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Identifying the topological order of the fractional quantum Hall state at filling ν = 5/2 is an important
step towards realizing non-Abelian Majorana modes in condensed matter physics. However, to unambiguously
distinguish between various proposals for this order is a formidable challenge. Here, we present a detailed study
of transport along interfaced edge segments of fractional quantum Hall states hosting non-Abelian Majorana
modes. With an incoherent model approach, we compute, for edge segments based on Pfaffian, anti-Pfaffian,
and particle-hole-Pfaffian topological orders, thermal conductances, voltage biased charge current noise, and
delta-T noise. We determine how the thermal equilibration of edge modes impacts these observables and
identify the temperature scalings of transitions between regimes of differently quantized thermal conductances.
In combination with recent experimental data, we use our results to estimate thermal and charge equilibration
lengths in real devices. We also propose an experimental setup, which permits measuring several transport
observables for interfaced fractional quantum Hall edges in a single device. It can, e.g., be used to rule out edge
reconstruction effects. In this context, we further point out some subtleties in two-terminal thermal conductance
measurements and how to remedy them. Our findings are consistent with recent experimental results pointing
towards a particle-hole-Pfaffian topological order at filling ν = 5/2 in GaAs/AlGaAs, and provide further means
to pinpoint the edge structure at this filling and possibly also other exotic fractional quantum Hall states.
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I. INTRODUCTION

Non-Abelian anyons are exotic excitations in two-
dimensional condensed matter systems with no counterpart in
particle physics [1]. A system with non-Abelian anyons has
a ground-state degeneracy, and interchanging—or braiding—
the anyons can shift the system between different ground
states. This shift depends only on the order of exchanges and
information about the braiding process is stored globally in the
ground-state wavefunction. Besides signifying a strongly cor-
related phase of matter, non-Abelian braiding forms the basis
for the appealing, but so far speculative, idea of topologically
protected quantum computations [2,3].

A most promising candidate system to host non-Abelian
anyons is the fractional quantum Hall (FQH) state [4,5] at
filling ν = 5/2 [6–9]. The quantum state that is realized at
this filling is, however, still not fully understood and poses
a long-standing question in condensed matter physics (see
Ref. [10] for a recent overview).

The purpose of this paper is to model FQH edge transport
involving various candidate states at this filling, in light of
recent experiments [11,12] that have brought progress towards
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identifying the 5/2 state. To date, the three most prominent
candidate states are the Pfaffian (Pf) [7], anti-Pfaffian (aPf)
[13,14], and particle-hole-Pfaffian (phPf) [15–18]. Whereas
numerical calculations have seemed to favor the aPf state
[19–25], tunneling experiments are more consistent with the
aPf, or the Abelian SU(2)2, 331, or 113 states [26–28].

Although all three non-Abelian candidates are (by con-
struction) compatible with the observed Hall conductance
GH/(e2/h) = ν = 5/2, they have distinct bulk topological or-
ders [29]. Via the bulk-boundary correspondence, this order is
in turn manifested by different edge structures, i.e., the num-
ber, chirality, and type of channels (or “modes”) propagating
around the FQH edge. As depicted in Fig. 1, the proposed
edge structures of the Pf, aPf, and phPf states differ only in the
second Landau level (2LL). This distinction can be quantified
by the topological quantum number

νQ ≡ c − c̄, (1)

where c and c̄ are the total central charges for the chiral and
antichiral sectors, respectively, in the underlying conformal
field theory [30]. For Abelian FQH edges, c (c̄) equals the
number of “downstream” (“upstream”) channels (where the
downstream direction is defined as that of the equilibrated
charge flow). For more exotic edge structures, c and c̄ may
take rational values, e.g., c = 1/2 for a single non-Abelian
Majorana mode (MM). As can be seen in Fig. 1, νPf

Q = 7/2,

νaPf
Q = 3/2, and ν

phPf
Q = 5/2.
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FIG. 1. Edge structures for the Pfaffian (Pf), anti-Pfaffian (aPf),
and particle-hole-Pfaffian (phPf) candidate states at filling ν = 5/2.
Solid, double arrows (in red, blue, and green) describe integer modes
labeled φ1, φ2, and φ3. Black, solid lines describe fractional 1/2
bosonic modes φ4, and purple, dashed arrows are Majorana modes
ψ . The edge modes belong to the two lowest Landau levels (LLLs)
or the second (2LL) Landau level. Vertical arrows depict the expected
Landau level spin polarizations.

