that we would like to initiate future investigations
on WTDs that consider the effects of scattering channels in
detail by comparing trivial ABSs at zero energy and MBSs
within other heterostructures [29–36].

We would like to conclude with a practical application
of our setup. Experimental setups of topological Joseph-
son junctions already have been studied in the literature
[15,67,68]. Depending on the material realization of the two-
dimensional TI different SCs have been used. If the WTD is
not yet a routinely measured quantity, many progresses toward
single-electron measurements are promising [49–55,58] and
the WTD has been already measured in several experiments
[54,56,57].

APPENDIX A: SCATTERING COEFFICIENTS

In this Appendix we explain details of the BTK formalism
for the calculations of the scattering coefficients. In general,
we consider a N-S-F-S-N junction as explained in the main
text. The full scattering state is composed out of five parts,
given by

ψI(x) = �e1eikx + re�e2e−ikx + rh�e4eikx,

ψII(x) =
4∑

i=1

ai�uie
ikix,

ψIII(x) =
4∑

i=1

bi�vie
ik′

i x,

ψIV(x) =
4∑

i=1

ci �wie
ikix,

ψV(x) = te�e1eikx + th�e3e−ikx, (A1)

where the eigenstates (�ui, �vi, �wi) are those of the Hamiltonian
for the corresponding region and the vectors �ei in the outer
normal N regions are the four-dimensional Euclidean basis
vectors of Eq. (1). The continuity conditions, according to the
setup, must hold and allow us to calculate all coefficients of
the scattering states, especially the transmission and reflection
coefficients. The explicit conditions read

ψI(0) = ψII(0),

ψII(L) = ψIII(L),

ψIII(L + Lm) = ψIV(L + Lm),

ψIV(2L + Lm) = ψV(2L + Lm), (A2)

where the two outer wave functions (I and V) are those of
the bare edge states, containing the necessary reflection (in
ψI) and transmission (in ψV) coefficients. We have chosen the
structure in such a way that the superconducting regions II and
IV both have the length L, while the magnetic region III has
length Lm. In general the scattering coefficients are complex.

Without Zeeman field we get the expression

rh = (−1 + e2iL�� )(−1 + ei(2ELm+φ) )(−v2 + u2e2iL�� )

D
,

te = (u2 − v2)2e−2iL(E−�� )

D
,

D = u2v2(−1 + e2iL�� )2ei(2ELm+φ)

+(u2e2iL�� − v2)(u2 − v2e2iL�� ), (A3)

where �� = √
E2 − �2 and u2(v2) = (E ± √

E2 − �2)/�.
For the more complex situation of a nonzero Zeeman field in
the middle region, the results are to cumbersome to present,
such that we present the important coefficients Te(E ) = |te|2
and Re(E ) = |re|2 in Fig. 6. At zero energy the scattering
coefficients can be simplified to

re = −2i sinh (2Lm�Z )

D
,

rh = 2 sin(φ) sinh(2�L) − i(cos(φ) + 1) sinh(4�L)

D
,

te = 4 cosh (Lm�Z )(cosh2(�L) + e−iφ sinh2(�L))

D
,

th = 2(1 + eiφ ) sinh(2�L) sinh (Lm�Z )

D
,

D = cosh(4�L)[1 + cos(φ)] + 2 cosh (2Lm�Z )

+ [1 − cos(φ)]. (A4)

Within the main text, we use the change in the normal electron
reflection from zero to unity as indicator for the topological
phase transition (see Fig. 7).

APPENDIX B: SCATTERING COEFFICIENTS
IN THE NONIDEAL SITUATION

We present in this Appendix first the effects of smooth
pairing potentials (SC gap � or Zeeman field �Z) and
then by the inclusion of a disordered Zeeman region. Sim-
ilar calculations have been made in Ref. [65]. The spatial
arrangements of � and �Z are chosen to have a ferro-
magnetic region enclosed by two superconducting regions,
such that we assume first a steplike �(x) = �[�(x) − �(x −
L)] + �eiφ[�(x − L − Lm) − �(x − 2L − Lm)] and �Z(x) =
�Z[�(x − L) − �(x − L − Lm)]. Without loss of results, we
assume here φ = 0 and μ = 0 (μ will be included later), such
that in terms of Pauli matrices the Hamiltonian reads

