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Transport signatures of fractional quantum Hall binding transitions
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Certain fractional quantum Hall edges have been predicted to undergo quantum phase transitions which reduce
the number of edge channels and at the same time bind electrons together. However, detailed studies of experi-
mental signatures of such a “binding transition” remain lacking. Here, we propose quantum transport signatures
with focus on the edge at filling ν = 9/5. We demonstrate theoretically that in the regime of nonequilibrated
edge transport, the bound and unbound edge phases have distinct conductance and noise characteristics. We also
show that for a quantum point contact in the strong back-scattering (SBS) regime, the bound phase produces a
minimum Fano factor FSBS = 3 corresponding to three-electron tunneling, whereas single-electron tunneling is
strongly suppressed at low energies. Together with recent experimental developments, our results will be useful
for detecting binding transitions in the fractional quantum Hall regime.
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I. INTRODUCTION

Edges of fractional quantum Hall (FQH) states [1,2] are
outstanding platforms for strongly correlated electron physics.
A FQH edge realizes the so-called chiral Luttinger liquid
[3–8], which is a set of one-dimensional conducting channels
inheriting topological properties of the FQH bulk state. The
chiral Luttinger liquid has been successfully used to inves-
tigate a wide variety of fundamental quantum phenomena,
e.g., topological quantization, charge fractionalization [9–11],
anyonic statistics [12,13], topological quantum computation
[14], or quantum phase transitions [15–17].

A particularly striking FQH edge quantum phase transi-
tion, called the binding transition, was proposed by Kao et al.
[18], based on earlier work by Haldane [19]. In the bind-
ing transition, pairs of oppositely propagating edge channels
localize due to an edge instability triggered by interchannel
particle tunneling and strong interactions. The remaining edge
channels may then carry excitations with electrical charges
different from those of the original edge; charges that can be
viewed as bound composites of electrons.

Binding transitions are possible only for so-called
T-unstable FQH states, defined as those states permitting
charge-neutral and bosonic quasiparticle excitations lacking
topological content in their correlation function [17,19].
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On the edge, the creation and annihilation operators of
such excitations describe charge tunneling between edge
channels, and appear in the edge Hamiltonian without
breaking any symmetries. Physically, it is only T-unstable
edges that permit pairs of oppositely propagating channels to
localize. Equivalently, T-unstable edges have low-energy
charge-neutral fixed points with an equal number of
neutral modes (we use the terms “mode” and “channel”
interchangeably in this work) propagating in each direction
[17]. Importantly, the binding transition does not alter the
topological order of the FQH bulk state and is therefore a pure
edge transition, amenable for detection in edge experiments.

The simplest example of the binding transition was
predicted for the edge at filling factor ν = 9/5 (see Fig. 1).
In the free, or unbound, phase, the 9/5 edge hosts three chan-
nels, which after the binding transition are reduced to a single
channel. Most remarkably, in this so-called bound phase,
single electron excitations become short ranged and do not
participate in the low-energy edge transport. By contrast, exci-
tations with charges 3e remain long ranged and do contribute
to the transport [18]. Despite such a striking reorganization of
the edge structure, the prospects of experimentally observing
a binding transition remain to large extent unexplored.

In this paper, we address this issue by proposing several
experimental signatures of the binding transition. Our work is
motivated by novel developments for probing FQH edges with
quantum transport (a recent overview is given in Ref. [20]).
More specifically, a growing body of experiments have
demonstrated the existence of a wide range of different edge
transport regimes. These range from complete charge and heat
equilibration of the edge channels [21–23], to intermediate
regimes with full charge but no heat equilibration [24–28], to
the extreme limit of nonequilibrated charge transport [29,30].
To detect a binding transition, access to nonequilibrated
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FIG. 1. The FQH binding transition at filling ν = 9/5. The free
edge phase comprises two downstream propagating channels (right-
pointing arrows), both with filling factor discontinuities δν = 1 and
charge q = e (here, the charge q is the minimum charge that can
tunnel across vacuum into the channel). There is also one upstream
channel filling factor discontinuity δν = −1/5 and charge q = e
(left-pointing arrow). This structure is equivalent [after a SL(3, Z)
basis change] to a Laughlin edge state with δν = 1/5 composed
of charge q = 3e composite particles, plus two counterpropagating
channels with δν = ±1 and q = e. The binding transition is the
phenomenon where interchannel interactions and tunneling cause
the counterpropagating channels to localize (with characteristic low-
temperature length scale ξ0). In the bound phase, only the single
composite channel remains.

transport regimes is of particular interest, since in these
regimes, the charge and heat conductances do not necessarily
reflect the bulk topological order. Instead, these quantities
can reveal the total number of edge channels and the charges
they carry, quantities that both change across the binding
transition. In addition, recent experiments [31,32], have
demonstrated robust, engineered FQH edges formed between
regions with different bulk fillings. For example, an “artificial”
9/5 edge can be synthesized by proximitizing regions with
fillings ν = 2 and 1/5. Such structures, which might allow
experimental control over Landau level spin polarizations and
thereby tunneling rates between edge channels, facilitate the
detection of binding transitions.

As a key result, we find that the two edge phases have
different charge and heat conductance characteristics (see
Table I). With decreasing level of equilibration (i.e., with
decreasing temperature T and/or system size L), the free
phase conductances monotonously increase from the values
for equilibrated transport, which defines regime III, to sat-
uration at the nonequilibrated values, defining regime II. By
contrast, the bound phase is characterized by the existence of
a localized regime, regime I, with similar characteristics as
regime III. A transition between regimes I and II is possi-
ble for strong interactions and give rise to the unusual situation
of increasing conductances with increasing temperature. Such
an observation is a striking hallmark of the existence of edge
localization. Complementing the conductances, we further ar-
gue that a current biased edge segment produces shot noise,
S, when the charge transport is equilibrated but the heat trans-
port is not. This feature occurs only for strong interactions,
associated with the bound phase, in regime II.

We also demonstrate that in a quantum point contact (QPC)
device in the strong back-scattering (SBS) regime, the bound
phase yields a minimum shot noise Fano factor FSBS = 3
corresponding to three-electron tunneling. No single electron
tunneling is possible at low energies. This result stands in
stark contrast to the free phase, where strong back-scattering
favours single electron tunneling, i.e., FSBS = 1. By the same
token, in the weak back-scattering (WBS) regime, the most

TABLE I. Transport characteristics for the ν = 9/5 edge. For the
free and bound edge phases, values for the two-terminal electrical
(G) and heat (GQ) conductances, the shot noise S of a current biased
edge segment, and QPC Fano factors for strong, FSBS, and weak FWBS

back scattering regimes are given. There are three relevant transport
regimes. Regime I: regime of localization, II: no localization but
vanishing equilibration, and III full edge equilibration. The emer-
gence of regime I for the bound phase is a fundamental feature of
the binding transition. The quantized GQ values in regime II are
given under the assumption of vanishing interference in edge-contact
plasmon scattering: L � LT ∼ T −1. The noise in regime II is given
under the condition (77) of efficient charge equilibration and poor
thermal equilibration. This condition holds for strong interactions
which is only the case in the bound phase.

Regimes Transport charact. Free Bound

I G/(e2/h) – 9/5
GQ/(κT ) – 1

S – 0
II G/(e2/h) 11/5 11/5

GQ/(κT ) 3 3
S [10−29A2/(nA Hz)] � 0 0.25–0.7

III G/(e2/h) 9/5 9/5
GQ/(κT ) 1 1

S � 0 0
QPC Fano factors FSBS 1 3

FWBS 1/5 3/5

relevant (in the renormalization group, RG, sense) quasipar-
ticle tunneling yields in the bound phase FWBS = 3/5, in
contrast to the free phase value FWBS = 1/5. Altogether, our
set of derived transport signatures present several possibilities
for experimentally detecting a FQH binding transition.

The remainder of this paper is organized as follows. In
Sec. II, we review the basics of the FQH edge theory and
the binding transition. We also perform a renormalization
group (RG) treatment of the transition. In the main part of
this paper, Sec. III, we derive several transport signatures of
the bound phase and contrast them to those of the free phase.
In Sec. IV, we discuss possible experimental setups to detect
the proposed signatures. We summarize in Sec. V and also
provide an outlook towards future studies.

Throughout this paper, we generally use units e =
h̄ = kB = 1, but we restore important units for transport
observables.

II. THE CHIRAL LUTTINGER LIQUID
AND THE BINDING TRANSITION

For completeness, we review here key aspects of the chiral
Luttinger theory and the FQH binding transition, closely
following Refs. [16–18].

A. Chiral Luttinger liquid

At low energies, an Abelian FQH edge is well described
by the chiral Luttinger liquid (χLL) model, specified by the
pair (K , t) [5]. Here, K is an n × n integer valued symmetric
matrix, and the charge vector t is an n-dimensional vector of
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integers. The generic n-channel action reads

SχLL = − 1

4π

∫
dtdx[∂tφ

T K∂xφ + ∂xφ
T V ∂xφ], (1)

where φ = (φ1, . . . , φn) is a set of bosonic fields obeying the
commutation relations

[φi(x), φ j (y)] = iπK−1
i j sgn(x − y). (2)

The symmetric matrix V in (1) parametrizes the channel
velocities, Vii, and mutual, short-range Coulomb interactions,
Vi �= j . Generally, V contains n(n + 1)/2, independent,
nonuniversal parameters, determined by microscopic details
in the edge electrostatic confinement.

