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Population-transfer schemes are commonly used to convert information robustly stored in some quantum
system for manipulation and memory into more macroscopic degrees of freedom for measurement. These
schemes may include, e.g., spin-to-charge conversion for spins in quantum dots, detuning of charge qubits
between a noise-insensitive operating point and a measurement point, spatial shuttling of qubits encoded in
spins or ions, and parity-to-charge conversion schemes for qubits based on Majorana zero modes. A common
strategy is to use a slow (adiabatic) conversion. However, in an adiabatic scheme, the adiabaticity conditions
on the one hand, and accumulation of errors through dephasing, leakage, and energy relaxation processes, on
the other hand, limit the fidelity that can be achieved. Here, we give explicit fast quasiadiabatic (fast-QUAD)
conversion strategies (pulse shapes) beyond the adiabatic approximation that allow for optimal state conversion.
In contrast with many other approaches, here we account for noise in combination with pulse shaping. Although
we restrict to noise sources that can be modeled by a classical fluctuating parameter, we allow generally for
anisotropic non-Gaussian noise that is nevertheless sufficiently weak to lead to a small error. Inspired by analytic
methods that have been developed for dynamical decoupling theory, we provide a general framework for unique
noise mitigation strategies that can be tailored to the system and environment of interest.
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I. INTRODUCTION

A common problem in quantum dynamics is the trans-
fer of information from one system to another. For coherent
manipulation, it may be useful to encode information in a
quantum system having long coherence and relaxation times
(such a system may be composed of, e.g., noise-resistant
electron-spin, hyperfine, or topologically protected orbital
levels). However, to perform a high-quality measurement, it is
typically necessary to robustly convert information into more
macroscopic degrees of freedom (e.g., charge or photons)
that can be easily distinguished by a measurement apparatus.
Specific applications of this information transfer include, e.g.,
spin-to-charge conversion for spins in quantum dots [1–3],
parity-to-charge conversion for qubits based on Majorana zero
modes [4–6], shuttling of electron spins [7,8] or ions [9],
storage and retrieval of information in a quantum memory
[10–12], and conversion between stationary and flying qubits
[13]. Typically, this type of information conversion requires a
population transfer from the energy eigenbasis of one Hamil-
tonian to the eigenbasis of another.

The most common and natural strategy to perform a pop-
ulation transfer is to design a time-dependent Hamiltonian
that adiabatically interpolates between two eigenbases (typ-
ically describing distinct degrees of freedom). However, any
strategy relying on adiabaticity must necessarily be slow
relative to some time scale. This limits the speed of pos-
sible measurements that may be otherwise used for rapid

feed-forward processing and error correction in a quantum
processor. Slow conversion may also lead to the accumulation
of errors through leakage and energy relaxation processes due
to uncontrolled terms in the Hamiltonian. There are many
alternative strategies (beyond adiabatic conversion) that can
be used to accelerate population transfer. These include tran-
sitionless quantum driving [14], strategies that exploit dressed
states [15], superadiabatic conversion [16,17], and counterdia-
batic driving [18]. See also Ref. [19] for a review.

In addition to controlling nonadiabatic errors, it is also
important to consider errors due to dephasing and dissipa-
tion during a dynamical population transfer [20–31]. This
is especially true in the applications listed above related to
measurement, where a common element is that dephasing
is minimized at an operating point (e.g., for the “spin” or
“parity” quantum number), but measurement-induced dephas-
ing is maximized at the measurement point. Such a quantum
system undergoing a population transfer will therefore be
exposed to a dephasing process of varying severity during the
transfer and it is important to account for this dephasing in
a complete study of the error budget. There have been many
previous works that account for dephasing and dissipation in
population transfer through an avoided crossing during a stan-
dard (t-linear) Landau-Zener sweep [20–31], but relatively
few that account for the interplay of dephasing and dissipa-
tion in combination with a nontrivial pulse shape [32–34].
Here, we consider this interplay and show that notions from
dynamical decoupling theory can be used to improve a
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FIG. 1. Energy levels Ej (t ) corresponding to instantaneous
eigenstates | j(t )〉 for a time-dependent Hamiltonian H [θ (t )], with
time t ∈ [0, tf]. A fast quasiadiabatic (fast-QUAD) pulse offers op-
timal population transfer in a two-level subspace spanned by |0(t )〉,
|1(t )〉.

dynamical population transfer when allowing for more gen-
eral pulse shapes (designed to minimize nonadiabatic errors).
Our primary goal in this work will be to use these strategies to
improve population-transfer schemes. These schemes are sen-
sitive to dephasing during the transfer, but they will generally
not require phase coherence between energy eigenstates at the
end of the transfer process, so the requirements may not be as
strict as for coherent state transfer. Population transfer is the
typical process required for a qubit readout or for the preser-
vation of ancilla qubits while shuttling. The ideas presented
here can nevertheless also be used to improve coherent state
transfer for a suitably modified fidelity metric that accounts
for phase coherence at the final time.

For concreteness, we now consider a general population-
transfer scheme for a qubit described by a time-dependent
Hamiltonian H (t ) with instantaneous eigenstates | j(t )〉 and
eigenvalues Ej (t ) (see Fig. 1). The goal of population transfer
is to map the population of an initial qubit state |0〉 (or |1〉)
onto the corresponding final qubit state |0(tf )〉 (or |1(tf )〉),
often with the aim of performing a measurement on the final
state. In addition to the schemes listed above, a promising
strategy for rapid population transfer is provided by a fast
quasiadiabatic (fast-QUAD) pulse. For a two-level single-
parameter Hamiltonian, H[θ (t )], with energies Ej[θ (t )], a
fast-QUAD control pulse θ (t ) is given as the solution to the
differential equation (setting h̄ = 1) [35–38],

δ

2
= 〈0[θ (t )]| d

dt |1[θ (t )]〉
E1[θ (t )] − E0[θ (t )]

= θ̇ (t )

2B(t )
= const. (1)

Here, we have introduced the time-dependent level splitting,
B(t ) = E1(t ) − E0(t ), and the parameter δ is taken to be con-
stant (time-independent) for the duration of the pulse. The
usual adiabatic regime is realized for δ � 1. In this regime,
the populations are transferred with low error (a state that
starts near the north pole in Fig. 2 will not deviate signifi-
cantly). In contrast, a large constant δ will result in a circular
trajectory on the surface of the Bloch sphere, giving a large
error for most final times tf. The trajectory will, however,

FIG. 2. Possible trajectories of the Bloch vector in the adiabatic
frame (where the instantaneous energy eigenstates are located at
the north and south poles of the Bloch sphere). The trajectory for
an unoptimized pulse is shown as a dashed blue line. A circular
trajectory resulting from a fast-QUAD pulse [a solution to Eq. (1)]
is shown as a solid orange-red line, with central axis determined by
an azimuthal angle φ.

periodically return to the north pole (orange-red curve in
Fig. 2). A general pulse (with nonconstant δ), will typically
give a nonperiodic trajectory that may not return to the north
pole, resulting in a large population-transfer error outside of
the adiabatic regime (dashed blue curve in Fig. 2).

The rest of this paper is organized as follows. In Sec. II, we
project a multilevel system onto an effective two-level model.
We then analyze errors due to noise and due to nonadiabatic
transitions under a fast-QUAD pulse. In Sec. III we apply
the analytical results from Sec. II to two generic models:
the Landau-Zener model and a model with a constant energy
gap (the “constant-gap model”). In Sec. IV, the results of
Sec. II are applied to the experimentally relevant problem of
readout for a double-quantum-dot charge qubit subjected to
1/ f charge noise. Finally, in Sec. V, we present conclusions
and future directions.