H (x) = −i∂xτ0σ3 + �Z (x)τ3σ1 − �(x)τ2σ2. (B1)

To solve the scattering problem, we must calculate

H (x)ψ (x) = Eψ (x), (B2)

which can be written in terms of the Pauli matrices

∂xτ0σ3ψ (x) = i(E − �Z (x)τ3σ1 + �(x)τ2σ2)ψ (x)

∂xτ0σ0ψ (x) = iτ0σ3(E − �Z (x)τ3σ1 + �(x)σ2τ2)ψ (x)

∂xψ (x) = i(Eτ0σ3 − i�Z (x)τ3σ2 − i�(x)τ2σ1)ψ (x).

(B3)
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FIG. 6. Phase dependence of the scattering coefficient (a) Te(E ) at �Z = 0.0�, (b) Re(E ) at �Z = 0.1�, (c) Re(E ) at �Z = 0.2�, and
(d) Re(E ) at �Z = 0.5�. The parameters are the same as in Fig. 2.

The solution of this first-order differential equation is formally
given by

ψ (x) = U (x, x′)ψ (x′), U (x, x′) = S←ei
∫ x′

x dyh(y), (B4)

where S← is a spatial ordering operator, which arranges the
spatial dependence of h(y) from the right to the left. The oper-
ator U (x, x′) can be seen as a scattering matrix propagating

FIG. 7. Scattering probability of normal electron reflection at
zero energy for φ = 0 and φ = π . We use the change of the normal
electron reflection from zero to unity as indicator for the topological
phase transition. The parameters are the same as in Fig. 2.

through every region and connects the corresponding wave
functions on the interfaces of the different regions.

For the setup used in the paper, we are left with

ψ (2L + Lm) =U (2L + Lm, L + Lm)U (L + Lm, L)

× U (L, 0)ψ (0). (B5)

The first operator, acting on ψ (0), reads

U (L, 0) = exp

[
i
∫ 0

L
dy(Eτ0σ3 − i�(y)τ2σ1)

]
(B6)

= exp[−iL(Eτ0σ3 + i�τ2σ1)], (B7)

and results in an L� dependence (the ratio of the region
length and the SC coherence length). Instead of an abrupt
(Heaviside) change in �(x), we assume a smooth potential,
given by

�(x) = � tanh
( x

λ

)
tanh

(
L − x

λ

)
, (B8)

where � is the SC bulk gap, x ∈ (0, L) and λ is an adjust-
ment parameter on which the gap spatially changes on the
interfaces at x = 0 and x = L. Thus, by using the exponential
representation of tanh, a substitution and a partial integration,
the integral in Eq. (B4) becomes∫ 0

L
dy�(y) = �

[
L − 2λ coth

(
L

λ

)
log

(
cosh

(
L

λ

))]
,

which describes that the shape of the potential is been covered
by an effective length L′(λ), depending on the adjustment
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parameter λ. In the same manner we find that the dependence
of the other potential regions are the same (optionally with
a different λ). Conclusively, the smoothness of the supercon-
ducting or Zeeman pairing potentials has the same influence
as a change in the corresponding length of the region. In
addition, the corresponding WTD does not show any unex-
pected discrepancies. Thus, we continue in the following with
a stepwise change of the potentials.

Next we implement disorder within the Zeeman region,
by including a spatially dependent chemical potential. We
take from Eq. (B5) the operator within the Zeeman region,
given by

U (L + Lm, L) = exp

[
i
∫ L

L+Lm

dy(Eτ0σ3 − i�Z(y)τ3σ2

+ μ(y)τ3σ3)

]
, (B9)

and split this region into N slices, such that

U (L + Lm, L) = 
N
i=1U (L + Lm,i, L)

= 
N
i=1 exp

[
i
∫ L

L+Lm,i

dy(Eτ0σ3

− i�Zτ3σ2 + μ(yi )τ3σ3)