Quite remarkably, the abstract quantity (1) can be related to
the experimentally accessible edge thermal conductance GQ

according to the relation [31,32]

GQ = νQκ0T̄ , (2)

in which κ0T̄ ≡ π2k2
B/(3h)T̄ is the quantum of heat (with

kB and h the Boltzmann and Planck constants, respectively,
and T̄ is the temperature). Two-terminal conductance mea-
surements for QH edges, first demonstrated in Ref. [33], have
subsequently been performed for many FQH states in both
GaAs/AlGaAs [11,34–37] and graphene [38–41]. In partic-
ular, Ref. [35] reported GQ/(κ0T̄ ) ≈ 5/2 at filling ν = 5/2,
which fits well with Eq. (1) for the phPf state (see Fig. 1).
This value further rules out Abelian candidate states, since
those are incompatible with half-integer GQ. However, Eq. (2)
is valid for the two-terminal conductance only when the heat
transport is fully equilibrated, i.e., when edge channels ex-
change energy efficiently [41–46]. This equilibration can be
quantified by a characteristic thermal equilibration length �Q

eq,
so that the condition for Eq. (2) to hold reads �Q

eq � L,
where L is the edge length. Importantly, �Q

eq is nonuniver-
sal and depends on microscopic details such as interchannel
interactions, the edge disorder strength, and the tempera-
ture. It is worth pointing out that an analogous condition,
�C

eq � L, with �C
eq a characteristic charge equilibration length,

is needed also for robust charge conductance quantization
for FQH edges with counter-propagating modes (c, c̄ �= 0).
However, almost all FQH experiments to date indicate that
this condition is normally well fulfilled (see Refs. [47,48] for
exceptions).

The interpretation of the experiment in Ref. [35] as re-
vealing a thermally equilibrated phPf edge was therefore
questioned, since GQ/(κ0T̄ ) ≈ 5/2 can be obtained also for
a partially equilibrated aPf edge [49–53]. The same value
can, under certain conditions, be obtained from models with
random puddles of alternating non-Abelian orders [54–59], or
from reentrant states due to Landau level mixing [60].

Further progress has been made recently in GaAs/AlGaAs
devices where the ν = 5/2 state is interfaced with integer QH
states [11,12]. This results in an effective ν = 5/2 − n edge,
where n = 1, 2, 3 (see Fig. 2). The basic idea is that since

FIG. 2. Effective structures of interfaces between non-Abelian
ν = 5/2 candidate states and integer states n = 1, 2, 3. In this paper,
we focus on n = 2, 3 (indicated by the frame), which are the integers
that expose the second Landau level. The interfaces with orange text
below their name are those for which the directions of equilibrated
charge and heat transport are opposite.

all candidate states share two Abelian, integer edge channels
(coming from two filled LLs), successive elimination of them
exposes the remaining non-Abelian “ν = 1/2 structure” for
which the states differ. This elimination occurs either due
to Anderson localization [61–63] or efficient equilibration of
the edge states. For n = 3, a possible particle-hole symmetry
of the 2LL can be tested. In Ref. [11], the thermal conduc-
tance for the ν = 5/2 − 2 and ν = 5/2 − 3 edges were both
measured to GQ/(κ0T̄ ) ≈ 1/2. It was argued that this is only
possible if the underlying ν = 5/2 state is the phPf, thereby
further strengthening the case for this state. It has also been
proposed that charge conductance measurements of 5/2 − n
interfaces could distinguish between non-Abelian candidate
states [64].

For the same type of interfaced structures but in another
device, the authors in Ref. [12] measured the excess noise for
a current biased edge segment. Previously, it was proposed
[53,65–67] that such noise discloses important properties of
the edge. More specifically, for full thermal and charge equi-
libration of any edge structure, the noise S scales with L in
one of three possible classes: S � exp(−L/�C

eq ) for νQ > 0,

S �
√

�C
eq/L for νQ = 0, or S � const. for νQ < 0 [66]. This

classification holds under conditions where heat leakage into
the QH bulk is negligible. If the heat leakage is efficient,
the noise is strongly suppressed in L/�C

eq also for νQ = 0
and νQ < 0. By contrast, under conditions where the ther-
mal equilibration between downstream and upstream modes
(if present) is negligible, the noise scales as S � const., and
absence of upstream modes implies identically S = 0. This
noise classification is the result of the chiral nature of the edge:
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FIG. 3. Schematics of the incoherent edge transport model for a
single edge segment with two attached contacts, L and R. A set of
N edge channels are characterized by reservoirs with local voltages
Vn(x) and temperatures Tn(x) for n = 1, . . . , N . Differences in these
quantities drive interchannel charge and energy currents (Iτ

n,m and Jτ
n,m

respectively) between the channels, which equilibrate the edge. For
equilibrated, chiral charge transport (defining the downstream, ds,
direction), Joule heating occurs only in the hot spot (red area) while
noise is dominantly produced in the noise spot (yellow area). Equa-
tions (3)–(6) are obtained in the continuum limit N → ∞, ε → 0,
with N/ε = const.