II. ERROR MODEL

We consider a qubit initialized in one of the computational
basis states | j〉 ( j = 0, 1), see Fig. 1. During a population
transfer, there may be “leakage” into excited states, the qubit
may become entangled with environmental degrees of free-
dom, and random noise sources may act on the system. These
effects lead (in general) to a mixed qubit density matrix at the
final time tf, ρ j (tf ). The population-transfer error ε j associated
with the initial state | j〉 is then

ε j = 1 − Tr[| j(tf )〉〈 j(tf )|ρ j (tf )], j = 0, 1. (2)

The total error ε accounts for a prior probability (weight) w j

for each initial state | j〉:
ε =

∑
j=0,1

w jε j . (3)

In, e.g., the common case of equal priors, w j = 1/2 for
j = 0, 1.
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For a detailed analytic analysis, we now specialize to
a two-level system, neglecting leakage errors. After qubit
preparation, and before measurement, we take the qubit time
evolution to be generated by a deterministic Hamiltonian
H0(t ) as well as a stochastic noise term caused by a random
process η(t ) = (ηx(t ), ηy(t ), ηz(t ))T :

Hη(t ) = H0(t ) + 1
2η(t ) · σ, (4)

H0(t ) = 1
2 B(t ) · σ. (5)

Here, σ = (σx, σy, σz )T is the vector of Pauli operators. In
what follows, we will restrict to the case where only two com-
ponents of B(t ) [Bx(t ), Bz(t )] are time dependent to guarantee
that the instantaneous eigenstates of H0(t ) can be labeled by
a single parameter. Any constant (time-independent) nonzero
component By can be eliminated by an appropriate rotation,
giving B(t ) = (Bx(t ), 0, Bz(t ))T . The effective field B(t ) can
then be parametrized in terms of a magnitude and a phase:
B(t )eiθ (t ) = Bz(t ) + iBx(t ) and the instantaneous eigenstates
can be written in terms of the single parameter θ (t ): | j(t )〉 =
| j[θ (t )]〉, allowing us to establish a fast-QUAD pulse [Eq. (1)]
for high-fidelity population transfer. The density operator
ρ j (tf ) appearing in Eq. (2) is

ρ j (tf ) = 〈〈Uη(tf )| j〉〈 j|U†
η (tf )〉〉η, (6)

where | j〉 is an eigenstate of H0(0), Uη(tf ) is a unitary op-
erator [defined in Eq. (7), below] that is conditioned on the
noise realization, and the average 〈〈. . .〉〉η is performed over
the random variables ηα (t ), α = x, y, z. These variables are
assumed to describe a stationary process with zero mean:
〈〈ηα (t )ηβ (t ′)〉〉η = 〈〈ηα (t − t ′)ηβ (0)〉〉η, 〈〈ηα (t )〉〉η = 0.

The noise-free time evolution of the qubit during a
fast-QUAD pulse can be found exactly analytically (see Ap-
pendix A). The solutions are periodic circular trajectories of
the Bloch vector on the surface of the Bloch sphere; see
Fig. 2. In general, these trajectories may start and end at
points that are misaligned with an instantaneous eigenstate
(corresponding to the north and south poles of this Bloch
sphere). To compensate for this misalignment, we addition-
ally consider a preparation unitary R(0) before the pulse,
and a pre-measurement unitary R(tf ) immediately following
the pulse. The time-evolution operator Uη(tf ), including the
preparation and pre-measurement unitaries is then

Uη(tf ) = R(tf )Uη(tf )R†(0), (7)

Uη(tf ) = T e−i
∫ tf

0 dtHη (t ). (8)

Here, T is the usual time-ordering operator. The unitary Uη(tf )
describes time evolution during the population transfer, con-
ditioned on a single noise realization.

Our focus in this paper is on the case where the
deterministic Hamiltonian H0(t ) describes a fast-QUAD
pulse [Eq. (1)]. We consider two possibilities for the
preparation/measurement unitary R(t ):

1. A generalized fast-QUAD protocol:

R(t ) = Ry[θ (t )]R†
x (φ)R†

y[θ (t )], (9)

2. The ‘standard’ fast-QUAD protocol:

R(t ) = 1. (10)

Here, the angle φ = arctan(δ), shown in Fig. 2, is time-
independent and Rα (ϑ ) = e−i ϑ

2 σα is a rotation. For the
generalized protocol, this choice of R(t ) rotates the initial
state from an instantaneous eigenstate to an arc on the Bloch
sphere and from the end of the arc back to an instantaneous
eigenstate at an arbitrary final time. This leads to a vanishing
noise-free error (see Appendix A for a derivation). It may not
always be possible to implement a high-quality unitary R(t ),
in which case the standard protocol can still be used to reach
a low population-transfer error under appropriate conditions
(specifically, for special final times tf corresponding to full
periods of the circular trajectory shown in Fig. 2).

A. Population-transfer error

In the generalized fast-QUAD protocol, noise-free nona-
diabatic (Landau-Zener) transitions are counteracted by the
application of the unitary R(t ) [Eq. (9)]. The remaining
population-transfer error is caused by the noise. To leading
order in the noise, we find (see Appendix A):

ε � εη(δ), (11)

εη(δ) = 1

2

∑
α,β

∫ ∞

−∞

dω

2π

Sαβ (ω)

ω2
Fαβ (ω, tf ), (12)

where α, β ∈ {x, y, z}, and where the noise spectral density is

Sαβ (ω) =
∫ ∞

−∞
dt e−iωt 〈〈ηα (t )ηβ〉〉η. (13)

Here, we have introduced the generalized filter function
Fαβ (ω, tf ) that depends on the fast-QUAD pulse through δ =
tan φ and θ (t ) (see Appendix A for a detailed definition).
In the particular case of polarized noise, η(t ) = (0, 0, ηz(t )),
there is only one nonvanishing term, Fzz(ω, tf ) = F (ω, tf ):

F (ω, tf ) = ω2

2

∣∣∣∣
∫ tf

0
dt ξ (t )e−iωt

∣∣∣∣
2

, (14)

ξ (t ) = e−i�0(t ){sin[θ (t )] − i sin(φ) cos[θ (t )]}. (15)

The function �0(t ) is the dynamical phase acquired in the
adiabatic frame

�0(t ) =
∫ t

0
dt ′

√
B2(t ′) + θ̇2(t ′). (16)

Equation (12) is valid in the limit of weak noise for any
θ (t ), even when no fast-QUAD protocol is used. Under the
additional fast-QUAD constraint δ = θ̇/B, and provided θ (t )
is a monotonic function of time, the time integral in Eq. (16)
can be traded for a parametric integral over θ , giving

�0(t ) =
√

δ2 + 1

δ2
|�θ (t )|, (17)

where �θ (t ) = θ (t ) − θ (0).
The form of Eq. (14) is similar to that found in dynamical-

decoupling theory [39–41], where here the term ξ (t ) replaces
the “sign function” s(t ) that is constrained to s(t ) = ±1 under
a sequence of π -pulses. As in the case of a dynamical-
decoupling sequence, we can suppress contributions from
the low-frequency part of the noise spectrum provided∫ tf

0 dt ξ (t ) = 0. More generally, it is possible to minimize the
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error by minimizing the overlap of the filter function with the
environmental noise spectrum, see Eq. (12) (and Fig. 6 for an
example).