]
, (B10)

while we explicitly neglect the spatial dependence of �Z,
since it is assumed to be constant. Taking the chemical poten-
tial μ(yi ) = μ + δμ,i, while δμ,i is from slice to slice Gaussian
distributed with zero mean and the standard deviation σμ and
μ is assumed to be zero, we can evaluate numerically Eq. (B5)
and calculate the corresponding scattering coefficients. We
present in Figs. 8(a) and 8(b) the electron reflection coeffi-
cients for an increasing disorder strength at �Z = 0.1� and
�Z = 0.5�. Note that the standard deviation of a sum of N
random independent variable scales with 1/

√
N . We use in

Fig. 5 in the main, such a disorder realization to calculate the
WTDs.

APPENDIX C: RATE EQUATION SINGLE DOT

We present in this Appendix the calculations for the rate
equation for a double barrier following the results of Ref. [37].
Starting with the splitting of the Liouvillian

L =
(−1 0

1 −2

)
+

(
0 2

0 0

)
= L0 + J , (C1)

where J = |2〉〈2̄|, with 〈2̄| = (0, 2) and |2〉 = (1, 0)�, mea-
suring jumps from state 2 to 1. The corresponding WTD is
given by

Ŵ (z) = 〈2̄|(z − L0)−1|2〉 = 1

(z + 1)

2

(z + 2)
, (C2)

such that we get with the inverse Laplace transformation
F (z) = 1/(z + a) → f (τ ) = e−aτ ,

W (τ ) = 12

(1 − 2)
(e−2τ − e−1τ ) = 2τe−τ , (C3)

FIG. 8. Energy-dependent scattering probability of normal elec-
tron reflection for increasing disorder strength at φ = 0. The
parameters are the same as in Fig. 3(a), while we use N = 1000.

while we assumed in the last step 1 = 2 =  to derive the
equation used in the main text of the paper. From

dnW (τ )

dτ n
= (−1)ne−τn+1(τ − n), (C4)

the maximum of W (τ ) is at τ = 1/.

APPENDIX D: WAITING TIME DISTRIBUTION
FOR SERIES OF LORENTZIAN RESONANCES

In this Appendix we explain the derivation of the WTD
for the inclusion of an arbitrary number of Lorentzian-shaped
resonances. As explained in the main text, by including more
than one resonance in the voltage window one finds an os-
cillatory behavior within the resulting WTD. In general, the
distribution extend to waiting times much larger than h/eV ,
the typical time scale at which correlations between electrons
or holes are important. We will then assume that the stochastic
process can be reduced to a renewal process [40]. In that case,
the WTD is related to the second-order correlation function
or equivalently to the two-body density matrix of the field.
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FIG. 9. Waiting time distributions for several numbers of res-
onance states. The parameters are given by the FWHM of the
transmission coefficients for  = 0.021� and ω = 0.24�2π .

In order to compute the second-order correlation function, we
write the field operator in Fourier space,

�†
n (x) =

∫
dkeikxa†

k,n, (D1)

with n the number of resonances and ak,n the destruction
operator in a plane wave, whose statistical properties will be
given below. The resulting one-body density matrix ρ1,n is
therefore given by

ρ1,n(x, y) = 〈ψ†
n (x)ψn(y)〉 =

∫
dkdk′ei(kx−k′y)〈a†

k,nak′,n〉

=
∫

dkdk′ei(kx−k′y)

⎡
⎣ n∑

j=1

δk,k′ f (k)γ 2

(k − jk0)2 + γ 2

⎤
⎦

=
∫

dkeik(x−y)

⎡
⎣ n∑

j=1

γ 2

(k − jk0)2 + γ 2

⎤
⎦

= πγ e−γ |x−y|

⎡
⎣ n∑

j=1

eik0 j(x−y)

⎤
⎦, (D2)

where we assumed that the propagator is given by the sum of
Lorentzian-shaped distributions with a maximum of unity, an
equidistant separation of k0 and γ being half of the full width
at half-maximum. We assumed that these states are perfectly
in the voltage window, such that the Fermi distribution f (k)
is unity. Next, we evaluate the two-body density matrix by
using Wick’s theorem, or equivalently by taking advantage of
the fact that the field is described by a determinantal point
process. This gives

