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Symmetry breaking and superfluid currents in a split-ring spinor polariton condensate
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Bosonic condensates of spinless noninteracting particles confined on a ring cannot propagate circular periodic
currents once rotation symmetry of the system is broken. However, a persistent current may appear due to
interparticle interactions exceeding some critical strength. In this up-critical regime breaking of the symmetry
between the clockwise and anticlockwise rotations takes place. We consider this symmetry-breaking scenario
in the case of a spinor condensate of exciton polaritons trapped on a ring split by a potential barrier. Due to
the intrinsic symmetry of the effective spin-orbit interaction, which stems from the linear splitting between
transverse-electric and transverse-magnetic microcavity modes, the potential barrier blocks the circulating
current and imposes linear polarization patterns. On the other hand, circularly polarized polaritons form circular
currents propagating in opposite directions with equal absolute values of angular momentum. In the presence of
interparticle interactions, the symmetry of clockwise and anticlockwise currents can be broken spontaneously.
We describe several symmetry-breaking scenarios, which imply either restoration of the global condensate
rotation or the onset of the circular polarization in the symmetry-broken state.

DOI: 10.1103/PhysRevB.107.245302

I. INTRODUCTION

Quantum mechanics implies that a nondegenerate state of
a single-particle system always possesses its intrinsic symme-
try. This rule, however, ceases to be strict in the many-body
regime where nonlinear self-interactions give rise to the states
with reduced symmetry. This phenomenon known as sponta-
neous symmetry breaking (SSB) [1] was observed in various
physical contexts including nonlinear optics [2–4], bosonic
Josephson junctions [5,6], metamaterials [7] etc.

A prototypical system featuring SSB is a bosonic con-
densate trapped in a symmetric double-well potential [6]. In
the linear regime, the coherent tunneling across the barrier
establishes symmetric occupation of two potential minima.
However, beyond the limit of weak interparticle interactions, a
macroscopic quantum self-trapping phenomenon occurs when
nonlinear effects dominate coherent coupling. It violates an
underlying spatial-parity symmetry and imposes steady-state
population imbalance between the wells [8].

Self-trapping is characteristic of nonlinear systems com-
posed by two linearly coupled components. For example in the
two-component or spinor condensates, the SSB is manifested
in breaking an internal parity symmetry connected with the
invariance under swapping of the system components [9,10].
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Similarly, in the annular geometry, the SSB violates a
chiral symmetry, which implies equivalence of the clockwise
(CW) and counterclockwise (CCW) rotations. In the presence
of a potential scatterer, which couples CW and CCW waves,
the chiral symmetry supports standing wave solutions, which
carry no net circulation [11]. It requires time-reversal symme-
try, which guarantees reciprocal scattering between CW and
CCW waves. Reduction of the symmetry at the SSB event is
manifested by the establishment of the global rotation as it
was observed in bosonic condensates [12,13] confined in the
annular traps and in whispering-gallery microcavities [3,4].

Studying SSB in the nonsimply connected geometry such
as a ring is motivated by the possibility of creating persistent
current without stirring. Being a hallmark of superfluidity,
persistent current has been mostly investigated in the conven-
tional superfluids characterized by a scalar order parameter.
Extending this concept to the spinor case [14] naturally re-
quires accounting for the interaction between internal and
orbital degrees of freedom, either intrinsic [15] or synthetic
[16].

The interplay of nonlinearity and spin-orbit coupling
(SOC) in ring-shaped atomic condensates has been investi-
gated in the presence of the artificial Rashba-type [17] and
combined Rashba-Dresselhaus [18] SOC mechanisms. On
the other hand, in photonics, SOC naturally appears at the
subwavelength scale [19] and in microcavities [20]. Besides,
the presence of a birefringent media [21,22] such as liquid
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crystal-filled microcavities allows for a flexible manipulation
of the synthetic spin-orbit interaction for light.

In this paper, we consider a weakly linked annular spinor
superfluid subject to the photonic analog of SOC, which is
inherently present in semiconductor microcavities. We refer
to a split-ring geometry that has been recently put forward as
promising for the realization of qubits based on superpositions
of superfluid polariton currents [23,24].