The electrical charge enters the theory in the charge densi-
ties

ρi ≡ ti
∂xφi

2π
, (3)

which obey

[ρi(x), ρ j (y)] = i

2π
t2
i K−1

i j ∂xδ(x − y). (4)

Several quantities determined by the bulk topological order
appear in the edge theory. The filling factor ν is given as

ν = tT K−1t, (5)

and the “thermal quantum number” as

νQ ≡ Tr(η) = nd − nu. (6)

Here, η is the signature matrix corresponding to K , so that νQ

equals the difference in the number of positive and negative
eigenvalues of K (i.e., ηi j = ±1δi j). In turn, this is equivalent
to the number of “downstream” nd and “upstream” nu propa-
gating channels (with respect to the chirality direction set by
the magnetic field) respectively [33,34]. For the present theory
of Abelian states, νQ ∈ Z, while for non-Abelian states, other
values of νQ are possible. For example, Majorana edge chan-
nels allow half-integer values νQ ∈ Z/2 [22]. As described
below in Sec. III, νQ is closely connected to the edge heat
transport characteristics.

Quasiparticles (including the special case of the electron)
created or destroyed at position (t, x) on the edge are de-
scribed by vertex operators

Tl(t, x) = eil·φ(t,x)

(2πa)m/2
, (7)

where m is the number of involved bosons. A vertex oper-
ator is uniquely determined by specifying an integer valued
vector l which describes how many of each quasiparticle
species that are created or destroyed. The associated exchange
statistics angle �l and electric charge Ql of a vertex operator
are given by

�l = π lT K−1l mod 2π, (8)

Ql = tT K−1l. (9)

With the use of vertex operators, tunneling of particles
between edge channels is included in the theory by adding

to (1) the term

ST =
∫

dtdx ξ (x)Tl(t, x) + H.c, (10)

where ξ (x) is the local tunneling strength at spatial location
x. As discussed below in Eqs. (28)–(30), the function ξ (x)
determines the type of tunneling between the edge channels.

To compute various observables in the theory, correlation
functions involving Tl(t, x) are needed. These are most easily
obtained by diagonalizing SχLL which is done by first taking K
to its signature matrix η by a (nonunique) matrix M1

MT
1 KM1 = η. (11)

Second, a matrix M2 (also not unique) is sought which diago-
nalizes V into Ṽ but at the same time preserves η:

η = MT
2 MT

1 KM1M2, (12)

Ṽ = MT
2 MT

1 V M1M2. (13)

In the diagonal basis, the action (1) becomes

SχLL = − 1

4π

∫
dtdx[∂t φ̃

T
η∂xφ̃ + ∂xφ̃

T
Ṽ ∂xφ̃] (14)

and the theory is now expressible in transformed quantities as

φ̃ = M−1φ, (15a)

t̃ = MT t, (15b)

l̃ = MT l, (15c)

with M ≡ M1M2. The free, “diagonal,” bosons φ̃i and their
densities

ρ̃i ≡ t̃i
∂xφ̃i

2π
, (16)

obey

[φ̃i(x), φ̃ j (y)] = iπηi jsgn(x − y), (17)

[ρ̃i(x), ρ̃ j (y)] = i

2π
t̃2
i ηi j∂xδ(x − y). (18)

Note that all topological properties (5), (6), (8), and (9) are
independent of the choice of basis. The total charge density is
also preserved: ∑

i

ρi =
∑

i

ρ̃i. (19)

In the diagonal basis, the action is quadratic and correlation
functions of vertex operators follow from the identity

〈eiφ̃i (t,x)e−iφ̃i (0,0)〉 = e〈φ̃i (t,x)φ̃i (0,0)−〈φ̃2
i (0,0)〉

= a

a + x − iηiṽit
, (20)

upon use of the zero temperature correlation function

〈φ̃i(t, x)φ̃i(0, 0) − 〈φ̃2
i (0, 0)

〉 = − ln

[
a + x − iηiṽit

a

]
. (21)

In Eqs. (20) and (21), ηi ≡ ηii and ṽi ≡ Ṽii is the chirality
and the speed of mode φ̃i, respectively. We also introduced a
short distance (ultraviolet, UV) cutoff a on the order of the
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characteristic magnetic length. At finite temperature T , the
correlation function (21) changes to

〈φ̃i(t, x)φ̃i(0, 0) − 〈φ̃2
i (0, 0)

〉

= − ln

⎡
⎢⎣ sin

(
πT
ṽi

(a + x − iηiṽit )
)

πaT/ṽi

⎤
⎥⎦. (22)

By combining the single mode correlation (20) with the
transformation rules (15), the (zero T ) correlation function of
Tl(t, x) is obtained as

〈Tl(t, x)T †
l (0, 0)〉 ∼ 〈eil·φ(t,x)e−il·φ(0,0)〉 = 〈eil̃·φ̃(t,x)e−il̃·φ̃(0,0)〉

=
∏

i

(
a

a + x − iηiṽit

)((l̃)i )2

. (23)

The long-time behavior

〈Tl(t, 0)T †
l (0, 0)〉 ∝ 1

tκ (l)

1

|t |2
(l)−κ (l)
, (24)

where


(l) ≡ 1

2
l̃T l̃ = 1

2
lT MMT l, (25)

κ (l) ≡ l̃T η−1 l̃ = lT K−1l (26)

defines the scaling dimension and the topological part of
the correlation function, respectively. The generic scaling di-
mension (25) is nonuniversal, as it depends not only on the
topological matrix K but also on the components of V . An ex-
ception occurs for so-called maximally chiral edges, in which
all channels propagate in the same direction, i.e., either nd

or nu equals zero. Then, the scaling dimensions of tunneling
operators are fully specified by K alone.

Importantly, κ (l) and 
(l) obey the following inequality
[17]:

|κ (l)| � 2
(l), (27)

with equality for vanishing interactions (diagonal V ). For
maximally chiral edges, Eq. (27) becomes an equality inde-
pendently of interactions.

We now consider tunnel coupled edge channels, so that
the total action S = SχLL + ST. Depending on the nature of
the tunneling events, ST becomes an RG relevant perturbation
when

3 − 2
(l) > 0, 〈ξ (x)ξ ∗(y)〉 = Dδ(x − y), (28)

1 − 
(l) > 0, ξ (x) = �0δ(x), (29)

2 − 
(l) > 0, ξ (x) = �0, (30)

corresponding to Gaussian random (characterized by the
strength D), single point, and uniform tunneling, respectively.
In this paper, we mainly focus on the common situation of
random interchannel tunneling due to quenched (static) edge
disorder. (Point tunneling as realized in a QPC is considered in
Sec. III D). To guarantee the relevancy of Tl, Eq. (28) implies
that 
(l) < 3/2. By virtue of Eq. (27), this implies further

|κ (l)| � 2
(l) < 3. (31)

In turn, any tunneling operator must be bosonic, which by use
of Eq. (8) implies that κ (l) must be an even integer. This fact,
combined with Eq. (31), implies that

κ (l) = −2, 0, 2, (32)

for random, relevant tunneling operators. As we shall see
next, when a very particular class of such tunneling operators
exist and are relevant, a FQH edge will undergo a binding
transition.

B. Review of the binding transition

The binding transition is only possible for so-called T-
unstable edges. These are defined as those edges permitting
a special kind of quasiparticles (which we parametrize for
convenience by m rather than l), satisfying the two constraints
[18,19]

mT K−1m = 0, (33)

tT K−1m = 0. (34)

A nonzero string m obeying these constraints is called a null
vector, and Eqs. (33) and (34) are called the null conditions.
They are invariant under basis transformations.

The possibility to satisfy the null conditions can be traced
to the existence of counterpropagating neutral modes in the
charge-neutral basis [17]. Physically, the null operators create
charge-neutral and bosonic particles without any topological
part in their correlation function (24). Then, and only then, is
it possible for pairs of edge channels to undergo localization.
We may view this feature as the edge structure containing a
nontopological part which can be removed by the nontopo-
logical disorder and interactions.

We can readily check that no null vectors exist for edges
(those with nonzero Hall conductance) with one or two chan-
nels, i.e., for n = 1, 2. For n = 1, we have m = m, t = t , and
K−1 is an odd integer. Equations (33) and (34) then read

K−1m2 = 0, (35)

tK−1m = 0, (36)

which is only trivially satisfied by m = 0.
For n = 2, we may choose without loss of generality

K =
(

1/δν1 0

0 1/δν2.

)
,

mT = (m1, m2), tT = (1, 1). (37)

Here, δν1,2 (the eigenvalues of K−1) are known as “filling fac-
tor discontinuities” and specify jumps in the Hall fluid density
close to the edge. For example, the ν = 2/3 edge is specified
by δν1 = 1 and δν2 = −1/3 [15]. The null conditions (33) and
(34) now read

m2
1δν1 + m2

2δν2 = 0, (38)

m1δν1 + m2δν2 = 0. (39)

These equations have only the trivial m1 = m2 = 0 solution,
under the condition δν1 �= δν2, which must be satisfied for the
n = 2 chiral Luttinger liquid [5]. With the present formalism,
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we can however readily see that for a standard, spinless Lut-
tinger liquid, i.e., for δν1 = −δν2 = 1, all charge conserving
(m1 = m2) operators satisfy (38) and (39) and may cause
instabilities localizing the edge channels [35,36] (see also
Ref. [37] for a recent discussion).

For n = 3, there exists several T-unstable FQH states.
Specifically, we focus as follows on the state at filling ν =
9/5. The corresponding edge theory is defined by

K =
⎛
⎝1 0 0

0 1 0
0 0 −5

⎞
⎠, tT = (1, 1, 1). (40)

Using the null conditions (33) and (34), it can readily be
checked that

mT
1 = (−1, 2, 5), mT

2 = (2,−1, 5), (41)

are the two possible null vectors (changing an overall sign
does not count as a new null vector). We denote the corre-
sponding null operators by

Vm j (t, x) ∼ eim j ·φ(t,x), j = 1 and 2. (42)

With the scaling dimension formula (25), one can check that
in the absence of interactions, i.e., when V is diagonal in basis
(40), the scaling dimensions of these operators are 
(m1) =

(m2) = 5, whereas interactions reduce these values.

The binding transition becomes possible when at least
one of the null operators (42) is RG relevant [18], i.e.,

(m j ) < 3/2, according to Eq. (28). This requires suffi-
ciently strong edge interactions. As follows, we now assume,
without loss of generality [18], that Vm1 is a relevant operator
and ignore all effects from Vm2 .