To assess the quality of a fast-QUAD population transfer
in a number of numerical examples below, we consider a
specific model of classical noise with amplitude σ polarized
along the z direction, having a finite bandwidth. This model
may arise from a quantum two-level system (TLS) having
a coherent precession frequency ω0 and an incoherent de-
cay rate γ [42–44], leading to a Lorentzian spectral density
Sαβ (ω) = Sω0 (ω)δαzδβz:

Sω0 (ω) = σ 2γ

(ω − ω0)2 + γ 2
+ σ 2γ

(ω + ω0)2 + γ 2
. (18)

In general, the TLS spectrum would also include a contribu-
tion at low frequency, centered at ω = 0, and the spectrum
may generally be asymmetric as a function of ω. The low-
frequency contribution can be neglected if the qubit is only
transversally coupled to the TLS (see Eq. (7) in Ref. [42]),
and the spectrum can be taken to be symmetric about ω = 0
(as above) provided kBT is large compared to the TLS energy-
level spacing, leading to approximately equal excitation and
relaxation rates. A pure transversal coupling is natural for
a qubit electrostatically coupled to TLSs having two states
of differing electric dipole moment (e.g., “left” and “right”
states of a symmetric double well) that are tunnel coupled,
leading to bonding/antibonding TLS eigenstates. For 	 1
independent TLSs coupled to a qubit, provided the noise
variance is finite, the central-limit theorem guarantees that
the noise will approximate a Gaussian process. In the limit
of ω0 → 0, this model then corresponds to a model of sta-
tionary Gaussian noise with a finite correlation time γ −1 (an
Ornstein-Uhlenbeck process [45,46]). For explicit numerical
evaluation, we focus on the case ω0 = 0, but we also consider
the case ω0 �= 0 in an example of noise mitigation, below.

In the standard fast-QUAD protocol, the population-
transfer error may generally remain finite, even for vanishing
noise, due to nonadiabatic (Landau-Zener) transitions. To es-
timate the error due to nonadiabatic transitions and due to
noise, we perform a dual expansion in both the amplitude of
the noise η and in the adiabaticity parameter δ, giving

ε = ε̃(δ) + εη(0) + O(η2δ, η3). (19)

The contribution from the noise, εη(0), is given by the same
expression [Eq. (12)] as in the generalized protocol, but taken
in the limit δ → 0. The contribution ε̃(δ) gives the exact
error in the limit of zero noise (η → 0) and for any δ (see
Appendix A):

ε̃(δ) = δ2

1 + δ2
sin2

[√
δ2 + 1

δ2

�θ (tf )

2

]
. (20)

When the dynamical phase acquired, Eq. (17), is an integer
multiple of 2π (corresponding to a complete traversal of the
orange-red circle shown in Fig. 2), ε̃(δ) = 0 identically, and
the error is limited only by the noise term. We can exploit this
behavior to design a population-transfer protocol with a final
time tf that guarantees ε̃(δ) = 0.

FIG. 3. The Landau-Zener model is defined by a constant tunnel
splitting � and a time-dependent detuning ε(t ), see Eq. (22).

III. CANONICAL MODELS

In this section, we illustrate the relevance of the fast-
QUAD pulse [Eq. (1)] for two ubiquitous canonical two-level
models: (a) the Landau-Zener model, where the energy
eigenvalues are described by hyperbolas as a function of a
time-dependent detuning parameter ε(t ) (Fig. 3), and (b) a
“constant-gap” model, where the instantaneous adiabatic en-
ergy gap B(t ) = B is a constant, but where the eigenstates
[determined by θ (t )] are time dependent. Colored noise is
included in the models, both analytically and numerically.
We compare results for a fast-QUAD pulse to the results for
a simple ‘linear’ pulse. Finally, we compare the generalized
fast-QUAD protocol (which relies on preparation and mea-
surement unitaries) to the standard fast-QUAD protocol.

A. Landau-Zener model

Both the Landau-Zener and constant-gap models are based
on the two-dimensional Hamiltonian, Eq. (5). For the Landau-
Zener model, we refer to a detuning ε(t ) and to a tunnel
splitting �, which are related to the effective field components
from Eq. (5):

Bz(t ) = ε(t ), (21)

Bx(t ) = � = const. (22)

The tunnel splitting is taken to be constant, while the detuning
parameter ε(t ) varies monotonically from an initial time t = 0
to a final time tf. We contrast two different cases, distinguished
by the functional form of ε(t ) ∈ [ε(0), ε(tf )]: A linear pulse
and a fast-QUAD pulse. The common linear pulse is given by

εlinear(t ) = ε(0) + [ε(tf ) − ε(0)]t/tf. (23)

Given the identifications for ε and � in Eqs. (21) and (22), the
fast-QUAD ansatz, Eq. (1), directly leads to a pulse shape

εfQ(t ) = − (t + t0)�2δ√
1 − [(t + t0)�δ]2

, (24)

t0 = − 1

�δ

ε(0)√
�2 + ε(0)2

, (25)

δ = − 1

�tf

[
ε(tf )√

�2 + ε(tf )2
− ε(0)√

�2 + ε(0)2

]
. (26)

In what follows, we analyze dynamics for a population
transfer using the Landau-Zener model in two different con-
texts: In this section, we perform a symmetric sweep from
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(a)

(b) (c)

FIG. 4. Numerically determined population-transfer error ε for
the Landau-Zener model with a standard fast-QUAD protocol [with-
out special preparation and measurement unitaries, Eq. (10)] (solid
white line with an orange-red background), with a generalized
fast-QUAD protocol [with special preparation and measurement uni-
taries, Eq. (9)] (dotted white line with a green background), and
for a linear pulse (dashed white line with a blue background). The
shaded background indicates the error in the sample mean σε/

√
Ns

after Ns = 20 random noise realizations, where σε is the standard
deviation of the population-transfer error. For these plots, we take
ε(tf ) = −ε(0) = 10�. We show the dependence on (a) the total
sweep time tf, (b) the noise amplitude σ , and (c) the switching
rate γ characterizing the Lorentzian noise [Eq. (18), with ω0 = 0].
The solid black lines give the usual error due to nonadiabatic tran-
sitions (in the absence of noise) for a linear infinite-time sweep
[Eq. (27)]. The gray line gives the noise-free error for the fast-
QUAD pulse [Eq. (20)]. The dashed black lines give the dominant
error contribution in the adiabatic limit (�tf → ∞) [Eq. (28)], see
Ref. [31] for a derivation. The value ε = 0.5 (black dotted lines)
corresponds to an equally probable outcome for |0(tf )〉, |1(tf )〉. The
magenta circles correspond to the same set of parameters in each
plot: σ/� = 0.1, γ /� = 1, tf� = 100. The noise was simulated
with an effective spectrum having a high-frequency cutoff satisfying
ωmax > 10 max{ε(tf )/h̄, γ } (see Appendix C 1 for the precise choice
of ωmax). In subfigure (c), we chose ωmax > 10 max{ε(tf ), 103�}/h̄.

ε(0) = −10� to ε(tf ) = −ε(0) = 10�. In contrast, in Sec. IV
below, we consider a charge-qubit readout, where we pulse
from the optimal operating point ε(0) = 0 to a readout point
where the two eigenstates are easily distinguishable, ε(tf ) =
10�.

For the symmetric Landau-Zener sweep, numerical results
for the population-transfer error are given in Fig. 4 for the lin-
ear pulse, Eq. (23) (dashed white line with a blue background),
and for the fast-QUAD pulses, Eq. (24). The fast-QUAD result
for the standard protocol is shown with a solid white line on
an orange-red background and the result for the generalized
protocol is shown with a dotted white line on a green back-
ground. These results are obtained from numerical integration
of the time-dependent Schrödinger equation, accounting for
detuning-noise realizations with the Lorentzian spectral den-
sity given by Eq. (18), and assuming ω0 = 0; see Appendix C
for details. We take the tunnel splitting � to be noise-free.

The fast-QUAD pulse shows a significant advantage over the
conventional linear pulse at short final times.