The SOC in this system originates from the momentum-
dependent splitting between linearly polarized transverse-
electric (TE) and transverse-magnetic (TM) photonic modes
[25]. A strong coupling between the optical mode and the
quantum-well excitons gives rise to the hybrid quasiparti-
cles known as exciton polaritons. Being composite bosons,
polaritons can form a macroscopic coherent state analo-
gous to Bose-Einstein condensate [26] with intrinsically
two-component order parameter inherited from photon polar-
ization. An important advantage of polaritons is their strong
interparticle interactions stemming from the exciton com-
ponent, which is a necessary ingredient of the nonlinear
symmetry breaking.

In the system with broken rotation symmetry, excitation of
the circular polariton current requires an explicit breaking of
the chiral symmetry, which can be realised by means of syn-
thetic gauge field [27,28], gain asymmetry [29,30] or with the
use of external driving [31,32]. Contrary to these approaches,
the SSB triggered by polariton-polariton interactions allows
for spinning ring-shaped condensate in the system, which
intrinsically respects chiral symmetry.

The effect of spontaneous polariton rotation analogous to
the chiral symmetry breaking has been predicted for the spin-
less condensate devoid of SOC [33]. The impact of TE-TM
splitting in the ideal (defectless) polariton ring was analyzed
in [34]. In this case, polariton-polariton interactions tend to
break continuous rotational symmetry and favour formation
of spatially nonuniform condensate. In this paper, we focus on
the interplay of the symmetry imposed by the TE-TM split-
ting and the potential responsible for the rotation symmetry
breaking.

The paper is organized as follows. In Sec. II we in-
vestigate the linear eigenstates of the ring-shaped polariton
condensate. Here we focus on the properties of the symme-
try provided by the TE-TM splitting. The manifestations of
the SSB triggered by the polariton-polariton interaction are
discussed in Sec. III. Treating the problem numerically, we
reveal various types of symmetry-breaking solutions. Then
adopting the simplified four-wave model, which accounts for
the two contra-propagating vortices in each polarization [35]
we analyze the most prominent SSB scenarios. The elaborated
simplified description allows for the analytical prediction of
the SSB threshold density.

II. SPINOR POLARITON CONDENSATE ON A SPLIT-RING
AND ITS SYMMETRY PROPERTIES

A. The model

To be specific, we consider a spinor polariton condensate
confined on a ring as sketched in Fig. 1. The annular trapping
can be realized with the use of various approaches including

U(ϕ)

FIG. 1. The ring-shaped polariton condensate split by the de-
fect potential U (φ). The blue and the vinous arrows indicate the
presence of the persistent currents of circularly polarized polaritons.
Red straight arrows indicate the direction of the effective magnetic
field associated with the TE-TM splitting. The false color of the
condensate density encodes a local value of the degree of circular
polarization.

sculpting the pump beam with spatial light modulator [31],
using pillar microcavities [36], or etching of ring channels
[37]. The order parameter of the condensate is character-
ized by the two-component complex spinor � = (�+, �−)ᵀ

written in the basis of opposite circular polariton polariza-
tions. In the mean-field treatment, � obeys two-dimensional
Gross-Pitaevskii equation (GPE) [20]. However, a tight ra-
dial confinement characteristic of a thin ring allows to split
� into independent radial and azimuthal components. Thus
integrating out the radial dependence yields an effective one-
dimensional Gross-Pitaevskii equation [37,38],

ih̄∂t� = [Ĥ0 + Ĥint]�. (1)

Here the first term stands for the single-particle Hamiltonian,

Ĥ0 = h̄2

2m�

(−∂2
φφ + U (φ) �e−2iφ

�e2iφ −∂2
φφ + U (φ)

)
, (2)

with m� being the effective mass characterizing polariton az-
imuthal motion. In a thin ring, m� can be connected with the
2D polariton effective mass by m� = mpolR2. φ is the polar
angle, U (φ) is the spin-independent potential.