To understand the binding transition, it is very useful to
perform a basis transformation with a matrix W ∈ SL(3,Z).
With the appropriate choice of W (the exact details of W are
not important, but its existence follows from the existence of
null vectors), we can equally represent the 9/5 edge as

K ′ =
⎛
⎝5 0 0

0 1 0
0 0 −1

⎞
⎠, t′T = (3, 1, 1). (43)

In this basis, the null vectors read

m′T
1 = (0, 1, 1), m′T

2 = (15,−2, 7). (44)

We focus only on the null vector m′
1 and its associated null

operator Vm′
1
. Note that this operator only couples two of the

three modes. The absence of interactions in the basis (43),
happens when the scaling dimension of Vm′

1
is 
(m′

1) = 1.
We emphasize that the effects on the system by addition of
Vm′

1
and Vm′

2
are equivalent. Indeed, a simple basis change

can be made such that instead m′T
2 = (0, 1, 1).

Equation (43) suggests that the 9/5 edge can be viewed
as two counterpropagating channels with filling factor dis-
continuities ±1 carrying unit charge, and one downstream
channel with filling factor discontinuity 1/5 carrying particles
with charge 3e (see Fig. 1). These composite particles can be
thought of “Cooper triplons”: bound states of three electrons.
Unlike conventional Cooper pairs, however, the composite
particles here are fermionic and therefore cannot condense.

The binding transition is the manifestation of localization
of the two equal and counterpropagating channels due to in-
teractions and disorder [35,36]. After localization, only one
channel remains. In some sense, this can be thought of as
an “inverted edge reconstruction,” where nontopological pairs
of channels vanish rather than appear. On length scales much
larger than a characteristic localization length (to be discussed
in more detail below in Sec. II C), the edge structure is then
effectively given as

K = (5), tT = (3), (45)

which is nothing but a ν = 1/5 Laughlin state made out of
charge 3e composites. The peculiarity of the binding transi-
tion is that when two counterpropagating but otherwise equal
channels localize, the remaining channel carries a changed
charge as to preserve the topological quantum numbers from
the bulk. This picture clarifies also why n = 3 is the minimum
number of edge channels required for a binding transition.

From Eqs. (43) and (44), we see that excitations (7) with
vectors

l′T = (0, q, q), q ∈ Z, (46)

will become localized on the edge, i.e., those l′ satisfying

l′TK ′−1m′
1 = 0. (47)

Due to the transformation rules (15), the condition (47) holds
in any basis. In contrast, an excitation on the form

l′T = (p, 0, 0), p ∈ Z (48)

will propagate freely along the edge. In more technical terms,
in the original three-dimensional vector-space of excitations,
only excitations in the one-dimensional subspace of vectors l′
satisfying

l′TK′−1m′
1 = 0 and l′ not proportional to m′

1 (49)

will propagate freely on the bound edge. From Eqs. (8) and
(9), we see that the statistics and the charge of the propagating
excitations (48) are

�l′ = π
p2

5
, (50)

Ql′ = 3p

5
. (51)

Since only p = 5N , with N an odd integer produces quantum
numbers consistent with the electron, it follows that only
electron excitations in bunches of 3 can propagate. In con-
trast, single electron excitations become localized on the edge.
The consequence of this effect is explored in more detail in
Sec. III D. In passing, we note that for bosonic FQH states,
N must be even to preserve Bose statistics. This implies that
binding transitions for such states always generate even mul-
tiples of bound composites.

The goal of this paper can now be formulated as investigat-
ing the transport properties for the edge in the two different
edge phases. To this end, we next perform an RG analysis to
find the phase diagram of the edge.
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C. Scaling analysis of the binding transition

Our simple scaling analysis of the binding transition
follows the approach in Refs. [35,36,38]. Throughout this sec-
tion, we assume that Vm′

1 [see Eq. (42)] is more relevant than
Vm′

2 and analyze here only the influence of Vm′
1 . The opposite

situation can be treated in a perfectly analogous manner.
For convenience, we next redefine the disorder strength in

Eq. (28) so that it becomes dimensionless (see Appendix A).
We thus set

D → D × a3−m

v2
. (52)

Here, m is the number of bosonic fields involved in the null
operator Vm1 , i.e., m = 3, and v is a characteristic velocity
(i.e., some combination of the vi; the exact details are not
important here). The first-order renormalization equation for
D then reads [35]

∂D

∂ ln(L/a)
= (3 − 2
0)D, (53)

where 
0 is the initial scaling dimension of Vm′
1 , L is the

system size, and a is the UV length cutoff (e.g., the mag-
netic length). The physical meaning of D(L) is the inverse
dimensionless conductance at the scale L. In what follows, we
ignore effects of renormalization of 
0, as they only weakly
affect the renormalization of disorder [36,38] and are thus
nonessential for our analysis. Hence, in what follows, we take


 ≈ 
0 (54)

during the RG flow. It follows from Eq. (53) that

D(L) = D0

(
L

a

)3−2
0

, (55)

where D0 ≡ D(L = a) is the bare (nonrenormalized) disorder
strength, assumed to be weak: D0 � 1.

We now study the consequences of Eqs. (53) and (55) in
the two regions 
0 > 3/2 and 
0 < 3/2.

1. �0 > 3/2

For 
0 > 3/2, D(L) decreases upon renormalization to-
wards lower energies (i.e., with increasing L), so that strong
localization (which requires D(L) � 1) does not take place at
any length scale. Consequently, the edge is in the free phase,
described by Eq. (40) or (43). Tunneling between the edge
modes remains weak at all energies. This tunneling exchanges
charge and heat among the edge channels which causes equili-
bration. We denote the characteristic length scales for charge
and heat equilibration as �C respectively �Q. They are both
nonuniversal as they depend on microscopic details such
as disorder, interactions, and the temperature. Generically, a
FQH edge is characterized by two such length scales for each
pair of edge modes [39,40]. However, only tunneling between
counterpropagating channels can partition charge and energy
flows and influence transport coefficients. The quantities �C

and �Q should then be understood as the dominating ones in
the full set.

The temperature scalings of �C and �Q are expected to be
the same [38]. In the case of equilibration between nonequiv-
alent counterpropagating modes (such as +1 and −1/3 in the

ν = 2/3 edge), strong interactions can cause parametrically
different prefactors [24]. We do not see an obvious reason for
this in the present case of equilibration between +1 and −1
modes. Also, our main interest is in the temperature scaling.
We thus treat the equilibration length scales on the same
footing by setting

�C ∼ �Q ∼ �eq, (56)

and �eq is to be understood as meaning both �C and �Q.
To find the temperature scaling of �eq, we first note that

with weakening disorder, the RG flow is cut at the thermal
length

LT ∼ vT −1. (57)

At this scale, the disorder has, according to Eq. (55), the
strength

D(LT ) = D0

(
LT

a

)3−2
0

∝ T 2
0−3. (58)

At larger length scales L > LT , D(L) scales linearly in L
(which is a conventional dependence of classical resistance
of a wire with length L):

D(L) ∼ L

LT
D(LT ) ∼ L

LT
D0

(
LT

a

)3−2
0

, (59)

where we used Eq. (58) in the final step. The equilibration
length is defined as

D(�eq ) ∼ 1, (60)

which yields, according to Eq. (59),

�eq ∼ D−1
0 a

(
LT

a

)2
0−2

∝ T 2−2
0 . (61)

Note that 2 − 2
0 < 0 in the regime 
0 > 3/2, so that �eq

and thus both �C and �Q increase with decreasing temperature
[16,24].

We can then identify two possible regimes in the free
phase.

(1) At lowest temperatures, such that L � �C, �Q ∼
T 2−2
0 , the three modes in the free phase are neither
charge nor heat equilibrated. The temperature scaling expo-
nent depends nonuniversally on interchannel interactions and
velocities. We call this regime II: the regime of absent local-
ization and poor equilibration.

(2) At higher temperatures: �C, �Q � L the three edge
modes become fully equilibrated, which we denote as regime
III. Here, the edge is expected to be governed by hydrody-
namic behavior due to interchannel scattering [41].

We depict regimes II − III for the free phase in
Fig. 2(c).

2. �0 < 3/2

For 
0 < 3/2, Eq. (55) shows that D(L) grows during
renormalization (i.e., with increasing L). The characteristic
length scale ξ0 at which the disorder becomes strong,

D(ξ0) ∼ 1, (62)
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FIG. 2. Schematic log-log “phase diagrams” of transport regimes in the parameter plane spanned by the temperature T and the length
scale L at which the system is observed. The point ξ0 on the L axis in (a) and (b) is the zero-temperature localization length (63). A full
line starting from this point is the temperature-dependent localization length ξ (T ); after crossing the line T = TB it becomes the equilibration
length �eq(T ) ∝ T 2−2
0 , see Eq. (64), with 
0 being the scaling dimension of the null operator. Further, �ϕ ∝ 1/T is the electron-electron
scattering length (66). The vertical dashed line is the characteristic temperature scale TB for onset of localization, which is defined by the
condition �ϕ (TB) = �eq(TB) and is given by Eq. (67). In (a) and (b), localization occurs in regime I (yellow region), whereas regimes II (blue
region) and III (red region) correspond to nonequilibrated and equilibrated transport, respectively. In (c), localization is absent. The blue and
red, dashed lines depict crossovers I → III and I → II, respectively. Note that the latter crossover is only possible for 
0 < 1.

yields the zero-temperature localization length ξ0 [35,36].
Substituting Eq. (55) into the condition (62), one finds

ξ0 ∼ aD−1/(3−2
0 )
0 . (63)

Approaching the critical value 
0 = 3/2 from below, ξ0 di-
verges, which matches the absence of localization for 
0 >

3/2, see Sec. II C 1. Thus, at T = 0, the system is in the
strongly localized (bound) regime for L > ξ0 and in the
nonequilibrated regime (negligible effect of random tunnel-
ing) for L < ξ0.