Analytic estimates of the population-transfer error (giving
useful parametric dependencies) can be found in various lim-
its. For example, the noise-free population-transfer error ε̃(δ)
for this (fast-QUAD) pulse is given by Eq. (20) with �θ (tf ) =
2 arctan[ε(0)/�]. This contribution is indicated with a gray
solid line in Fig. 4. For the linear pulse, in the absence of
noise, an exact formula for the population-transfer error is
known for the finite-time Landau-Zener sweep [47]. How-
ever, for |ε(0)| 	 |�|, the population-transfer error (ignoring
noise) can be approximated more simply by the standard
Landau-Zener formula [48,49],

εLZ,linear � e−2π�, � =
(

�

2

)2 1

|ε̇| = �2tf
8|ε(0)| . (27)

Equation (27) is the dominant contribution to the total error
for small tf and for weak noise. This contribution is given
by solid black lines in Figs. 4(a)–4(c). In general, noise will
introduce an additional contribution to the error. In the case
of classical noise with a Lorentzian spectrum, Eq. (18) with
ω0 = 0, the noise contribution to the error has been found
recently for the linear pulse and for |ε(0)| 	 |�| [31]:

εη,linear = π

4

�σ 2tf
γ |ε(0)|

⎛
⎜⎝1 − 1√

1 + (
γ

�

)2

⎞
⎟⎠. (28)

This source of error typically dominates for a long transfer
time tf and is shown as black dashed lines in Figs. 4(a)–4(c).
The minimum in the population-transfer error for a linear
pulse as a function of sweep rate (equivalent to changing
tf here) seen in Fig. 4(a) (white dashed curve with a blue
background) has also been discussed recently in Ref. [31]. A
similar nonmonotonic behavior of the nonadiabatic transition
probability in the presence of a bosonic bath has also been
found in, e.g., Ref. [27].

We show the dependence of the population-transfer er-
ror on the two-level system rate γ in Fig. 4(c). Here, we
can observe two regimes: For small γ /� � 1, S0(ω) [see
Eq. (18)] has very small weight at the minimal level split-
ting, ω ∼ �. With increasing γ (starting from γ = 0), but
still in the regime γ /� < 1, S0(ω ∼ �) ∝ γ increases, lead-
ing to a corresponding increase in the error ε. However, for
large γ /� > 1, S0(ω ∼ �) ∝ 1/γ decreases, a consequence
of motional-averaging; in the motional-averaging regime, the
noise averages out quickly on the time scale of evolution of
the qubit.

B. Constant-gap model (Rabi model)

In this section, we consider the “constant-gap model”
(Fig. 5), where the qubit splitting (magnitude of the ef-
fective magnetic field), B, is a constant, but where the
direction of the effective magnetic field may vary in the x-
z plane: B(t ) = B(sin θ (t ), 0, cos θ (t ))T . The time-dependent
Hamiltonian H0(t ) = 1

2 B(t ) · σ for this case arises natu-
rally, for example, from the Rabi Hamiltonian for a driven
qubit with a constant drive amplitude ∝ B, but with a
varying phase θ (t ), HR(t ) = 1

2ωqσy + 2B cos[ωt + θ (t )]σz.
In a rotating frame and at zero detuning (ω = ωq), and
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FIG. 5. The constant-gap model is given by an effective field
B(t ) with constant magnitude B = const. and a time-dependent an-
gle θ (t ) = Bδt = �θ (tf )t/tf, see Eq. (30). In simulations, we take
�θ (tf ) = π .

within a rotating-wave approximation (for ωq 	 B), we have
UHRU † − iUU̇ † � H0(t ), with U = ei 1

2 σyωqt . A schematic il-
lustration of an alternative physical setup for this model is
shown in Fig. 6(a). This model may also apply to shuttling
of electron or hole spins through a region with a spatially
varying g-tensor, as realized recently for electron-spin qubits
in silicon [8], or through a region with a spatially varying
effective hyperfine field, as realized for spin qubits in GaAs
[50]. Finally, this model may also be relevant for shuttling
of ion-trap qubits through spatially varying and noisy electric
and magnetic fields [9,51].

We now further restrict to a fast-QUAD pulse, for which
the polar angular velocity θ̇ = Bδ is constant:

θ̇ = Bδ = �θ (tf )

tf
= const., (29)

B(t ) = B (sin(Bδt ), 0, cos(Bδt ))T . (30)

In the adiabatic regime (δ � 1), the qubit pseudospin-1/2 will
precess many times in the effective field B(t ) as it executes a
cycle. In the diabatic regime (δ 	 1), the effective magnetic
field will execute many cycles on the timescale of qubit pre-
cession.

(a)

(b)

FIG. 6. (a) Example realization of the constant-gap model: A
qubit on a cyclic path in a magnetic field B pointing in the radial
direction. In addition, we consider a source of noise due to a nearby
two-level system (TLS) with precession frequency ω0. The dynami-
cal phase acquired by the qubit is �θ (t ). (b) Filter function F (ω, tf )
(solid line) for the constant-gap model, see Eq. (B1), and noise
spectrum Sω0 (ω) (dotted line) for a two-level system with central fre-
quency ω = −ω0 close to the qubit splitting, B ∼ ω0. The two peaks
of the filter function F (ω, tf ) are located at �± = (

√
1 + δ−2 ± 1)Bδ,

see Eq. (B1). The final time tf is determined by tf = �θ (tf )/Bδ. The
overlap between F (ω, tf ) and Sω0 (ω) can be minimized in the dia-
batic regime (δ 	 1) with �θ (tf ) 	 π , e.g., when the qubit revolves
many times around the loop in subfigure (a).

(a)

(b) (c)

FIG. 7. Population-transfer error ε for the constant-gap model
[Eq. (29)] with �θ (tf ) = π . Numerical results are shown for both the
generalized protocol [Eq. (9)] (dotted line with green background)
and for the standard protocol [Eq. (10)] (solid line with orange-red
background). The shaded background indicates the standard error
in the sample mean after 20 random noise realizations. We show
the dependence on (a) the total time of the sweep tf, (b) the noise
amplitude σ , and (c) the switching rate γ [Eq. (18) with ω0 = 0]. In
each subfigure, the solid black line shows ε̃(δ), Eq. (20), the dashed
black line shows the adiabatic limit (δ → 0), Eq. (33), while the
dash-dotted line gives the diabatic limit (δ → ∞) for the generalized
protocol, Eq. (35). The value ε = 0.5 (dotted lines) corresponds to
an equally probable outcome for |0(tf )〉, |1(tf )〉. The magenta circles
correspond to the same set of parameters in each plot: σ/B = 0.01,
γ /B = 0.1, tfB = 103. For these simulations, the high-frequency cut-
off was chosen such that ωmax > 10 max{B/h̄, γ } (see Appendix C 1
for the precise choice). In subfigure (c), we chose ωmax satisfying
ωmax > 104B/h̄.

Due to the simplicity of the effective-magnetic-field evo-
lution under a fast-QUAD pulse, the constant-gap model is
an ideal testbed for a comparison of the standard [Eq. (10)]
and generalized [Eq. (9)] fast-QUAD protocols. These two
protocols are compared directly in Fig. 7(a): The population-
transfer error for the standard protocol (solid white line on
an orange-red background) and the error for the generalized
protocol (dotted white line on a green background) have
been found numerically. The noise-free error contribution ε̃(δ)
[solid black lines in Figs. 7(a)–7(c)], Eq. (20), is completely
eliminated in the generalized protocol. The error contribution
arising from noise εη(δ), Eq. (12), enters for both the general-
ized and standard protocols. Here, we have assumed a source
of polarized noise along the z direction η(t ) = (0, 0, η(t ))T .
With this assumption, we analytically calculate the exact filter
function F (ω, tf ) given in Eq. (14) for the constant-gap model
[see Appendix B resulting in Eq. (B1)].