The effect of momentum-dependent splitting between lin-
early polarized TE and TM modes is described by the
off-diagonal terms in Eq. (2). Since the splitting is quadratic
in the in-plane polariton momentum [39], the effect of SOC
is governed by the second angular harmonics. In the 1D case,
the SOC strength � is proportional to the inverse square of
the ring width [37,38] and the degree of asymmetry between
effective masses of the TE and TM polariton modes. Thus
tuning confinement potential or the microcavity properties,
one can vary � in a wide parameter range. In this paper, we
focus on the case of weak TE-TM splitting, namely, at � < 1.
This limit allows us to approach the problem analytically.

The interparticle interactions, which are expected to be
responsible for the symmetry breaking effect are described by
the second term in Eq. (1),

Ĥint = h̄2

2m�

(
g|�+|2 0

0 g|�−|2
)

,
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which accounts for the repulsion between the same-spin po-
laritons with the strength g. Here we neglect the interaction
between the cross-polarized polaritons as it is typically weak
[40]. Besides, in order to focus on the symmetry properties
imposed by the SOC, we neglect the driven-dissipative effects.
This approximation corresponds to the quasiconservative limit
realized in the ultrahigh-finesse microcavities [37]. It is ex-
pected that the weak dissipation can alter the appearance
criteria of the nonlinear symmetry breaking states considered
in what follows but will not inhibit their existence. Thus we
consider a general model of a spinor condensate with the fixed
total number of particles Npol = ∫

�†�dφ. As a parameter
controlling the strength of nonlinear effects we use the aver-
age polariton density, ρ = Npol/2π . Note that the considered
densities lie below the BEC-BCS crossover regime in which
the on-site interaction approximation fails [41–44].

In what follows, we are interested in the steady-state solu-
tions,

�(t, φ) = �(φ)e−iμ E1
h̄ t . (3)

For the sake of simplicity of notations, we operate with the
dimensionless condensate energy μ, which is given in the
units of E1 = h̄2/2m�.

Since in the scalar case SSB is manifested by the finite
net circulation, we focus on quantifying rotation of the spinor
condensate. In particular, we characterise it by the average
orbital angular momentum (OAM), which can be defined for
each pseudospin component individually,

	± = m�

h̄Npol

∫
j±(φ) dφ, (4)

where j±(φ) = h̄/m�Im[�∗
±∂φ�±] is the density current of

the same-spin polaritons. Definition (4) ensures additivity of
the total angular momentum per particle,

	tot = 	+ + 	−, (5)

which is the main parameter characterizing the net circulation
of the spinor condensate.

B. The symmetry imposed by the TE-TM splitting

First, we focus on the symmetry properties of single-
particle states, which are governed mainly by the presence
of SOC. The symmetry imposed by the TE-TM splitting
naturally follows from the time-reversal invariance of the
two uncoupled linearly polarized microcavity modes. As it is
shown in [45], in the circular basis, this symmetry corresponds
to the invariance under the transformation T̂ = K̂σ̂x where
K̂ stands for the complex conjugation and σ̂x is a spin-flip
operation, which swaps circular polarizations. Note that in the
spinless case, the chiral symmetry requires invariance under
rotation inversion, which is governed by the scalar form of
the time-reversal operator, T̂ = K̂. For the spinor polariton
condensate, this operation has to be supplemented by flipping
of the effective spin σ̂x.

Since the linear Hamiltonian Ĥ0 commutes with T̂ , the
single-particle states of the condensate are expected to be
either symmetric (even) or antisymmetric (odd) with respect

to time reversal. The general form of these states reads

�e,o(φ) =
(

�0(φ)

±�∗
0 (φ)

)
, (6)

where e(o) stands for even (odd) states and the wave func-
tion �0(φ) is governed by the eigenvalue problem for Ĥ0.
The states (6) have two important properties. As long as
|�+| = |�−|, the condensate is linearly polarized in any en-
ergy state. Besides, if �+ component exhibits nonzero net
circulation, the opposite circular polarization �− rotates in
the opposite direction with the same absolute value of OAM
such as 	+ = −	−, see Eq. (4). Therefore, the total circulation
vanishes, 	tot = 0. Hence, these states are analogues to the
so-called hidden-vortex states [46] predicted for the binary
atomic condensates.