Let us now discuss what happens at finite temperature.
As discussed in Sec. II C 1, the renormalization of disor-
der according to Eq. (55) (which physically results from
an interaction-induced dressing of impurities) stops at the
scale LT . This gives a T -dependent mean free �(T ),

�(T ) ∼ LT

D(LT )
∼ D−1

0 a(aT/v)2−2
0 . (64)

This relation holds under the condition D(LT ) < 1 (or, equiv-
alently, �(T ) > LT ), i.e., for T > T0, where

T0 ∼ a−1vD1/(3−2
0 )
0 . (65)

For T < T0 the mean free path �(T ) saturates at the value
�(0) = ξ0 given by Eq. (63).

As is clear from Eq. (65), the regime 
0 < 3/2 is split into
two subregimes with very different behavior: �(T ) increases
with increasing T if 
0 < 1, while it decreases with increas-
ing T when 
0 > 1. These two distinct cases are depicted in
panels (a) and (b) of Fig. 2, respectively.

If the transport remains coherent up to the scale �(T ),
the mean free path �(T ) becomes the (T -dependent) localiza-
tion length ξ (T ) = �(T ) as in usual disordered single-channel
wires. The condition for strong localization is �(T ) < �ϕ (T ),
where �ϕ (T ) is the electron-electron scattering length [36],

�ϕ (T ) ∼ 1

(
0 − 1)2
LT . (66)

The factor (
0 − 1)−2 is important close to the point 
0 =
1, corresponding to noninteracting +1 and −1 modes, see
Eq. (43). Away from the region 
0 = 1, this factor can be
replaced by unity. Thus, the strongly localized (i.e., bound)

phase is realized for temperatures T < TB, where the charac-
teristic binding transition temperature TB is determined by the
condition �(T ) ∼ �ϕ (T ), yielding

TB ∼ a−1v

[
D0

(
0 − 1)2

]1/(3−2
0 )

. (67)

For 
0 close to unity, the temperature TB parametrically
exceeds T0 given by Eq. (65); otherwise, TB ≈ T0.

For T > TB, localization effects are reduced to a
weak-localization correction to the conductivity. This
correction is cut off by the weak-localization dephasing
length �wl

ϕ (T ) ∼ [�ϕ (T )�(T )]1/2 [36]. We will neglect this
small correction in the present work. To the leading order,
the transport in this situation is of classical character with
the mean free path �(T ). In other words, �(T ) in this regime
plays a role of the equilibration length �eq.

Summarizing, we have obtained the “phase diagram” of
transport regimes for the case 
0 < 3/2 as shown in Figs. 2(a)
and 2(b). In these plots, a full line emanating from the point ξ0

on the length axis is the T -dependent mean free path �(T ). For
T < TB, �(T ) constitutes the localization length ξ (T ), while
for T > TB it becomes the equilibration length �eq(T ).

(1) At lowest temperatures, T � TB, and L > ξ (T ), the
edge is in the strongly localized or bound phase (45). This
is depicted as regime I in Figs. 2(a) and 2(b).

(2) For L < �(T ) for all T , disorder remains weak and no
localization or equilibration occurs. We call this regime II.

(3) For T > TB and L > �eq(T ), dephasing suppresses the
localization and, at the same time, the random tunneling leads
to equilibration. This is regime III.

The conclusion of the present analysis is that the bound
phase is characterized by three transport regimes: the localiza-
tion regime I, and nonequilibrated and equilibrated regimes
II and III, respectively. This stands in stark contrast to
the free phase which exhibit only regimes II − III. The
existence of the localized regime is a striking manifestation of
the fact that the ν = 9/5 edge is T-unstable and thus suscep-
tible to the binding transition. The localized regime I in the
bound phase is depicted as the yellow regions in Fig. 2. With
this phase diagram in mind, we now move on to a transport
analysis for the regimes I − III.
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III. TRANSPORT SIGNATURES
OF THE BINDING TRANSITION

Electrical and thermal transport on FQH edges are usu-
ally quantized, reflecting a nontrivial bulk topological order
[3]. Specifically, the electrical Hall and two-terminal conduc-
tances, GH and G, are commonly proportional to the bulk
filling factor [see Eq. (5)]

GH = ν
e2

h
, G = |GH |. (68)

By contrast, thermal Hall and two-terminal conductances, GQ
H

and GQ are determined by νQ [see Eq. (6)] as

GQ
H = νQκT, GQ = ∣∣GQ

H

∣∣, (69)

where the heat conductance quantum κT = π2k2
BT/(3h), in

which T is the temperature, and kB and h are the Boltzmann
and Planck constants, respectively.

For edges with counterpropagating channels, the quanti-
zations (68) and (69) hold only in the transport regime of
full edge channel equilibration [38,42]. To observe deviations
from (68) and (69) requires poor equilibration, which can be
achieved by very low temperatures, strong interchannel inter-
actions [24,25], very small intercontact distance, or a detailed
control over the interchannel tunneling strength [29]. Since νQ

takes negative values on some edges (e.g., at filling ν = 3/5),
it has further been predicted that heat may flow in the oppo-
site direction of the charge [33]. However, most experiments
measure |νQ|. It was therefore proposed that the direction of
heat flow (i.e., the sign of νQ) is in direct correspondence
with the scaling behavior of the electrical shot noise with the
edge length L [39,43–46]. These insights have led to a deeper
understanding of the FQH edge structure. In particular, recent
measurements of the heat conductance [22,31] and noise [32]
now strongly point towards GaAs/AlGaAs hosting the non-
Abelian particle-hole-Pfaffian edge structure [47–50] at filling
ν = 5/2 [51,52].

As described in Sec. II, the binding transition preserves the
topological transport coefficients ν and νQ. It is therefore clear
that charge and heat conductances in the fully equilibrated
regime cannot distinguish between the free (40) and bound
(45) edge phases. Indeed, in both phases, the equilibrated
transport coefficients are given as

GH = G = 9

5

e2

h
, (70)

GQ
H = GQ = 1κT . (71)

However, by building upon the results in Sec. II C, we will
next argue that signatures of the binding transition can be de-
duced from edge transport experiments by accessing regimes
with absent equilibration.

A. Two-terminal charge conductance

We first consider the two terminal charge conductance G
[see Figs. 3(a) and 3(c)]. As follows, we assume for simplicity
a sharp enough edge potential such that no edge reconstruction
occurs. We also assume that in contact regions, screening
causes the interchannel interactions to vanish.

FIG. 3. Two-terminal setup for depicting edge transport at filling
ν = 9/5 in the free [(a) and (b)] and bound [(c) and (d)] edge phases.
The device length is L. Two contacts at different potentials VL �= VR

but the same temperature T allows extraction of the two-terminal
conductance G (left figures). For contacts at the same potential VL =
VR = V but different temperatures TL �= TR (right figures), one can
determine the two-terminal heat conductance GQ.

1. The free phase

When the edge is in the free phase, 
0 > 3/2, we expect
with decreasing system size L and/or decreasing temperature
T , a crossover in G. When L � �C, i.e., for equilibration (i.e.,
regime III, cf. Sec. II C), we expect G/(e2/h) = ν = 9/5
in accordance with Eq. (68). Since 
0 > 3/2, we have from
Eq. (61) that �C increases with decreasing T . When L ∼ �C,
charge begins to propagate upstream, which increases G. In
the limit of L � �C, i.e., no equilibration (regime II), the up-
stream channels transport charge upstream and also remain in
equilibrium with the contact they were emitted from. The in-
dividual channel conductance contributions then add [38,53],
i.e., G/(e2/h) = 1 + 1 + 1/5 = 11/5. Hence, we expect the
conductance characteristics

G/(e2/h) = 11/5 → 9/5, (72)

with increasing L and/or T in the free edge phase. This corre-
sponds to moving from the blue to the red region in Fig. 2(c).

2. The bound phase

In the localized regime I, only a single channel transports
charge over distances L > �C, ξ0. Hence, Eq. (68) gives the
charge conductance G/(e2/h) = 9/5. The analysis of regimes
II and III proceed just as for the free phase and give
charge conductances G/(e2/h) = 11/5 and G/(e2/h) = 9/5,
respectively.

We next analyze two important situations. For 1 < 
0 <

3/2, Fig. 2(b) indicates that, for fixed L > �C, ξ0 the con-
ductance remains at G/(e2/h) = 9/5 with decreasing T , i.e.,
transitioning from regime III to regime I. However, for
L < �C, ξ0, the conductance increases from G/(e2/h) = 9/5
to 11/5 since one channel begins to conduct more and more
charge upstream. The other case is 
0 < 1, see Fig. 2(a).
Just as in the previous case, a transition between regimes
I and III is not visible in the charge conductance which
remains at G/(e2/h) = 9/5. This is the blue, dashed line in
Fig. 2(a) However, we see that it is possible to crossover
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directly between regimes I and II. This is depicted as the
red, dashed line. Such a transition would give rise to a change
in the conductance

G/(e2/h) = 11/5 → 9/5, (73)

with decreasing temperature, which is a quite unusual situa-
tion, only possible due to the existence of the localized regime.
Observing this crossover would be a strong hallmark of edge
localization and the binding transition.

B. Two-terminal heat conductance

Here, we consider the setup in Figs. 3(b) and 3(d) and
analyze the two-terminal heat conductance GQ. We do note
that state-of-the-art measurements of GQ use a different ge-
ometry (see, e.g., Ref. [54]). This does not however change
the validity of the results in this section.

In contrast to the topological quantization (69), in the
regime of vanishing heat equilibration, GQ becomes propor-
tional to the total number of edge channels

GQ = (nd + nu)κT . (74)

This holds under the condition L < LT [55], which we assume
is fulfilled as follows. Deviations from this assumption is
commented upon below.

1. The free phase

Abelian FQH edge channels carry the same heat conduc-
tance regardless of their filling factor discontinuity δνi and
charge ti. Simple channel counting gives, for the free phase,
the crossover

GQ/(κT ) = 3 → 1. (75)

with decreasing L and/or T . This corresponds to the two
limiting values (69) and (74) when moving from regime III
to II. Analogously to the charge transport, the crossover is
governed by a characteristic, nonuniversal, heat equilibration
length �Q[∼�eq in Fig. 2(c)].