The filter function can be analyzed in two simple lim-
its: the adiabatic limit (δ → 0) and the diabatic limit
(δ → ∞). For fixed �θ (tf ), in the adiabatic limit (δ →
0), F (ω, tf )/ω2 becomes strongly peaked about ω = −B
with full width ∝ 1/tf ∝ 4πBδ/�θ (tf ) → 0 and height ∝
t2

f ∝ [�θ (tf )/4Bδ]2 → ∞ [see Fig. 6(b)], allowing us to re-
place the filter function asymptotically with a delta function
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having the same weight as F (ω, tf )/ω2. Using the relationship
between tf and δ given in Eq. (29), we find

F (ω, tf )

ω2
∼ π

2Bδ
W [�θ (tf )]δ(ω + B) (δ → 0), (31)

W [�θ (tf )] = �θ (tf ) − 1
2 sin[2�θ (tf )]. (32)

We use the symbol “∼” here to indicate an asymptotic equal-
ity. Inserting equation (31) into the expression for the transfer
error in terms of the noise overlap [Eq. (12)], using the rela-
tion given in Eq. (29), and choosing the boundary condition
�θ (tf ) = π , gives

εη(δ → 0) ∼ π

8Bδ
Szz(−B) = tf

8
Szz(−B). (33)

For explicit numerical and analytical evaluation of the state-
transfer error shown in Fig. 7, we consider Szz(ω) = Sω0=0(ω),
with S0(ω) given by Eq. (18) (a Lorentzian spectrum centered
at zero frequency). In the diabatic limit [δ → ∞ at fixed
�θ (tf )], we find the leading behavior of the filter function:

F (ω, tf = �θ (tf )/Bδ)

ω2
= 1

2

(
�θ (tf )

Bδ

)2

+ O
(

ω2π4

B4δ4

)
. (34)

Provided the noise spectral density has a finite integrated
weight, the conversion error due to the noise, Eq. (12), can
be approximated by the leading behavior for δ → ∞ (equiva-
lently, tf → 0) after substituting Eq. (34):

εη

(
δ = �θ (tf )

Btf
→ ∞

)
∼

(
tf
2

)2 ∫ ∞

−∞

dω

2π
Szz(ω). (35)

As expected, the analytic error contributions [Eqs. (20), (33),
and (35)] reproduce the numerical evaluation in appropriate
limits (see Fig. 7).

In the adiabatic limit, the error is dominated by the contri-
bution to the noise at the qubit splitting, ε ∝ Szz(ω = −B). For
example, this proportionality describes both the σ -dependent
error shown in Fig. 7(b) and the γ -dependent error in Fig. 7(c).
Thus, if the noise spectrum could be properly manipulated, it
would be possible to reduce the error. Alternatively, it is often
possible to modify the population-transfer protocol to adjust
the filter function F (ω, tf ) according to the noise spectrum, as
in the example that follows.

An important case to consider is an environmental quan-
tum TLS producing noise with a spectrum Sω0 (ω) [Eq. (18)]
centered around a central frequency ω0. Although there are
generally many TLSs in the environment, if one TLS has a
frequency ω0 close to the qubit splitting, ω0 � B, see Fig. 6,
then this particular TLS may provide the dominant contribu-
tion to the error for an adiabatic protocol (tf → ∞), where the
filter function is flat as a function of ω. Outside of the adiabatic
regime, the filter function F (ω, tf ) of the constant-gap model,
Eq. (B1), is instead peaked around the frequencies ω = −�±
with

�± = (
√

1 + δ−2 ± 1)Bδ. (36)

The peaks have a full-width 4π/tf = 4πBδ/�θ (tf ). By re-
ducing the overlap between the noise spectrum Sω0 (ω) and
the filter function F (ω, tf )/ω2, the population-transfer error
εη(δ) [Eq. (12)] can be improved. For the overlap to be small,

FIG. 8. Population transfer error ε for the readout of a charge
qubit with detuning ε(t ) and tunnel splitting �. The qubit is op-
erated at an optimal point, ε(0) � 0, and measured at ε(tf ) > �.
The population-transfer error is calculated for a linear pulse (white
dashed line with blue background), the standard fast-QUAD proto-
col (white line with orange-red background), and the generalized
protocol (white dotted line with green background). The shaded
background indicates the error in the sample mean after Ns = 20
random noise realizations. The solid gray line shows the noise-free
error for the standard fast-QUAD pulse [Eq. (20)]. The detuning at
the measurement point is ε(tf ) = 200 µeV and the tunnel splitting is
� = 20 µeV. The noise η(t ) is given by a 1/ f spectrum [Eq. (39)],
where the parameter A = 2μeV2 is consistent with both experimen-
tally measured charge-qubit dephasing times and with charge noise
extracted from transport measurements on nanostructures (see text).
In practice, for simulations we incorporate the noise spectral weight
in the range from ω/2π = ωlow/2π = 1 Hz to ω/2π = ωmin/2π =
1 MHz into a quasistatic term S(ω) ∼ δ(ω). We simulate the remain-
ing dynamic [S(ω) ∼ 1/ω] contributions for ωmin < ω < ωmax [with
ωmax > 10ε(tf )/h̄]. See Appendix C 1 for details.

we require |ω0 − �±| 	 max{2π/tf, γ }. For 2π/tf > γ and
ω0 ∼ B in the diabatic regime (δ 	 1), this condition im-
plies �θ (tf ) 	 π , i.e., we require that the two-level system
precesses many times during the sweep. This leads to fast
averaging of the noise, in analogy with a repeated dynamical
decoupling sequence.

IV. CHARGE-QUBIT READOUT

In this section, we simulate the population-transfer process
for a charge qubit defined in the two lowest-energy orbitals of
a single electron in a double quantum dot. The energy levels
for this problem map directly onto the Landau-Zener model
studied in Sec. III A with a detuning parameter ε controlling
the asymmetry of the double-dot potential and a tunnel split-
ting � controlled by the overlap of single-particle orbitals in
the two dots. In these simulations, we further account for 1/ f
charge noise with parameters that are consistent with recent
experiments, illustrating the directly realizable advantages of
fast-QUAD protocols in a realistic experimental system (see
Fig. 8). We expect the advantages illustrated here to translate
directly to analogous systems (e.g., spin-to-charge conversion
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for singlet-triplet qubits defined in two-electron spin states or
parity-to-charge conversion schemes for Majorana qubits).

Although double-quantum-dot charge qubits [52,53] typ-
ically show short coherence and relaxation times relative
to spin qubits, they also serve as an important platform
for hybrid spin-charge qubits [54,55] that allow for rapid
electrical control. The large transition dipole afforded by
these systems also allows for strong-coupling effects when
coupling to microwave cavities, while unwanted noise sen-
sitivity can be minimized under carefully chosen operating
conditions [56]. These qubits are best operated at a noise-
insensitive point corresponding to a symmetric double-dot
potential [ε(0) = 0 in the Landau-Zener model], where the
two energy eigenstates are least distinguishable based on the
charge distribution. For single-shot readout, it is advantageous
to convert from the symmetric configuration to an asymmetric
double-dot potential [ε(tf ) 	 �], where the two energy eigen-
states are distinguished by an additional electron charge on
one quantum dot or the other. These two states can be more
easily differentiated with a proximal charge sensor (see, e.g.,
Ref. [53]).