Note that the discussed symmetry is violated if the time-
reversal symmetry is broken explicitly, for example, in the
presence of magnetic field [27], which splits circular polar-
izations or due to the stirring potential [35,47,48] that breaks
equivalence of the CW and CCW rotations. However, the ef-
fects of dissipation associated with the finite polariton lifetime
do not violate chirality so that the symmetry properties of
the condensate remain unaltered. In what follows, under the
time-reversal symmetry breaking we imply the deviation of
the condensate symmetry from the condition (6).

C. Single-particle states

To verify our symmetry analysis, we investigate the set of
single-particle eigenstates of Hamiltonian (2). It is instructive
to start from the rotation-symmetric case, which has been
exhaustively studied in [34]. In particular, at U = 0 the energy
spectrum of the ring-shaped polariton condensate reads

μn± = 1 + n2 ± α, (7)

while the corresponding spinor wave functions can be written
in the form

�n± =
√

Npol√
4πα

√
α ± 2n

(
�e−iφ

±(α ± 2n)eiφ

)
einφ. (8)

Here n is integer and α = √
�2 + 4n2.

Since μ is quadratic in the solution index n, the energies
of the states n and −n coincide. Because of this intrinsic
degeneracy, the n �= 0 solutions (8) violate the symmetry of
the time-reversal invariant states (6). Indeed, since any linear
combination

�n± = C1�n± + C2�−n± (9)

is a suitable eigenmode, the total angular momentum 	tot
n±

of the states μn± is not fixed but falls within the range
from −n(α ± 2)/α to n(α ± 2)/α. The only exception is
the time-reversal eigenstates �0± = √

Npol/4π (e−iφ,±eiφ )ᵀ,
which are linearly polarized in tangential and radial directions,
respectively, and have zero total OAM [45].

The considered degeneracy originates from the continuous
rotational symmetry. Therefore, it gets lifted by any external
potential so that the resulted eigenstates acquire T̂ -symmetric
properties (6) provided U (φ) is real valued and thus invari-
ant under time reversal. As a practically important example,
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FIG. 2. Noninteracting polariton condensate confined on a ring.
(a) The energy spectrum in the presence of the point-like defect
U (φ) = 2πV0δ(φ) (solid lines) at V0 = (2π )−1. The energy levels
(7) of the defectless ring are shown by grey dashed lines. The scale
on the horizontal axis corresponds to the energy of the scalar vortex
state with 2π phase winding. (b) The average OAM of the circularly
polarized polaritons 	±. The colors are consistent with those in (a).
The solid lines correspond to the OAM of the left-circularly polar-
ized polaritons 	+, while the dashed lines describe right-circularly
polarized polaritons, 	−.

we consider a point-like defect potential U (φ) = 2πV0δ(φ),
which models a structural impurity of the microcavity sample.
The corresponding energy splitting is demonstrated in the �

dependence of the energy spectrum, Fig. 2(a).
As in the spinless problem [11], the defect prohibits net cir-

culation of the spinor condensate, 	tot = 0. However, because
of the presence of the TE-TM splitting, equal fractions of
circularly polarized polaritons spin in opposite directions. The
resulted spin textures exhibit linear polarization at any angular
position on the ring that is protected by the time-reversal
symmetry of the problem.

The corresponding 	±(�) dependencies are shown in
Fig. 2(b). At the weak TE-TM splitting, the potential tends to
suppress circulations of the individual spin components. In the
opposite limit of the dominating SOC, �/V0 � 1, the states,
which stem from the splitting of the defect-free solution �n±
can be represented as symmetric (C1 = C2) and antisymmetric
(C1 = −C2) combinations (9) with

	+
n± = −	−

n± = −1

2

(
1 ± 2n2

α

)
. (10)

Therefore, in this regime, the difference of OAMs of circularly
polarized polaritons �	 = 	− − 	+ approach 1 in any state.