2. The bound phase

Also in the bound phase, we have in regime III a
heat conductance GQ/(κT ) = 1 according to Eq. (69). In
regime II, Eq. (74) gives GQ/(κT ) = 3. For 1 < 
0 <

3/2, Fig. 2(b) indicates that, for fixed L > �Q, ξ0 the
heat conductance remains at GQ/(κT ) = 1 with decreasing
T . For L < �Q, ξ0, the heat conductance instead increases
from GQ/(κT ) = 1 to GQ/(κT ) = 3. For strong interactions,

0 < 1, the transition between regimes I and III is not
visible as GQ/(κT ) = 1 across the transition; the blue, dashed
line in Fig. 2(a). Crossing over from II to I directly (the red,
dashed line) yields the crossover

GQ/(κT ) = 3 → 1, (76)

with decreasing temperature, due to localization. Similarly
to the charge conductance, such an unusual crossover is a
hallmark of localization on the edge.

Finally, we comment on the situation L > LT . Then, plas-
mon scattering on interfaces between edges and contacts

FIG. 4. (Top) Noise generation in regime of full charge equili-
bration but no thermal equilibration [condition (77)] in regime II
(cf. Table I). With voltage bias V0, heat is generated by the voltage
dropping in a region of size ∼�C to the right contact: the hot spot. The
dissipated power P ∼ V 2

0 [see Eq. (B16)]. Dc noise by partitioning of
the downstream (left to right direction) charge current is only gener-
ated in a region of size ∼�C close to the left contact. This happens if
heat is transported upstream (right to left) via the upstream channel,
which is here only possible in the absence of thermal equilibration.
(Bottom) By dissipation in the hot spot and reflection of plasmons
at contacts (reflection coefficient R), the downstream and upstream
modes acquire steady state temperatures T+ respectively T− in the
noise spot.

lead to quantum interference effects [55,56]. This interfer-
ence reduces the conductance from the value in Eq. (74). For
example, the strongly interacting ν = 2/3 edge with LT <

L < �eq produces a heat conductance GQ/(κT ) = 1 [25,38].
A prerequisite for this interference effect is the presence of
counterpropagating channels which do not thermally equili-
brate. The only regime where the interference effect therefore
could potentially have an impact is regime II, where it would
reduce GQ/(κT ) from 3 to slightly lower values.

C. Shot noise on a voltage biased edge segment

Here, we analyze the shot (or excess dc) noise, S, gen-
erated on a single edge segment, of length L, bridging two
contacts (see Fig. 4). This setup was studied theoretically in
Refs. [39,43–45] and has been realized experimentally for
both conventional [26] and interfaced [32] edge structures.

Under conditions of strongly equilibrated charge transport,
�C � L, noise in this setup is generated by an interplay be-
tween the charge and heat transport characteristics: when a
charge current is driven between the two contacts, heat is
generated only near the drain contact (in a region called the
hot spot; see right hand side in Fig. 4). This is a conse-
quence of downstream ballistic charge transport due to the
efficient charge equilibration. By contrast, excess noise can
only be generated near the source contact (in a region called
the noise spot, see left hand side in Fig. 4) due to thermal
enhancement of current partitioning. Partitioning beyond this
spot leads, due to repeated charge scattering and the chiral
nature of the edge, to scattered particles ending up in the
same contact and no noise is generated. Nonzero shot noise
in the contacts is therefore possible only if (i) the edge hosts
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counterpropagating modes and (ii) there is an upstream heat
flow from the hot spot to the noise spot.

Let us apply this reasoning to the ν = 9/5 edge. In the lo-
calized regime I, there is no upstream heat flow and therefore
no noise; S = 0. In regime III, the edge is fully thermally
equilibrated and the upstream heat flow as well. The noise
is then exponentially suppressed in L: S ∝ exp[−L/�C] � 0.
These two regimes stand in stark contrast to regime II, under
the additional condition:

�C � L � �Q. (77)

In this case, the edge has three charge equilibrated but not
thermally equilibrated channels, conditions which have been
experimentally observed [25,26]. Upstream heat transport is
then possible. This heat reaches the noise spot through ballis-
tic upstream flow and noise is generated. The condition (77)
can arise due to strong interactions [24], so we expect that it
holds only for 
0 ≈ 0, i.e., deep in the bound phase.

Our goal in the remainder of this subsection is to estimate
the magnitude of S in regime II, under the condition (77).
In our analysis, we consider a large voltage bias eV0 � T ,
which allows us to effectively set T ≈ 0 in the following
calculations.

The shot noise in any of the two contacts (see Fig. 4) (equal
due to current conservation) can be written as [25]

S = 2e2

h�C

ν−
ν+

(ν+ − ν−)
∫ L

0
dx �(x)e− 2x

�C . (78)

Here, ν+ and ν− are the combined filling factor discontinu-
ities of the downstream (+) and upstream (−) edge modes,
respectively. They satisfy the relation ν = ν+ − ν−, where ν

is the bulk filling factor. For the ν = 9/5 edge in regime II,
we have ν+ = 2 and ν− = 1/5. The exponential factor in the
integral is a result of chiral, equilibrated charge transport as
described above. It indicates that noise is dominantly gener-
ated in a region of size ∼lC

eq close to the upstream contact, i.e.,
the noise spot.

In Appendix B, we derive the following expression for the
noise kernel �(x) entering Eq. (78)

�(x) ≈ �(T±,
)

=
∫

dz sin
[

T+
T−

(
π
2 + iz

)]−δ+
cosh [z]−δ−

∫
dz
(

1
2T−

+ iz
πT−

)
sin
[

T+
T−

(
π
2 + iz

)]−δ+
cosh [z]−δ−

.

(79)

Here, the exponents

δ+ ≡ ((m̃1)1)2 + ((m̃1)2)2, (80a)

δ− ≡ ((m̃1)3)2, (80b)

δ+ + δ− = 
, (80c)

and the edge eigenmode temperatures

kBT+ = 3eV0

5π

√
R(1 + R)

4 − 2R2
, (81a)

kBT− = 3eV0

5π

√
1 + R
2 − R2

. (81b)

FIG. 5. Noise S vs the bias current I0 for different values of the
scaling dimensions δ± [see Eq. (B14)] and the edge contact reflection
coefficient R. The calculation is done for the ν = 9/5 edge under the
condition (77) for the edge equilibration length scales.

Here, we have assssumes that all downstream modes have
the temperature T+, and the upstream modes are at T−. Fur-
thermore, R ∈ [0, 1] is the reflection coefficient between the
contacts and the edge. Using the expressions ν+ = 2 and
ν− = 1/5, Eq. (78) can be written as

S = 9e2

50h
�(T±,
). (82)

For simpler comparison with the experimental convention of
plotting S versus the source current I0, we next convert the
bias voltage V0 to I0 via

I0 = 9

5

e2

h
V0, (83)

which is valid under the condition (77).
We now have all ingredients to compute the noise in

Eq. (82) for a given bias current I0. We evaluate the integrals in
Eq. (79) numerically for various values of R and δ± and plot
the result in Fig. 5. Since we expect the condition (77) to be
obtained for strong interactions which also tend to increase
R, we limit the range of R to the range R ∈ [0.5, 1], for
consistency. For experimental comparison, we have reinstated
experimentally convenient units where noise is measured in
10−29 A2/Hz and currents in nano ampere. Qualitatively, we
see that for fixed R, the dependencies on δ± are quite weak,
whereas the dependence on R is pronounced. This can be
understood on physical grounds since R strongly affects the
temperatures T± at the noise spot. By inspection, we give the
rough estimate

S ≈ 0.25 − 0.7 × 10−29 A2

nA Hz
. (84)

This magnitude is around half of that detected for the ν = 2/3
edge in Ref. [26]. The noise in regime II should therefore be
detectable with present technology.

D. Shot noise in a QPC device

As a complement to the transport characteristics in pre-
vious subsections, we here compute the electrical shot noise
generated by current partitioning in a QPC device [57–60]. We
consider both the WBS regime [see Figs. 6(a) and 6(c)], allow-
ing tunneling of fractionally charged quasiparticles through
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(a) (b)

(c) (d)

FIG. 6. Schematics of a quantum point contact (QPC) device
at filling ν = 3/5. [(a) and (b)] In the free phase, the weak back-
scattering (WBS) regime favours tunneling of quasiparticles with
charge e/5. For strong back-scattering (SBS), electrons with charge e
tunnel. (c) In the bound phase, the WBS regime is dominated by
tunneling of fractional charges 3e/5. (d) In the SBS regime in the
bound phase, single electron tunneling is strongly suppressed at low
energies and three electron cotunneling, i.e., charge packets of 3e is
the most dominant process. All four types of charges can be detected
in shot noise measurements.

the FQH bulk, and the SBS regime, which only allows elec-
tron tunneling across the nontopological vacuum [Figs. 6(b)
and 6(d)].

In this section, we present formulas for the tunneling cur-
rent, shot noise, Fano factor, and tunneling conductance in
point tunneling between two counterpropagating edge chan-
nels. Details in the derivation are given in Appendix C.
We then apply these formulas to obtain Fano factors for
the bound and free phases, in both SBS and WBS regimes.
We follow closely the perturbative Keldysh approach from
Refs. [42,53,61].