In simulations (Fig. 8), we choose the following values for
the tunnel splitting and the detuning at the measurement point:

� = 20 µeV, (37)

ε(tf ) = 200 µeV. (38)

The value chosen for � is roughly consistent with the tunnel
coupling �/2 = 8 µeV, reported in Ref. [53]. The detuning
at the measurement point was chosen to satisfy ε(tf ) = 10�,
guaranteeing that ε 	 � at the measurement point so that the
two energy eigenstates at this point are maximally distinguish-
able in charge.

In a wide range of devices, charge noise is commonly
measured to show a 1/ f spectrum over a broad frequency
range [57,58], which is expected to arise from an ensemble
of two-level fluctuators in the proximity of a charge qubit
[59–61]. Rather than simulating the noise due to a single
two-level system as in the previous sections, here we simulate
1/ f -noise:

S(ω) =
{

A
|ω| , |ω| > ωlow,

0, otherwise.
(39)

There are well-known complications in the 1/ f noise spec-
trum at low and high frequencies. Any measurement of S(ω)
performed over a finite measurement time Tm only has access
to Fourier components ω � ωlow = 2π/Tm, so we have intro-
duced a low-frequency cutoff in Eq. (39). In simulations, we
take ωlow/2π = 1 Hz, consistent with Tm = 1 s. In practice,
Tm is the time scale for recalibration of the detuning ε, which
is otherwise affected by random fluctuations ε → ε + η(t ).
The integrated spectral weight under S(ω) gives the variance
in the noise parameter η. If this variance is to be finite, the true
noise spectrum must also roll off faster than 1/ω above some
characteristic frequency, set by the shortest time scale for two-
level fluctuator jumps. However, as we show below, provided
the fastest fluctuator time scales are short compared to the
self-consistently determined dephasing time T ∗

2 , the particular

value of the high-frequency cutoff becomes irrelevant so we
do not include it in the model.

We establish a realistic numerical value of the parameter
A in Eq. (39) by relating this parameter to the experimentally
measured dephasing time T ∗

2 found for charge qubits. We then
confirm that the value of A extracted from T ∗

2 is consistent
with independent measurements of this parameter based on
voltage fluctuations in nanoscale devices.

For a double-dot charge qubit, the dephasing time T ∗
2 far

from the optimal operating point (ε > �) can be found from a
Ramsey sequence. First, the qubit is prepared in the molecular
ground state at ε = 0, then after a rapid pulse to ε > �,
the qubit evolves freely for a time t . Another rapid pulse
then returns the detuning to ε = 0, after which an adiabatic
pulse from ε = 0 to ε 	 � can be used to read out the
qubit. For this protocol, during the free evolution time the
qubit coherence acquires a random phase, φη(t ) = ∫ t

0 dt ′η(t ′).
When η(t ) is a stationary Gaussian random variable described
by the spectrum S(ω), then the Ramsey sequence described
above measures decay in the off-diagonal element of the qubit
density matrix, proportional to the coherence factor

C(t ) = 〈eiφη (t )〉η = e− 1
2 〈φ2(t )〉η , (40)

with a phase variance given by

〈φ2(t )〉η =
∫ ∞

−∞

dω

2π

sin2(ωt/2)

(ω/2)2
S(ω). (41)

After inserting the 1/ f noise spectrum [Eq. (45)], we find the
following asymptotic form for the integral, Eq. (41):

〈φ2(t )〉η ∼ At2

π
ln

(
1

ωlowt

)
; ωlowt → 0. (42)

The corrections are logarithmic and so the formula is only
accurate when ln(1/ωlowt ) 	 1.

We define the dephasing time T ∗
2 to be the time at which

C(t ) is suppressed to e−1:

1
2 〈φ2(T ∗

2 )〉η = 1. (43)

Provided ln(1/ωlowT ∗
2 ) 	 1, we can substitute the asymptotic

expression given in Eq. (42) into Eq. (43) to solve for A in
terms of the measured quantity, T ∗

2 (we also restore h̄):

A � 2π h̄2

(T ∗
2 )2 ln

(
1

ωlowT ∗
2

) . (44)

With the same (logarithmic) accuracy, Eq. (44) can be inverted
to give an expression for T ∗

2 in terms of A and ωlow [62–64]
(see, e.g., Eq. (35) of Ref. [63]).

The Ramsey experiment described above has been per-
formed in Ref. [53] for a double-quantum-dot charge qubit
containing a single electron. Both the Ramsey measure-
ments (with reported measurement time Tm = 100 ms, corre-
sponding to ωlow/2π = 10 Hz) and photo-assisted tunneling
linewidth measurements in the same work are consistent with
T ∗

2 � 250 ps. Inserting these values for T ∗
2 and ωlow into

Eq. (44) gives an estimate for the noise amplitude in these
experiments:

A ≈ 2 µeV2. (45)
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To confirm that this value is typical, we compare to the typi-
cally cited quantity

√
S0 = √

S(ω = 2π × 1 Hz):

√
S0 =

√
A

2π
Hz−1 ≈ 0.6 µeV/

√
Hz. (46)

This lies in the range of values (
√

S0 � 0.3–2 µeV/
√

Hz)
reported for different devices [65–67]. For example, the au-
thors of Ref. [65] have found a range of values, from

√
S0 �

0.49 µeV/
√

Hz to
√

S0 � 2.1 µeV/
√

Hz from current fluctu-
ations through single-electron transistors (SETs) defined in
various devices based on Si/SiO2 and Si/SiGe heterostruc-
tures. The authors of Ref. [66] report

√
S0 = 0.47 µeV/

√
Hz

from SET current fluctuations in a Si/SiGe device (see the
caption of Fig. 3, Ref. [66]). An overview of reported mea-
surements for S0 in a broader range of devices is given in
Ref. [67], Table 1.

Figure 8 shows the population-transfer error ε(tf ) for
a charge qubit. A time-linear pulse results in a simi-
lar population-transfer error (white-dashed line with blue
background) as in the Landau-Zener model. The standard
fast-QUAD protocol (white line with orange-red background
in Fig. 8) leads to minima in the transfer error at specific
final times [Eq. (20)]. The generalized protocol (white dot-
ted line with green background) removes the contribution to
the population-transfer error arising from nonadiabatic tran-
sitions, as we have also seen for the Landau-Zener model,
Fig. 4. Figure 8 indicates that the fast-QUAD protocol could
lead to a reduction in the readout pulse time by an order of
magnitude, with no reduction in the state conversion error, rel-
ative to the linear pulse. Alternatively, when fast preparation
and measurement unitaries are available, the generalized fast-
QUAD protocol could lead to a significant reduction in the
population transfer error, leading to a higher quality readout.

V. CONCLUSIONS

In this paper, we have introduced a formalism that al-
lows us to simultaneously minimize nonadiabatic errors while
mitigating noise sources. In particular, we have derived
closed-form analytic expressions for the error under a fast-
QUAD protocol accounting for a generalized filter function
that includes the influence of the shaped pulse as well as
anisotropic classical noise. Further, we have introduced a gen-
eralized protocol that can achieve zero error in the absence of
noise for a two-level system, provided additional high-quality
initialization and measurement unitaries are available. More-
over, we have performed a detailed analysis of the effects
of noise on population transfer during a fast-QUAD pulse.
This numerical analysis allowed us to demonstrate the utility
of the filter-function formalism, analogous to that regularly
employed in dynamical-decoupling theory. The filter-function
formalism provides a natural framework for designing pulses
that avoid both the detrimental effects of noise and of un-
wanted nonadiabatic transitions. We have applied these ideas
first to two generic and widely used models (the Landau-Zener
model and the constant-gap model) and then to a realistic
charge-qubit readout.