III. SPONTANEOUS BREAKING OF THE TIME
REVERSAL SYMMETRY

In this section we investigate the impact of self-
interactions. Although nonlinear Hamiltonian Ĥint is invariant
under time reversal, it admits existence of the asymmetric
states different from Eq. (6). Recently, a striking example of
SSB in the persistent polariton currents subject to the TE-TM
splitting was predicted in [49]. In particular, the symme-
try breaking was manifested in the excitation of co-rotating
circularly polarized polariton currents with almost equal oc-
cupancies. In the considered system, the effect of the TE-TM
splitting was rather strong and dominate the kinetic energy of
the circular polariton motion, which corresponds to the limit

� � 1 in the notations adopted in our paper. In contrast, we
focus on the opposite limit of weak SOC [35], namely at � <

1. This regime allows us to approach the problem analytically
and reveal the family of distinct symmetry-breaking scenarios.

Since in the ring geometry, the TE-TM splitting strength is
inversely proportional to the squared ring width [37,38] while
the kinetic energy scales as R−2, the regime � < 1 can be
achieved in the wide rings with small radius.

A. Symmetry breaking in the scalar case

We start by reviewing SSB phenomenon in the spinless
case, which is realized at vanishing TE-TM splitting, � = 0.
The potential embedded in the ring breaks rotational symme-
try and prohibits circulation of the single-particle states [50].
The self-interactions allow for breaking this symmetry and
trigger polariton rotation either in the CW or CCW directions.

The properties of the broken-symmetry states can be re-
vealed either numerically [50] or analytically in some specific
cases [51,52]. We search for approximated steady-state solu-
tions representing condensate state as a combination of two
contra-propagating waves with +2π and −2π phase winding,

�(φ) = Aeiφ + Be−iφ. (11)

This approximation works best with the shallow harmonic
potential U = 2V0 cos(2φ) at V0 � 1. Substituting ansatz (11)
into the scalar analog of Eq. (1) and neglecting the contri-
bution of the higher order angular harmonics one obtains the
system analogous to the nonlinear dimer model [2],

(μ − 1)A = V0B + g(|A|2 + 2|B|2)A, (12a)

(μ − 1)B = V0A + g(|B|2 + 2|A|2)B. (12b)

The symmetric solutions of Eqs. (12) respect parity, A = ±B,
and have zero OAM, 	 = (|A|2 − |B|2)/ρ = 0. The asym-
metric states with |A|2 = ρ/2(1 ± √

1 − ρ2
c /ρ2) and |B|2 =

ρ/2(1 ∓ √
1 − ρ2

c /ρ2) appear above the critical polariton
density

ρc = 2V0/g. (13)

The fingerprint of symmetry-broken states is a nonzero OAM
	 = ±√

1 − ρ2
c /ρ2, which appears at ρ > ρc. Far away from

the bifurcation point ρ � ρc, the asymmetric solutions are
close to the left- and right-hand vortices when all polaritons
is accumulated either in the CCW, � ≈ Aeiφ , or in the CW
wave, � ≈ Be−iφ , respectively.

B. Symmetry breaking in the spinor polariton condensate

In the spinor case, the criterion of the symmetry break-
ing has to be revised. At the finite strength of the TE-TM
splitting, the symmetry arguments ensure formation of the
linear polarized states with vanishing total OAM. Therefore,
we characterize the SSB phenomenon using two param-
eters. Namely, we expect that symmetry breaking either
triggers global rotation of the condensate, 	tot �= 0, or in-
duces imbalance between polarization components, which can
be quantified by the average degree of circular polarization
(DCP),

Pc = Npol
−1

∫
(|�+|2 − |�−|2)dφ. (14)
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FIG. 3. Symmetry-broken states of the ring-shaped spinor po-
lariton condensate with broken rotational symmetry. (a) The total
OAM per particle 	tot vs average polariton density ρ at V0 = 0.05
and � = 0.25. The color lines correspond to the states with broken
symmetry, while T̂ -symmetric states with 	tot = 0 are shown in
grey. Solid lines correspond to the steady-state solutions of the full
problem (1). The dashed curves are obtained from the simplified
four-wave model (16). (b) The Pc(ρ ) dependence and (c) the μ(ρ )
dependence of the solutions shown in (a). (d) The ratio |	tot/Pc| for
the states with broken symmetry. The scale of the horizontal axes in
(a)–(d) corresponds to the average blue shift gρ of the homogeneous
circularly polarized polariton condensate. (e) Polarization pattern of
the symmetry-broken state corresponding to the circularly polarized
persistent current [shown in blue in (a)–(d)] at gρ = 0.4. Polarization
ellipses are shown in color indicating the local degree of circular
polarization. The thickness of the orange ring corresponds to the
local polariton density |�+|2 + |�−|2. (f) The same as in (e) but for
the circularly polarized state with weak total current [shown in red in
(a)–(d)].