1. QPC model and formulas for tunneling current and noise

The edge channels in the QPC device is described by the
effective Hamiltonian

H0 = π

∫
dx

[
v1

ρ2
1

t2
1

+ v2
ρ2

2

t2
2

]
, (85)

where ρi = ti∂xφi/(2π ) (i = 1, 2) are the neigbouring two
counterpropagating charge densities (with velocities vi) on
each side of the constriction. For simplicity, we ignore the
fully transmitted or reflected channels in the free phase. Their
influence in the form of interchannel interactions are dis-
cussed below Eq. (94) and in Appendix C below Eqs. (C18)
and (C20). We further ignore all interactions across the con-
striction. The bosons φi and their densities obey the following
set of commutation relations:

[φi(x), φ j (x
′)] = iπδi jδνi sgn(x − x′), (86)

[ρi(x), ρ j (x
′)] = i

2π
δi jt

2
i δνi∂xδ(x − x′), (87)

[φi(x), ρ j (x
′)] = iδi jtiδνiδ(x − x′). (88)

Here, the filling factor discontinuities δνi and the charge
vector entries ti are kept unspecified for full generality. To
describe charge tunneling in the presence of a voltage bias, we
introduce chemical potentials and point tunneling (at position
x = 0) with

HV = −
∫

dx[μ1ρ1 + μ2ρ2], (89)

Hτ =
∫

dxδ(x)[�0Tl(x) + H.c.]. (90)

Here, �0 is the tunneling amplitude and

Tl(x) = eil1φ1(x)+il2φ2(x)

2πa
, (91)

is a tunneling operator parametrized by l = (l1, l2) [cf.
Eq. (7)]. The length a is our UV distance cutoff, e.g., the
magnetic length. According to Eq. (9), the charge created by
eil1φ1 is

q1 = t1δν1l1. (92)

Similarly, eil2φ2 creates charge

q2 = t2l2δν2. (93)

Conservation of charge in the tunneling process restricts l1 and
l2 such that

q1 = q2 ≡ q (94)

for a given set {t1, t2, δν1, δν2}. Note that since Eq. (9) is
invariant under basis rotations, the charges q1, q2, and q are
all independent of possible interactions with fully transmitted
and reflected channels in the free phase.

In Appendix C, we present our calculation of the average
QPC tunneling current 〈I〉 and zero frequency noise S(ω = 0).
They are given as

〈I〉 ≡ 〈I (t )〉 = 2q|�0|2(2πa)2
(l)−2T 2
(l)−1

×
∏

k

(
1

vk

)2dk

sinh
( ω0

2T

)∣∣�(
(l) + i ω0
2πT

)∣∣2
�(2
(l))

(95)

and

S(ω = 0) = 2q cosh
( ω0

2T

) 〈I〉
sinh
(

ω0
2T

) = 2q〈I〉 coth
( ω0

2T

)
.

(96)

In Eqs. (95) and (96), the parameter

ω0 ≡ (t1l1δν1μ1 − t2l2δν2μ2) = q(μ1 − μ2) (97)

is a characteristic frequency of the tunneling, and


(l) = 1
2

(|δν1|l2
1 + |δν2|l2

2

)
, (98)

is the scaling dimension of the tunneling operator Tl in
Eq. (91). In the shot-noise limit ω0 � T , the Fano factor

F ≡ S(ω = 0)

2〈I〉 = q coth
( ω0

2T

)
−−−→
ω0�T

q. (99)

reveals the charge in the tunneling process. In the limit
ω0 � T , the tunneling current can be written on Ohmic form
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as 〈I〉 = gτ e2(V1 − V2)/h with eV1 = μ1, eV2 = μ2, and the
tunneling conductance

gτ ≡ q2 |�0|2(2πaT )2
(l)−2∏
k v

2dk
k

|�(
(l))|2
�(2
(l))

. (100)

Next, we use the charges (92)–(94), the scaling dimensions
(98), the Fano factor (99), and the tunneling conductance
(100) to analyze tunneling in the free and bound edge phases.

2. Fano factors for the free phase

For a ν = 9/5 device in the free phase, we have for the
innermost channels t1 = t2 = 1 and δν1 = −δν2 = 1/5 ≡ δν

[see Eq. (40)]. In the WBS regime, fractional charges may
tunnel across the constriction through the Hall fluid, and,
as stated above, the most relevant tunneling operator Tl is
obtained for l1 = l2 = l = 1. The operator then describe the
transfer of particles with charge

q = tδνl = 1 × 1
5 × 1 = 1

5 . (101)

Using Eqs. (98) in Eq. (100), we see that the tunneling
conductance for this process scales with temperature in the
Ohmic limit as gτ ∼ T −8/5. Note that this scaling law strictly
holds in the absence of interactions. However, interactions
are expected to only lead to small deviations from this value
of the scaling exponent. The divergence at zero temperature
signals the instability of the system towards quasiparticle tun-
neling. Thus, this type of tunneling is only visible at high
temperatures/voltages.

In the SBS regime, the left and right parts of the constric-
tion are bridged by a region fully depleted of Hall fluid. No
FQH quasiparticles may exist in this region, and hence only
tunneling processes of electrons (integer charges) couple the
edges. The most dominant such process is obtained for l = 5,
which gives a smallest possible integer charge of

q = tδνl = 1 × 1
5 × 5 = 1, (102)

i.e., single electron tunneling. For this process, Eqs. (98)
and (100) show that the tunneling conductance scaling with
temperature becomes in the Ohmic limit gτ ∼ T 8. Also this
scaling exponent may be modified by interactions but we
expect this effect to be small. The SBS regime is a stable RG
fixed point.

Direct application of Eq. (99) for these two types of pro-
cesses give the Fano factors for the free phase

FWBS = 1
5 , (103)

FSBS = 1. (104)

From these results, we predict that in the free phase, shot noise
measurements in the WBS and SBS regimes should reveal
tunneling of fractional charges q = 1/5 and single electrons
q = 1, respectively.

3. Fano factors for the bound phase

In the bound phase, we have t1 = t2 = 3 and
δν1 = −δν2 = 1/5 [see Eq. (45)]. In the WBS regime,
the most relevant tunneling operator is again obtained for

l = 1, which amounts to transfer of particles with charge

q = tδνl = 3 × 1
5 × 1 = 3

5 . (105)

In the SBS regime, we seek the most relevant operator
transferring an integer number of charges. From Eq. (92), we
see that, once more, this operator is found for l = 5, which
amounts to the tunneling of charge

q = tδνl = 3 × 1
5 × 5 = 3. (106)

The conductance scaling laws in the WBS and SBS regimes
are gτ ∼ T −8/5 and gτ ∼ T 8, respectively, i.e., the same as
those obtained for the bound phase. Application of Eq. (99)
for the WBS and SBS regimes gives

FWBS = 3
5 , (107)

FSBS = 3. (108)

Equation (108) is a key result of this section. It signals three-
electron co-tunneling as the most relevant process in the SBS
regime. Since, t1 = t2 = t = 3, a process yielding FSBS = 1
is impossible at low energies in the bound phase. Similarly,
for WBS, it not possible to observe particles with charge 1/5
in the bound phase. Measuring FSBS = 3 and FWBS = 3/5 in
the SBS respectively WBS regimes, is therefore a striking
manifestation of the 9/5 edge in the bound phase.

4. Tunneling between the bound edge and a metal

As a consistency check of our equations, we consider
finally also the previously studied setup [18] of electron
tunneling from an ordinary metal (or, equivalently, an in-
teger quantum Hall edge) into the bound 9/5 edge. As
previously stated, only tunneling of electrons in bunches
of three is possible. We therefore have t1 = 1, δν1 = 1,
and l1 = 3, respectively t2 = 3, δν2 = −1/5, and l2 = 5.
Since q1 = t1|δν1|l1 = q2 = t2|δν2|l2 = 3, we immediately
find from Eq. (99) that F = 3 for this tunneling. Furthermore,
Eq (98) gives the scaling dimension


 = 1
2

(
1 × 32 + 1

5 × 52
) = 7, (109)

for the most relevant tunneling operator. It follows that in the
high-temperature limit, Eq. (100) gives that the tunneling con-
ductance scales as gτ ∼ T 2
−2 = T 12. In the low-temperature
limit, we have from dimensional analysis 〈I〉 ∼ V 2
−1 = V 13.
These scaling laws are precisely those derived in Ref. [18].

We end Sec. III by summarizing the key results in Table I.

IV. DISCUSSION

Our analysis at ν = 9/5 can straightforwardly be adapted
to other T-unstable edge structures (several examples were
given in Ref. [18]). Consider for example an interface between
bulk fillings ν = 2/5 and 1/7. Here, we assume that a FQH
state and not a Wigner crystal forms at filling ν = 1/7 of the
electron gas.

The resulting edge structure is described by

K =
⎛
⎝3 0 0

0 15 0
0 0 −7

⎞
⎠, tT = (1, 1, 1). (110)
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According to Eq. (5), the “effective filling” of this struc-
ture is ν = 9/35. The two null vectors are m1 = (1, 10, 7)T

and m2 = (4,−5, 7)T . Crossing over from the corresponding
regimes III to II, we therefore expect conductance transi-
tions G = 9/35 → 19/35 and GQ = 1 → 3 with decreasing
temperature.

A basis transformation of Eq. (110) on the form (15) leads
to an alternative representation

K ′ =
⎛
⎝35 0 0

0 1 0
0 0 −1

⎞
⎠, t′T = (3, 1, 1). (111)

The binding transition amounts to the pair of counterpropa-
gating integer channels localizing. The remaining channel has
a filling factor discontinuity δν = 1/35 and it is made out of
3e composites. Hence, the bound phase is characterized by

K ′ = (35), t′T = (3). (112)

In the bound phase, we therefore expect conductances G =
9/35 and GQ = 1 in regime I.