The analysis presented here can be directly applied to a
wide range of quantum systems, where the goal is to trans-
fer population from one eigenbasis to another eigenbasis

that is related by a single parameter θ (t ). To demonstrate
such an application, we simulated the readout of a charge
qubit accounting for noise with a realistic (1/ f ) spectrum
and noise amplitude that is typical of current experimental
devices. For the charge-qubit example, we find that the fast-
QUAD pulse can be used to significantly reduce the pulse
time compared to a linear pulse, while maintaining a compa-
rable population-transfer error. When high-quality preparation
and measurement unitaries are available, the generalized fast-
QUAD pulse can significantly reduce both the pulse time
and readout error in this context. Further examples that can
benefit from fast-QUAD pulses include spin-to-charge con-
version schemes, shuttling of spin qubits in quantum dots or
of ion-trap qubits, and parity-to-charge conversion schemes
for Majorana zero modes.

Extensions of this work could incorporate fast-QUAD
pulses into quantum gates or a quantum memory, making use
of the strategies we have presented to simultaneously suppress
noise, nonadiabatic transitions, and leakage errors. Another
possible extension would be to investigate the population-
transfer error under the influence of quantum noise while
incorporating the fast-QUAD protocol. Some work has been
done to incorporate a quantum environment into Landau-
Zener dynamics using more standard pulse shapes [27,68], but
there may be subtleties arising from the specific pulse shapes
taken here and their ability to cancel only classical-noise
features while potentially leaving quantum contributions. For
example, a Carr-Purcell dynamical decoupling sequence gen-
erally leads to no acquired phase for a qubit undergoing pure
dephasing due to a classical environment, but a finite phase
can arise under such a sequence for a quantum environment
associated with a noncommuting bath operator [69–72]. An-
other natural extension of this work would be to use the
filter-function formalism derived here to design a new class
of pulses that fully accounts for the noise spectrum, allowing
for a simultaneous minimization of both noise-induced errors
and nonadiabatic errors.

The “Qutlin” repository of the code used for the numerical
simulations can be found at Ref. [73].
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APPENDIX A: POPULATION-TRANSFER ERROR

In this Appendix, we derive analytical expressions for
the population-transfer error [Eqs. (2) and (3) of the main
text] for two protocols: (1) the generalized fast-QUAD proto-
col that incorporates additional preparation and measurement
unitaries and (2) the standard fast-QUAD protocol, where
preparation/measurement unitaries are excluded.

We first diagonalize the noise-free time-evolution operator
with a unitary S(t ), leading to an expression for the noisy
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evolution:

Uη(t ) = S(t )e− i
2 �η (t )σz e−i

∫ t
0 dt ′Vη (t ′ )S†(0), (A1)

where S(t ) is an SU(2) rotation that can be written in terms of
two Euler angles, θ (t ) and φ:

S(t ) = Ry[θ (t )]Rx(φ); Rα (ϑ ) = e− i
2 ϑσα , (A2)

and where

φ = arctan δ. (A3)

The phase �η(t ) is given by

�η(t ) = �0(t ) + δ�η(t ), (A4)

with

�0(t ) =
∫ t

0
dt ′

√
B2(t ′) + θ̇2(t ′) (A5)

=
√

1 + δ−2|�θ (t )|, (A6)

where �θ (t ) = θ (t ) − θ (0), and in the second line above
we have used the fast-QUAD relationship δ = θ̇ (t )/B(t )
[Eq. (1)], and the additional condition that θ (t ) is a monotonic
function of time t . The noise enters through the phase in

δ�η(t ) =
∫ t

0
dt η̃z(t ), (A7)

and through the perturbation Vη(t ):

Vη(t ) = 1
2 (η̃+(t )e−i�η (t )σ− + η̃−(t )ei�η (t )σ+), (A8)

with η̃±(t ) = η̃x(t ) ± iη̃y(t ). Finally, the parameters η̃α (t ) are
related to the original noise variables ηα (t ), through a rotation:

η̃(t ) · σ = S†(t )η(t ) · σS(t ). (A9)

In particular, Eq. (A9) implies η̃(t ) = [M(t )] · η(t ), where

[M(t )] =
⎛
⎝ cos θ (t ) 0 − sin θ (t )

sin φ sin θ (t ) cos φ sin φ cos θ (t )
cos φ sin θ (t ) − sin φ cos φ cos θ (t )

⎞
⎠.

(A10)

1. Generalized fast-QUAD protocol

For the generalized fast-QUAD protocol, we minimize the
error for |η| = η → 0 with the choice:

R(t ) = Ry[θ (t )]S†(t ) (A11)

= Ry[θ (t )]R†
x (φ)R†

y[θ (t )]. (A12)

This choice guarantees that the initial (final) state lying on
the periodic Bloch-sphere trajectory shown in Fig. 2 is cor-
rectly mapped from (back to) an instantaneous eigenstate.
Substituting the expression for Uη(t ) from Eq. (A1) and the
expression for R(t ) from Eq. (A11) into the expression for
the population transfer error [Eqs. (2) and (3)], and using
|0(tf )〉 = Ry[θ (tf )]|↓〉, |1(tf )〉 = Ry[θ (tf )]|↑〉, gives a simple
expression for the error, independent of the choice of weights
w j :

ε = 〈〈|〈↑|T exp

{
−i

∫ tf

0
dtVη(t )

}
|↓〉|2〉〉η, (A13)

where |↑〉, |↓〉 are eigenstates of σz. In the absence of noise
(Vη(t ) = 0), the error vanishes identically for all final times
given an ideal generalized fast-QUAD pulse. To account for
noise, we expand Eq. (A13) to leading nontrivial order in η,
which recovers the result given in Eq. (12) from the main text:

ε = εη(δ) + O(η3), (A14)

εη(δ) = 1

2

∑
α,β

∫ ∞

−∞

dω

2π

Sαβ (ω)

ω2
Fαβ (ω, tf ), (A15)

where the noise spectral density is

Sαβ (ω) =
∫ ∞

−∞
dt e−iωt 〈〈ηα (t )ηβ〉〉η. (A16)

Here, we have introduced the generalized filter function
(where the overline indicates complex conjugation):

Fαβ (ω, tf ) = 2Re[Zα (ω, tf )Zβ (ω, tf )], (A17)

and where the dimensionless parameters Zα are given in terms
of elements of the rotation matrix [M(t )] [Eq. (A10)] by

Zα (ω, tf ) = ω

∫ tf

0
dt e−i[ωt+�0(t )]M⊥

α (t ), (A18)

M⊥
α (t ) = 1

2 [Mxα (t ) + iMyα (t )]. (A19)

2. Standard fast-QUAD protocol

For the standard fast-QUAD protocol, we set the prepara-
tion and measurement unitaries to the identity:

R(t ) = 1. (A20)

We then perform a dual expansion in both the amplitude of the
noise η and in the adiabaticity parameter δ, giving

ε = ε̃(δ) + εη(0) + O(η2δ, η3). (A21)

In the adiabatic limit δ → 0, the contribution from the
noise εη(0) is identical to the previously calculated result
[Eq. (A15)] for the generalized fast-QUAD protocol. The
exact contribution ε̃(δ) due to the coherent dynamics of the
state in the absence of noise (η → 0) can be found for any δ:

ε̃(δ) = |〈↑|Rx(φ)e− i
2 �0(t )σz R†

x (φ)|↓〉|2 (A22)

=
[
�θ (tf )

2

]2

sinc2[
√

1 + δ−2�θ (tf )/2], (A23)

which recovers Eq. (20) from the main text.