First, we address the problem numerically. In particular,
we search for the stationary solutions of Eq. (1) iteratively
using average polariton density ρ as a scanning parameter. As
in the linear case, we consider a point-like defect potential
U = 2πV0δ(φ).

Figures 3(a)–3(c) demonstrate the typical example of the
bifurcation diagrams on the (ρ, 	tot ), (ρ, Pc), and (ρ,μ)
parameter planes. Note that the linear solutions discussed
in Sec. II C retain their T̂ -symmetric properties in the

V V

Δ

2Δ

A₊

B₊

A₋

B₋

s₊ s₋

2V
V

(b)

(a)

(c)

ΨΨ₊ Ψ₋Δ

ys

y+

FIG. 4. The four-wave model of the symmetry breaking in a
spinor polariton ring. (a) The level diagram. The TE-TM splitting
couples contra-propagating states with opposite circular polariza-
tions, while the potential mixes CW and CCW waves within the
same polarization. (b) The simplified energy diagram in the regime of
the dominating TE-TM splitting, � � V0. The structure of the linear
eigenstates ys,as and y± are explained schematically with the circular-
arrow badges near the level bars. (c) The simplified energy diagram
at the weak TE-TM splitting, � � V0. The linear eigenstates corre-
spond to the symmetric s± and antisymmetric a± circularly polarized
states.

nonlinear regime, see the grey lines. Besides them, a plethora
of symmetry-broken states with 	tot �= 0 or Pc �= 0 emerge at
large polariton densities.

Figure 3(d) demonstrates the ratio between the OAM and
DCP, 	tot/Pc, for the states with broken symmetry, which al-
lows to classify them into three groups. The first one contains
the persistent current states with vanishing DCP, 	tot � Pc

(the cyan and the orange curves). In the opposite side, there
are states with the dominating circular polarization and van-
ishing net circulation, 	tot � Pc (the red and the green curves).
In between, there are those states, which combine nonzero
persistent current and finite circular polarization, 	tot/Pc ≈ 1,
see the blue curve in Fig. 4.

To gain more insights into the revealed SSB scenarios, we
again resort to the simplified model. In particular, we project
Eq. (1) into the subspace consisted of four states: two opposite
vortices with ±2π phase winding in each polarization,

�±(φ) = A±eiφ + B±e−iφ. (15)

These basis states correspond to the degenerate quadruplet of
the linear eigenstates {μ0−, μ2−, μ−2−, μ0+} at � = V0 = 0,
see Fig. 2(a). The spinless potential couples counter-rotating
waves within the same circular polarization, while the split-
ting of TE and TM modes mixes vortices with 	− − 	+ = 2
[49,53]. Within the given subspace, these are A− and B+
modes. The schematic structure of the coupled basis levels
is show in Fig. 4(a). The interaction with other angular har-
monics can be safely neglected provided their detuning from
the 	± = ±1 states exceeds the strength of the linear coupling
from the SOC and the potential. It requires � < 1 and V0 < 1.
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In this limit, the projection procedure yields

μ̄A+ = V0B+ + g(|A+|2 + 2|B+|2)A+, (16a)

μ̄B+ = V0A+ + g(|B+|2 + 2|A+|2)B+ + �A−, (16b)

μ̄A− = V0B− + g(|A−|2 + 2|B−|2)A− + �B+, (16c)

μ̄B− = V0A− + g(|B−|2 + 2|A−|2)B−, (16d)

where μ̄ = μ − 1 − V0. Within the specified parameter range,
this simplified model demonstrates a good coincidence with
the full GPE (1), see the solid and the dashed lines in Fig. 3.
In general, Eqs. (16) have to be solved numerically. However,
in some specific cases the analytical predictions can be made.
In particular, we consider two limits, which allow for predic-
tion of the threshold polariton density corresponding to the
formation of the broken symmetry states.