ρ2,n(x, y) =
∣∣∣∣
(

ρ1,n(x, x) ρ1,n(y, x)
ρ1,n(x, y) ρ1,n(y, y)

)∣∣∣∣
= (πγ )2

⎛
⎜⎝n2 − e−2γ |x−y|

∣∣∣∣∣∣
n∑

j=1

eik0 j(x−y)

∣∣∣∣∣∣
2
⎞
⎟⎠. (D3)

Going to the time domain by assuming a linear dispersion

relation, we simply get

ρ̃2,n(t, t ′) = (π)2

⎛
⎜⎝n2 − e−2|t−t ′ |

∣∣∣∣∣∣
n∑

j=1

eivF k0 j(t−t ′ )

∣∣∣∣∣∣
2
⎞
⎟⎠,

(D4)

with the effective width  = vF γ . The corresponding
relaxation current [37] is then given by

In(t, t ′) = I
ρ̃2,n(t, t ′)
ρ̃2,n(0,∞)

= n


2

⎛
⎜⎝1 − e−2|t−t ′ |

n2

∣∣∣∣∣∣
n∑

j=1

eivF k0 j(t−t ′ )

∣∣∣∣∣∣
2
⎞
⎟⎠. (D5)

Since the process is stationary we may set t = 0 and t ′ = t .
We then rewrite the absolute value of the sum of exponentials
as∣∣∣∣∣∣

n∑
j=1

eivF k0 j(−t )

∣∣∣∣∣∣
2

= n +
n∑

j=1

2( j − 1) cos[vF k0t (n + 1 − j)],

(D6)

such that we have, for example,

I1(t ) = 

2
(1 − e−2|t |) (D7)

I2(t ) = 

(
1 − e−2|t |

2
[1 + cos(vF k0t )]

)
. (D8)

This further leads to three different types of standard Laplace
transforms, namely ∫ ∞

0
dte−zt = 1

z
, (D9)∫ ∞

0
dte−zt e−2t

n
= 1

n(z + 2)
, (D10)∫ ∞

0
dte−zt e−2t

n2
2( j − 1) cos[vF k0t (n + 1 − j)]

= 2( j − 1)(z + 2)

n2[(z + 2)2 + (ω j )2
, (D11)

with ω j = vF k0(n + 1 − j), it transforms the current to

In(z) = n


2

⎡
⎣1

z
− 1

n(z + 2)
−

n∑
j=1

2( j − 1)(z + 2)

n2[(z + 2)2 + (ω j )2

⎤
⎦.

(D12)

To get the waiting time distribution, we assume a renewal
process, which is justified if the typical waiting time is much
larger than τ̄ = h/eV . Following Ref. [37], we calculate

wn(z) = In(z)

1 + In(z)
. (D13)

The inverse Laplace transform is for n > 1 already difficult
to handle. For example, the n = 2 WTD in Laplace space
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reads

w2(z) = (ω2(4 + z) + 4(2 + z)2)

ω2(42 + 2z2 + 5z) + 2(2 + z)2(22 + z2 + 2z)
,

(D14)

with the inverse Laplace transformation

w2(t ) = 1

2π i

∫ α+iε

α−iε
dzetz (ω2(4 + z) + 4(2 + z)2)/2

(z − z1)(z − z∗
1 )(z − z2)(z − z∗

2 )
, (D15)

with α a real number defining the so-called Bromwich
contour. To calculate the contour, we evaluate the poles nu-
merically. The structure of the poles is given by z1, being close
to the real axis containing a small imaginary part and result
out of the term of the numerator with the highest power of
ω (ω � ). Further, depending on the number of resonances
the rest of the poles contain a large imaginary part resulting

in oscillations. We present in Fig. 9 the analytic results for the
first three resonances.

Besides the great agreement to the numerical results, we
find a difference in the damping of the oscillations, which
might be accounted by deviations from the Lorentzian shape
at higher energy within the model used in the main text [see
Fig. 2(a)].
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