Tunneling in a QPC bridging two interfaced edges is
geometrically complicated and we do not analyze it here.
However, electron tunneling into the interface edge from a
metal (e.g., an STM tip or a ν = 1 QH state) is conceptually
simpler and we use Eq. (98) to compute the scaling dimension
of the tunneling operator (7) transferring three electrons. The
result is


 = 1
2

(
1 × 32 + 1

35 × 352
) = 22, (113)

where we used t1 = 1, δν1 = 1, and l1 = 3, respectively
t2 = 3, δν2 = −1/35, and l2 = 35. Then, from Eqs. (92), (93),
and (94), we have q1 = t1|δν1|l1 = q2 = t2|δν2|l2 = 3. With
these values, Eq. (99) produces F = 3 as expected for this
tunneling. From Eq. (100), we have that the tunneling conduc-
tance scales with temperature as gτ ∼ T 2
−2 = T 42. In the
low-temperature limit, the voltage scaling of the current reads
〈I〉 ∼ V 2
−1 = V 41. We note here that a common property
of electronic tunneling into a bound FQH edge are the un-
usually large conductance scaling exponents. Extracting these
scaling exponents accurately may be prone to experimental
difficulties. Nonetheless, we believe that large scaling expo-
nents are important cues to look for in detecting FQH binding
transitions.

We now move on to discuss practical aspects of experimen-
tally detecting the binding transition. The transition at filling
ν = 9/5 can be expected to require tunneling between Landau
levels with different spin polarization. Breaking spin-rotation
symmetry, for example by spin-orbit coupling, is therefore
a necessary condition. A bilayered device could be used to
facilitate the binding transition [18]. Alternatively, carefully
designed devices in the spirit of Ref. [29] where all channels
have the same spin may be another possibility.

In our view, the most standard probe of the binding tran-
sition should be a measurement of the shot noise in a QPC
device. From Sec. III D, we anticipate that, with decreasing
temperature, a binding transition at ν = 9/5 amounts to the
crossover from FSBS = 1 to 3 in the strong back-scattering
regime of the QPC. Similarly, for weak back-scattering, one
expects a crossover from FWBS = 1/5 to 3/5. Changes in Fano

factors with decreasing temperature were recently measured
in Ref. [62]. It would be interesting to investigate whether
these changes could arise due to a combination of edge re-
construction and binding transitions.

V. SUMMARY AND OUTLOOK

We proposed quantum transport signatures for the FQH
edge binding transition, with focus on filling ν = 9/5. For
this edge, we showed that interactions and disorder conspire
to generate a rich phase diagram (Fig. 2) with distinct charge
and heat transport regimes (see Table I). The three regimes,
labeled I, II, and III displays localized, nonequilibrated,
and fully equilibrated characteristics. Probing the distinct
transport behavior, in terms of charge and heat conductances,
of these regimes should be possible with present technology.
As a complement to the conductance, we also estimated the
shot noise produced of a single current biased edge segment.
We demonstrated that such noise is only expected for the
thermally nonequilibrated edge (regime II) under the strong
interaction condition (77) associated with the bound phase.

We also studied a QPC device in the strong and weak
backscattering regimes and derived shot noise Fano factors
for tunneling processes across the constriction. The bound
phase does not allow single electron tunneling in the strong
back-scattering (SBS) regime. Instead of the typical Fano
factor FSBS = 1 corresponding to single electron tunneling,
we therefore found that the smallest Fano factor compatible
with transferring an integer number of charges is FSBS = 3.
This corresponds to three-electron co-tunneling. In addition,
all higher order (but less relevant) tunneling processes of
electrons are necessarily integer multiples of 3. In the weak
back-scattering (WBS) regime, we found that the most rele-
vant tunneling of quasiparticles yields FSBS = 3/5. These SBS
and WBS Fano factors are in stark contrast to those for the free
phase: FSBS = 1 respectively FWBS = 1/5. These contrasting
values serve as a clear signature for the binding transition.

We hope that our predictions and proposals will stimulate
further theoretical and experimental investigations of FQH
binding transitions. While our present analysis focused on
Abelian FQH edges, binding transitions for non-Abelian can-
didate edge theories for the state filling ν = 5/2 were studied
in Ref. [63]. An experimentally oriented analysis similar to
the present work could be useful for pin-pointing that state’s
underlying topological order.
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APPENDIX A: DIMENSIONS
OF THE DISORDER STRENGTH D

A generic tunneling operator Tl has length (L) dimensions

L−m/2, (A1)

where m is the number of involved vertex operators (m = 3
for the ν = 9/5 edge). The action (10) is dimensionless, so
the random tunneling amplitude ξ (x) has dimensions

Lm/2−1s−1. (A2)

where s is the unit of time. From Eq. (28), we then have that
the units of D are

Lm−1s−2. (A3)

Hence, to obtain a dimensionless D we let

D → D × a3−m

v2
, (A4)

with some characteristic velocity v (a combination of all vi to
various powers such that the total power is 2). This result is
consistent with Ref. [35] in which m = 2.

APPENDIX B: CALCULATION OF THE NOISE KERNEL

In Eq. (78), the noise generated along an edge segment (see
Fig. 4) is given as

S = 2e2

h�C

ν−
ν+

(ν+ − ν−)
∫ L

0
dx �(x)e− 2x

�C . (B1)

The key quantity to compute in Eq. (B1) is the local noise
kernel

�(x) ≡ Sloc[δV (x), T+(x), T−(x),
]

2gloc[δV (x), T+(x), T−(x),
]
. (B2)

It is composed of Sloc and gloc which is the local electron
tunneling dc noise and the (dimensionless) tunneling conduc-
tance, respectively. Importantly, the conductance gloc ∝ �−1

C ,
where the proportionality factor is the typical distance be-
tween scattering points [40,43]. Both Sloc and gloc depend on
microscopic details of the edge: interchannel interactions, the
edge disorder strength, the local voltage difference between
the modes δV (x), and the effective temperatures T±(x) of
downstream and upstream edge modes. Importantly, the inter-
actions enter via the scaling dimension 
 of the most relevant
interchannel charge tunneling operator (7).

Under the condition �C � L � �Q [given in Eq. (77)], both
the voltage difference and the temperatures are to excellent
approximation constant across the noise spot:

δV (x) ≈ 0 and T±(x) ≈ T±. (B3)

The first approximation holds because the channels equili-
brate to the same voltage along the edge (except at the hot
spot), whereas the second holds because of assumed poor
thermal equilibration. With the approximations (B3), we can
write

�(x) ≈ �(T±,
). (B4)

By using Eq. (B4) in Eq. (B1), the integral can be trivially
performed to give

S = 9e2

50h
�(T±,
). (B5)

We now want to find �(T±,
). The first step is to specify the
edge tunneling operator, which we take as the null operator
(42) with m1 from Eq. (41). We use the basis (40).

For this tunneling process, we next compute �(T±,
) with
the approach described in Ref. [26] (see also Appendix C
for similar calculations). For weak tunneling, a perturbative
approach for the local noise and conductance gives

Sloc ∝ 2
∫

dt cos(δV t )
〈
Vm1

(t, 0)V†
m1

(0, 0)
〉

(B6)

gloc ∝ i∂δV

[∫
dt sin (δV t )

〈
Vm1

(t, 0)V†
m1

(0, 0)
〉]

δV →0

.

(B7)

Here, the nonuniversal proportionality constant depends on a
short distance cutoff, but importantly, the constant is the same
for Sloc and gloc and therefore cancels in �. Inserting the above
expressions into Eq. (B2) and using δV = 0 gives

�(T±,
) =
∫

dt
〈
Vm1

(t, 0)V†
m1

(0, 0)
〉

i
∫

dt t
〈
Vm1

(t, 0)V†
m1 (0, 0)

〉 . (B8)

In Eq. (B8), the temperature dependence enters via the corre-
lation functions〈

Vm1
(t, 0)V†

m1
(0, 0)

〉 ∝ ∏
j=1,2,3

G̃ j (t, 0)((m̃1 ) j )2

, (B9)

where the finite temperature Green’s functions

G̃ j (t, 0) = πaTj/ṽ j

sin
[

πTj

ṽ j
(a − iṽ jt )

] , j ∈ {1, 2, 3}, (B10)

Note that the Green’s functions are those of the modes in the
diagonal basis (14). From Eq. (25), we have that the exponents
in (B9) satisfy

((m̃1)1)2 + ((m̃1)2)2 + ((m̃1)3)2 = 2
. (B11)

The formula for the noise (B1) assumes that all downstream
modes have the temperature T+, and the upstream modes are
at T−. We thus set

T1 = T2 = T+, (B12a)

T3 = T−. (B12b)

By plugging these temperatures into the Green’s functions
(B10), and expanding to leading order in a, we can cast
Eq. (B8) on the form

�(T±,
)

=
∫

dz sin
[

T+
T−

(
π
2 + iz

)]−δ+
cosh[z]−δ−

∫
dz
(

1
2T−

+ iz
πT−

)
sin
[

T+
T−

(
π
2 + iz

)]−δ+
cosh[z]−δ−

,

(B13)
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where the exponents

δ+ ≡ ((m̃1)1)2 + ((m̃1)2)2, (B14a)

δ− ≡ ((m̃1)3)2. (B14b)

Our next step is to find T± in terms of the bias volt-
age V0. When n+ downstream and n− upstream edge modes
are not thermally equilibrated, the local downstream and up-
stream temperatures at the noise spot, T±, were computed in
Ref. [26]. They are given as

kBT+ =
(

6hP

π2
× R(n− + R)

(n+ + n−)(n+n− − R2)

)1/2

, (B15a)

kBT− =
(

6hP

π2
× n+(n− + R)

(n+ + n−)(n+n− − R2)

)1/2

. (B15b)

Here R ∈ [0, 1] is the reflection coefficient between the con-
tacts and the edge. This reflection depends explicitly on the
sharp change in interaction strength between the contact re-
gion and the edge [26,38,53] (see Fig. 4). We have assumed
that both contacts have the same R. Eq. (B15) also includes
P, the power dissipated in the hot spot, which was computed
in Ref. [44] as

P = e2V 2
0

2h
× (ν+ − ν−)ν−

ν+
, (B16)

under the assumption (77). For the ν = 9/5 edge in regime
II, we have ν+ = 2, ν− = 1/5, n+ = 2, and n− = 1. Plug-
ging these numbers into Eqs. (B15) and (B16), we find

P = 9e2V 2
0

100h
, (B17)

and

kBT+ = 3eV0

5π

√
R(1 + R)

4 − 2R2
, (B18a)

kBT− = 3eV0

5π

√
1 + R
2 − R2

. (B18b)

For R = 0, which corresponds to vanishing edge interac-
tions, we have kBT+ = 0 and kBT− = 3eV0/(5π

√
2). This

is the situation where the downstream channels remain in
equilibrium with the left contact (in our approximation, at
T = 0) and only the upstream channel is heated by dis-
sipation at the hot spot. Even in the absence of thermal
equilibration by edge impurities, a finite reflection probability
at the two contacts distributes the hot spot power to all edge
channels.