C. The limit of the dominating SOC � � V0

First, we consider the state, which bifurcates in a pitch-
fork event at the small polariton density, see the blue curve
in Figs. 3(a) and 3(b). At V0 = 0 the structure of the lin-
ear eigenmodes are governed by the TE-TM splitting only.
According to Eqs. (16), two states y± = (A− ± B+)/

√
2 are

split by 2� while the uncoupled states A+ and B− remain
degenerate. At finite V0 � �, the state y± primarily couples
to the symmetric (antisymmetric) combination of the degen-
erate modes ys,as = (A+ ± B−)/

√
2. As a result, the energy

of the ys state decreases by δ = (
√

�2 + 4V 2
0 − �)/2 while

the yas state shifts upward by δ, see the schematic energy
diagram in Fig. 4(b). Herewith, separating the ys,as-doublet
from Eqs. (16) by neglecting nonlinear mixing with the y±
states and turning back to the basis of A+ and B− waves, one
obtains

μA+ = δB− + g|A+|2A+, (17a)

μB− = δA+ + g|B−|2B−. (17b)

This system is analogous to the two-mode model (12).
The internal parity symmetry governed by the δ parame-
ter is established between the waves decoupled from the
TE-TM splitting, see Fig. 4(a). The nonlinear symmetry-
breaking solutions of Eqs. (17) exist above the critical
density

ρc = (√
�2 + 4V 2

0 − �
)
/g. (18)

The V0 dependence of the SSB threshold density obtained
numerically from the four-wave model (dashed line) and from
the full GPE (dash-dotted line) is shown in Fig. 5(a). The
analytical estimation (18) demonstrates a good coincidence
with the numerical results only at V0 � 1. Beyond this limit,
the truncation to the two mode-model fails. However, the four-
wave model (16) describes the onset of the SSB phenomenon
qualitatively well.

Away from the SSB bifurcation point, ρ > ρc, polariton
density is accumulated either in A+ or B− vortex, see the
schematic energy diagram in the inset to Fig. 5(a). Therefore,
these states possess large DCP and almost unit OAM simulta-
neously. An example of the corresponding polarization pattern
is shown in Fig. 3(e). Figure 5(c) demonstrates the variation

gρ
с

gρ
с

ΔV₀

A₊

B₊

A₋

B₋

A₊

B₊

A₋

B₋

(a) (b)

(c)(c) (d)(d)

tot Pc

V ₀ V ₀

tot Pc

10-210-310-410-5

FIG. 5. (a) The threshold polariton density above which the
circularly polarized persistent current shown in Fig. 3(e) appears.
The solid line corresponds to the analytical estimation (18) while
the dash-dotted line was obtained from the full GPE (1) with the
delta-defect barrier U (φ) = 2πV0δ(φ) at � = 0.25. The dashed line
demonstrates predictions of the four-wave model (16). The level
diagram inside the shaded (white) region schematically demon-
strates occupancy of the four vortex states shown in Fig. 4(a) in
the symmetry-broken (symmetric) state. (b) The threshold polariton
density corresponding to the bifurcation of the circularly polarized
state with the vanishing circulation shown in Fig. 3(f) at the defect
strength V0 = 0.25. The solid line corresponds to Eq. (20), the dashed
and the dash-dotted curves have the same meaning as in (a). [(c),(d)]
The dependencies of the |	tot/Pc| parameter at gρ = 0.75 as functions
of � and V0 for the states described in (a) and (b), respectively.

of the ratio |	tot/Pc| in the parameter plane (�,V0) at the fixed
polariton density. This ratio remains close to unity, which
means that the symmetry-broken states retain their properties
in a wide range of parameters.