APPENDIX B: FILTER FUNCTION
FOR THE CONSTANT-GAP MODEL

In the constant-gap model with polarized noise along the z
direction, η(t ) = (0, 0, η(t ))T , the only nonvanishing compo-
nent of the spectral density matrix Sαβ is Szz(ω). In this case,
the only relevant component of the filter function Fαβ (ω, t ) is
Fzz(ω, t ) = F (ω, t ), Eq. (14):

Fzz(ω, tf ) = 2

(
ωtf
4

)2

| f+(ω, tf ) + f−(ω, tf )|2, (B1)
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where, given φ = arctan δ and δ = �θ (tf )/tfB, we define

f±(ω, tf ) = c±e−i[ω+�±(tf )]
tf
2

× sinc

{
[ω + �±(tf )]

tf
2

}
, (B2)

�±(tf ) = (
√

1 + δ−2 ± 1)δB, (B3)

c± = − sin φ ± 1. (B4)

APPENDIX C: NOISE MODEL

In a realistic system, coupling to an uncontrolled environ-
ment can lead to noise sources that may affect the outcome of
a state transfer. It is important to include these noise sources
to evaluate whether the solution to Eq. (1) is stable under this
perturbation. We consider a classical stationary noise source
η(t ).

There are existing strategies to specifically simulate
Ornstein-Uhlenbeck noise (stationary Gaussian noise with a
Lorentzian spectral density). See, e.g., Ref. [74]. In this Ap-
pendix we instead describe a more general method to generate
any noise with a classical (frequency symmetric) spectrum,
also used in Ref. [64].

In the weak-noise limit, the population-transfer error can
be calculated in terms of the lowest-order nonvanishing
(second-order) correlation function 〈η(t )η〉 for a stationary
noise source η(t ). The second-order correlation function is
fully determined by its Fourier transform, the power spectral
density S(ω). The exact spectrum depends on, e.g., the exper-
imental setup, so to characterize/estimate realistic errors, it is
important to be able to simulate noise with a desired spectrum.
The power spectral density S(ω) of the noise η(t ) is given by

S(ω) = F[〈η(t )η(0)〉](ω), (C1)

where we have introduced the Fourier transform

F[〈η(t )η〉](ω) =
∫ ∞

−∞
dt e−iωt 〈η(t )η〉. (C2)

For a general noise spectrum S(ω), it may be difficult to sam-
ple a realization η(t ) directly. However, this can be generated
from white noise w(t ), where

〈w(t )w(0)〉 = κδ(t ). (C3)

Given such a white-noise source, the desired noise η(t ) can be
created by shaping its Fourier spectrum (see Ref. [75]):

η(t ) = F−1[
√

S(ω)F[w](ω)](t ). (C4)

1. Discretization of noise

In a numerical implementation, white noise w(t ) will be
created as Gaussian distributed values with mean 〈w〉 = 0 and
variance 〈w2〉 in N discrete time-steps �t as an array of values

w = [w(0),w(�t ),w(2�t ), . . . ,w(N�t )], (C5)

that are (linearly) interpolated to determine the value at a
given time t . For discrete noise w, the correlation function
is

〈w(n�t )w(0)〉 =
{〈w2〉 n = 0,

0 otherwise.
(C6)

FIG. 9. Illustration showing the cutoff frequencies of the noise
models for ω � 0 (ωmin, ωmax), the noise-model spectrum S(ω) (dot-
ted line) [Eq. (39)] of the 1/ f -noise model, and the effective noise
spectrum Seff(ω), Eq. (C16), (solid lines) used in the numerical calcu-
lations. ωlow is the low-frequency cutoff in the 1/ f -noise model; see
Eq. (39). For the numerical calculations, cutoffs ωmin and ωmax need
to be introduced [Sec. C 2]. The part of the spectrum S(ω) for ωlow <

|ω| < ωmin is collapsed into a zero-frequency [∝ δ(ω)] component
of the effective spectrum Seff(ω), illustrated by the vertical line at
ω = 0. All numerically sampled frequencies are multiples of �ω

[Eq. (C10)], indicated by the gray tick marks and vertical lines. The
fast Fourier transform (FFT) requires a number N of datapoints that is
a power of two. For that reason, the highest sampling frequency ωmax

is chosen to be �ω, multiplied by a power of two; see Eq. (C14).

By choosing

〈w2〉 = κ

�t
(C7)

the desired numerical approximation to the analytical correla-
tion function of the noise, Eq. (C3), is recovered.

We use the fast Fourier transform (FFT) and its inverse
(iFFT) to calculate the frequency spectrum of the discrete
noise, apply the desired noise power spectral density S(ω)
and transform back to get the time-series data of the noise, as
described leading up to Eq. (C4). The specific implementation
of the Java Hipparchus math library [76] is given by

a(ωk ) =
N−1∑
n=0

η(tn)e−itnωk forward, (C8)

η(tn) = 1

N

N−1∑
k=0

a(ωk )eitnωk inverse, (C9)

ωk =
{

k�ω for k � N
2 ,

−(N − k)�ω for k � N
2 ,

(C10)

�ω = 2π/N�t, (C11)

tn = n�t . (C12)

The physical system simulated will require the (dynamical)
simulation of a lowest frequency component of the noise ωmin,
see Fig. 9. To accurately resolve the noise spectrum around
ωmin, the frequency step �ω has to be smaller, since all sam-
pled frequencies are multiples thereof, so we choose

�ω = 0.1 × ωmin = 2π/tmax, (C13)

where, e.g., tmax = 1 µs in the charge-qubit example, Sec. IV.
Further, to accurately simulate the relevant frequencies of
the physical system given by the maximum level splitting
maxε B(ε), the high-frequency cutoff ωmax must be larger. At
the same time, this high-frequency cutoff has to be a power of
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two multiplied by �ω, as required by the FFT. We therefore
choose the next higher power of two:

ωmax = N�ω/2, (C14)

N = 2�log2[10×maxε B(ε)/h̄�ω]�+1, (C15)

where �.� indicates rounding up to the next integer value.

2. Simulation cutoffs for 1/ f noise

The 1/ f -noise model, Eq. (39), is valid for frequencies
|ω| ∈ [ωlow,∞). However, a numerical calculation cannot
take an infinite range of frequencies into account. There-
fore, the two cutoff frequencies explained in Sec. C 1 are
necessary: a high-frequency cutoff ωmax and a low-frequency
cutoff ωmin.

The lowest frequency considered in the 1/ f -noise model
ωlow is much smaller than the smallest resolved frequency
of the noise generation: ωlow � ωmin. Choosing ωmin = ωlow

would, given the resulting small frequency-step size �ω,
Eq. (C13), lead to an impractically large number of datapoints,
Eq. (C15). Further, since �ω corresponds to an oscilla-

tion period much larger than the population transfer time,
see Eq. (C13), the remaining range of frequencies ωlow <

|ω| < ωmax relevant for the noise simulation contributes ap-
proximately only a constant offset to the noise during the
population transfer. Therefore, the part of the noise spectrum
below the low-frequency cutoff |ω| < ωmin will be collapsed
into a quasistatic [∝ δ(ω)] contribution, giving an effective
spectrum

Seff(ω) = 2πσ 2
0 δ(ω) +

{
S(ω), ωmin < |ω| < ωmax,

0, otherwise.
(C16)

The variance σ 2
0 of the noise for these low frequencies is given

by

σ 2
0 = 2

∫ ωmin

ωlow

dω

2π
S(ω) = A

π
ln

(
ωmin

ωlow

)
. (C17)

With Eq. (C16), both the physical spectrum S(ω) and the ef-
fective spectrum Seff(ω), have the same weight for frequencies
|ω| < ωmin ∫ ωmin

−ωmin

dω

2π
S(ω) =

∫ ωmin

−ωmin

dω

2π
Seff(ω). (C18)
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