APPENDIX C: DERIVATION OF QPC OBSERVABLES

To compute the tunneling current, we begin by defining the
channel i current operator as

Ii = d

dt

(∫
dxρi

)
= 1

i

[∫
dxρi, H0 + HV + Hτ

]

= 1

i

[∫
dxρi, Hτ

]
, (C1)

where we used that ρi commutes with the quadratic H0

and HV . The commutator with Hτ yields

I1 = −I2 ≡ I = iq�0Tl(0) + H.c. (C2)

In the interaction picture with Hτ as the interaction Hamilto-
nian, any operator A time-evolves as

A(t ) = ei(H0+HV )t Ae−i(H0+HV )t . (C3)

Applying this formula to operators I and Hτ , we find the time
evolutions

Hτ (t ) = e−iω0t�0Tl(0) + H.c., (C4a)

I (t ) = iqe−iω0t�0Tl(0) + H.c., (C4b)

where the characteristic “Josephson frequency” of the tunnel-
ing process

ω0 ≡ (t1l1δν1μ1 − t2l2δν2μ2) = q(μ1 − μ2). (C5)

In the second equality here, we used the charge conservation
condition (94). The relation between ω0 and the voltage across
the constriction reads h̄ω0 = qe(V1 − V2).

Next, we compute the expectation value of the current
〈I (t )〉 on the Keldysh contour

〈I (t )〉 = 1

2

∑
λ=±1

〈
TC

[
I (tλ) exp

(
−i
∫

C
dt0Hτ

(
tλ′
0

))]〉
. (C6)

Here, the Keldysh time-ordering operator, TC orders along
the Keldysh contour C: −∞ → +∞ → −∞. We denote
the “upper” branch −∞ → +∞ by λ = +1 and “lower”
branch +∞ → −∞ with λ = −1. The ordering acts ac-
cording to t− > t+

0 for all t and t0; t+ > t+
0 for t > t0;

and t− > t−
0 for t < t0. Since our Hτ only depends on a

single time argument, we have used a symmetric combi-
nation on both branches, compensated for with the factor
of 1/2.

To second order in �0, we find

〈I (t )〉 = q|�0|2
2

∑
λ,λ′=±1

λ′
∫ ∞

−∞
dt0 sin

[
ω0(tλ − tλ′

0 )
]

× 〈TCTl(0, tλ)T †
l (0, tλ′

0 )〉, (C7)

where we used that the tunneling operators are normal or-
dered. Next, we use the finite temperature Keldysh Green’s
functions for the tunneling operators

〈
TCT (0, tλ)T †

l

(
0, tλ′

0

)〉 = 1

(2πa)2

×
∏
j=1,2

⎛
⎜⎝ πa/(β jv j )

sin
[

π(a+iχλ,λ′ (t−t0 )(v j (t−t0 )))
v jβ j

]
⎞
⎟⎠

2d j

, (C8)

where χλ,λ′ (t − t0) = sgn(t − t0)(λ + λ′)/2 − (λ − λ′)/2,
β j = 1/Tj is the inverse temperature of channel j, and
d j = l j |δν j |/2 is the scaling dimension of exp(iliφi ).
The total scaling dimension is then 
(l) =∑ j d j .
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Inserting the Green’s functions (C8) into Eq. (C7), we
obtain

〈I (t )〉 = q|�0|2
(2πa)2

∏
k

(
πa

vkβk

)2dk ∑
λ,λ′=±1

λ′

×
∫ ∞

−∞
dt0

sin
[
ω0
(
tλ − tλ′

0

)]
∏

j sin
[

π
v jβ j

(a + iχλ,λ′ (t − t0)v j (t − t0)
]2d j

= q|�0|2
(2πa)2

∏
k

(
πa

vkβk

)2dk ∑
λ=±1

λ

×
∫ ∞

−∞
dt0

sin[ω0(t − t0)]∏
j sin
[

π
v jβ j

(
a − iλv j (t − t0

)]2d j
. (C9)

In the second equality, we used that when λ = λ′, the in-
tegrand becomes odd in t − t0 and hence this contribution
vanishes. We next assume that the two channels are at the
same temperature: Tj = T and also that aT/v j < 1 for j =
1 and 2. We then change variables t − t0 → λ(t0 + i/(2T )).
To lowest order in b, the integral becomes

〈I (t )〉 = q|�0|2
(2πa)2

∏
k

(
πa

vkβk

)2dk ∑
λ=±1

λ

×
∫ ∞

−∞
dt0

sin[−λω0(t0 + i/(2T ))]∏
j cosh(πT t0)2d j

= 2q|�0|2
(2πa)2

∏
k

(
πaT

vk

)2dk

sinh
( ω0

2T

)

×
∫ ∞

−∞
dt0

cos[ω0t0]∏
j cosh(πT t0)2d j

= 2q|�0|2
(2πa)2

(πaT )2
(l)
∏

k

(
1

vk

)2dk

sinh
( ω0

2T

)

×
∫ ∞

−∞
dt0

cos[ω0t0]

cosh(πT t0)2
(l)
. (C10)

The final integral can now be performed with the identity∫∞
−∞ dt cosh(2yt )/ cosh2x t = 22x−1�(x + y)�(x − y)/�(2x),

for Re x > |Re y| and Re x > 0, with �(z) the Gamma-
function. We then find the time-independent tunneling current

〈I〉 ≡ 〈I (t )〉 = 2q|�0|2(2πa)2
(l)−2T 2
(l)−1

×
∏

k

(
1

vk

)2dk

sinh
( ω0

2T

)∣∣�(
(l) + i ω0
2πT

)∣∣2
�(2
(l))

, (C11)

as given in Eq. (95). In the high-temperature regime ω0 � T ,
we find the Ohmic behavior

〈I〉 = gτ

e2

h
(V1 − V2), (C12)

with the tunneling conductance

gτ ≡ q2 |�0|2(2πaT )2
(l)−2∏
k v

2dk
k

|�(
(l))|2
�(2
(l))

, (C13)

presented in Eq. (100) in the main text. We next consider the
symmetrized noise

S(t, t ′) = 〈I (t )I (t ′)〉 + 〈I (t ′)I (t )〉 − 2〈I (t )〉〈I (t ′)〉. (C14)

To leading order in �0, S(t, t ′) is given on the Keldysh contour
as

S(t, t ′) ≡ S(t − t ′) =
∑
λ=±1

〈TC[I (tλ)I (t ′−λ)]〉

= 2q2|�0|2
∑
λ=±1

cos
[
ω0(tλ − tλ′

0 )
]

× 〈TCTl(0, tλ)T †
l

(
0, tλ′

0

)〉
. (C15)

We are interested in the zero frequency (dc) noise S(ω =
0) ≡ ∫ d (t − t0)S(t − t0). The calculations proceed in perfect
analogy to those for 〈I〉, and using Eq. (C11), we arrive at
Eq. (96) in the main text, namely,

S(ω = 0) = 2q cosh
( ω0

2T

) 〈I〉
sinh
(

ω0
2T

) = 2q〈I〉 coth
( ω0

2T

)
.

(C16)

In the limit ω0 � T , the noise approaches the equilibrium
Nyquist-Johnson noise

S(ω = 0) = 4gτ

e2

h
kBT . (C17)

In the shot-noise limit ω0 � T , the Fano factor F becomes

F ≡ S(ω = 0)

2〈I〉 = q coth
( ω0

2T

)
−−−→
ω0�T

q, (C18)

which is given in Eq. (99) in the main text. Eq. (C18) man-
ifest the well-known result that weak tunneling reveals the
charges of the transferred particles. Generalizations of this
formula can be found in Refs. [64,65]. By use of Eqs. (92) and
(93), the formula (C18) manifests how the tunneling charge is
affected by generic charge vector entries t1 and t2. We em-
phasize again that F is independent of interactions in the free
phase.

Since the tunneling operator Tl so far has been treated as
general, we must now determine the most relevant tunneling
processes in the SBS and WBS regimes.

For point tunneling, the tree level RG equation for the
tunneling amplitude �0 can be read of directly from H0 + Hτ .
The equation reads

∂�0

∂ ln(L/a)
= [1 − 
(l)]�0, (C19)

where 
(l) is the scaling dimension of Tl, L is the system
size, and a is the UV length cutoff. The combination ln(L/a)
parametrizes the RG flow. Under the assumption of no in-
terchannel interactions across the constriction, the scaling
dimension is obtained from the general scaling dimension
formula (25) as


(l) = 1
2 (d1 + d2) = 1

2

(|δν1|l2
1 + |δν2|l2

2

)
. (C20)
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This relation holds strictly only in the bound phase, where
there is only a single channel propagating. In the free phase,
with three edge channels, the scaling dimensions will be
affected by interchannel interactions. However, since the
free phase is characterized by weak interactions, we ex-
pect that the difference between Eq. (C20) and the true,
“renormalized” scaling dimensions is small and can thus be
ignored.

For the case of identical edge channels |δν1|=|δν2|≡|δν|,
charge conservation requires l1 = l2 ≡ l . In this case,

Eq. (C19) becomes
∂�0

∂ ln(L/a)
= (1 − l2|δν|)�0. (C21)

Hence, the most relevant tunneling process is obtained for
l = 1. Physically, this means that single-particle tunneling
events dominate over multiparticle events. In the next sec-
tions, we apply Eqs. (C18), and (C21) to determine the most
dominant Fano factors for the two edge phases Eqs. (40) and
(45).
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