D. The limit of weak SOC � � V0

A similar truncation procedure can be carried out in the
opposite limit � � V0, which implies that the scattering on
the potential defect dominates the wave mixing due to the
TE-TM splitting. In particular, at the vanishing TE-TM split-
ting, � = 0, the linear eigenstates of Eqs. (16) correspond to
the symmetric s± = (A± + B±)/

√
2 and antisymmetric a± =

(A± − B±)/
√

2 circularly polarized states, which are split in
energy by 2V0 and twofold degenerate in polarization. The
simplified scheme of the energy levels is shown in Fig. 4(c).
The weak SOC � � V0 primarily mixes degenerate states
while the coupling between the detuned s± states and a∓ states
remains negligibly weak. Herewith, rewriting Eqs. (16) in the
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basis of s± and a± and leaving the resonant terms only we
split the system into a pair of independent nonlinear dimers,

(μ̄ − V0)s± = 3g

2
|s±|2s± + �

2
s∓, (19a)

(μ̄ + V0)a± = 3g

2
|a±|2a± − �

2
a∓. (19b)

Both symmetric and antisymmetric dimers admit existence
of the asymmetric solutions, which break the parity symmetry
imposed by the weak coupling from the TE-TM splitting. In
particular, two pairs of asymmetric states with |s+| �= |s−| and
|a+| �= |a−| bifurcate from the s± and a± doublets above the
critical dimensionless polariton density given by

ρc = 2�

3g
. (20)

This analytical estimation of the threshold polariton density
agrees well with the predictions of both simplified (16) and
full GPE models, see Fig. 5(b). Note that the coincidence is
good even beyond the considered limit of weak SOC, V0 � �.

The SSB event disrupts the balance between polarization
components. However, the chiral symmetry between CW and
CCW currents of the same polarization gets only weakly bro-
ken since the intrapolarization coupling dominates at V0 �
�, see the inset in Fig. 5(b). Therefore, the new symmetry
breaking states are characterized by the nonzero DCP and
weak total current 	tot ≈ 0. These states are shown with red
lines in Figs. 3(a)–3(d). The example of the corresponding
polarization pattern is demonstrated in Fig. 3(f). Note that
these properties are retained even beyond the limit � � V0 as
it is shown on the map of the |	tot/Pc| ratio on the parameter
plane (�,V0), see Fig. 5(d).

IV. CONCLUSIONS

Nonlinear effects that lead to breaking of the symmetry
between contra-propagating waves in the split-ring geome-
try were previously studied in the spinless systems such as
bosonic condensates and whispering-gallery microcavities.
The present paper systematically extends these concepts into
the spinor case accounting for the mechanism of the spin to
orbital angular momentum coupling associated with the effect
of the TE-TM splitting that is characteristic of semiconductor
microcavities. Our findings pave the way for the creation
and manipulation of the spin-polarized persistent currents of
exciton polaritons.

We specifically focused on the split-ring geometry, where
circular currents are suppressed in the case of a scalar po-
lariton condensate in the linear regime [50]. We have shown
that in the linear and weakly nonlinear regimes, the spinor
condensate structure is governed by the underlying symmetry
of the effective spin-orbit coupling mechanism. This symme-
try implies invariance under simultaneous inversion of the
rotation direction and swapping of circular polarizations. In
this case, the condensate is linearly polarized and has no
net circulation while circularly polarized polaritons rotate in
opposite directions.

In the nonlinear regime, the many-body states with reduced
symmetry appear spontaneously. In contrast to the spinless
case, which demonstrates a single symmetry-breaking sce-
nario consisted of persistent current formation, the spinor
condensate reveals several types of the broken-symmetry
states. They include circularly polarized persistent currents,
circularly polarized condensate with no rotation and the
persistent current state with the small degree of circular po-
larization. The properties of the states of the first and the
second types can be described with the use of the simpli-
fied analytical model. In particular, we predict the values of
the critical polariton density corresponding to the symmetry
breaking threshold for these states.

A model accounting for the driven-dissipative effects,
which are crucial in the low Q-factor microcavities might
bring a further insight on the variety of the symmetry-breaking
scenarios. The interplay between the nonlinear-driven and
the internal polariton currents stemming from the local
gain-dissipation imbalance [54] may alter the bifurcation
conditions [29]. However, it is expected that in the strong
pumping regime nonlinear interactions dominate steady-
state properties of polaritons, which is why the nonlinear
symmetry-breaking states may exist in this case as well.
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