For equilibrated charge transport, the voltage drop across a
biased edge segment occurs only close to one of the contacts
(in the so-called hot spot) whereas partitioning of charges,
i.e., excess noise, is dominantly produced close to the other
contact (in the so-called noise spot), see Fig. 3. This partition-
ing is enhanced with respect to the equilibrium noise only in
the presence of upstream modes that transport heat from the
hot spot to the noise spot. In turn, this heat transport depends
strongly on νQ, which leads to the correspondence between S
and νQ.

For an interfaced Pf edge, the classification above implies
that only the 5/2 − 3 interface can generate excess noise,
since only that interfacing results in upstream modes. For the
aPf, both 5/2 − 1 and 5/2 − 2 can result in noise whereas
5/2 − 3 cannot. Finally, for the phPf, all three interfaces host
counter-propagating modes and can therefore produce finite
noise. However, since νQ > 0 for the phPf interfaces [68],
the noise is exponentially suppressed in L/�C

eq and finite noise
should only emerge for poor thermal equilibration, i.e., either
for small L and/or large �C

eq.
Indeed, Ref. [12] reported finite excess noise for both

5/2 − 2 and 5/2 − 3 interfaces for short L, but the noise
weakened significantly for larger L (see Fig. 11 below). At
the same time, the two-terminal charge conductance of the
interface G2T was always measured to G2T/(e2/h) = 1/2,
indicating a well-established charge equilibration between
downstream and upstream (if present) modes.

TABLE I. Summary of results for the two-terminal thermal conductance GQ
2T, the thermal Hall conductance GQ

H , as well as charge current
noise and delta-T noises for FQH interfaces phPf-n, aPf-n, and Pf-n, where n ∈ {2, 3}. Expressions are given in the limits of vanishing,
α, β → 0, and fully developed, α, β → ∞, thermal equilibration. We always assume full charge equilibration: δ � 1 and no edge recon-
struction. The units of noise are given in terms of voltage bias �V or large thermal bias �T � T̄ . The two-terminal charge conductance
G2T/(e2/h) = 1/2 for all interfaces.

Interfaces with three modes: Equilibration parameters α and β

Interface GQ
2T [κ0T̄ ] GQ

H [κ0T̄ ]

α, β → 0 α → ∞ α → 0 α, β → ∞ Universal value
β → 0 β → ∞

phPf-3 5/2 1/2 3/2 1/2 1/2
aPf-2 and Pf-3 5/2 1/2 3/2 1/2 1/2

Voltage biased charge current noise Downstream excess delta-T noise Upstream excess delta-T noise
[�Ve3/h] [2G2TkB�T ] [2G2TkB�T ]

α, β → 0 α, β → ∞ α, β → 0 α, β → ∞ α, β → 0 α, β → ∞
phPf-3 �0.113 � exp(−δ) �0.865 �1 �0.365 � exp(−δ)
aPf-2 and Pf-3 �0.152 �0.195 �1.361 �1 �0.438 �0.5

Interfaces with two modes: Equilibration parameter α

GQ
2T [κ0T̄ ] GQ

H [κ0T̄ ]

α → 0 α → ∞ Universal value
phPf-2 3/2 1/2 1/2
aPf-3 and Pf-2 Universal: 3/2 3/2

Voltage biased charge current noise Downstream excess delta-T noise Upstream excess delta-T noise
[�Ve3/h] [2G2TkB�T ] [2G2TkB�T ]

α → 0 α → ∞ α → 0 α → ∞ α → 0 α → ∞
phPf-2 �0.086 � exp(−δ23) �0.899 �1 �0.338 � exp(−δ23)
aPf-3 and Pf-2 0 0 1 1 0 0
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Taken together, the two experiments [11,12] suggest that
the ν = 5/2 state in GaAs/AlGaAs is of phPf type. However,
a detailed model of how the upstream mode mediated noise
is generated for interfaced ν = 5/2 edges remains lacking.
Moreover, the above interpretation of the noise measurements
hinges on the absence of edge reconstruction [69–72]. This
effect introduces nontopological pairs of counterpropagating
modes, which complement the edge structure from the bulk
boundary correspondence. The addition of such modes and
conditions with poor thermal equilibration can result in noise
generation for any FQH edge, which complicates experimen-
tal interpretations.

In this paper, we incorporate the qualitative noise and
conductance analysis above in a comprehensive theoreti-
cal model, which further permits a quantitative comparison
with experimental data. To this end, we study transport
along interfaces between non-Abelian and integer n edges
with the incoherent edge approach, recently developed in
Refs. [44,53,65–67,73]. We review the basics of this model
in Sec. II. In Secs. III and IV, we use the model to compute
the thermal conductance and the noise, respectively, for inter-
faced edge structures. We focus on n = 2, 3, since it is those
integers that expose the 2LL structure, see Fig. 2. A summary
of the calculations in these sections is given in Table I. In
Sec. V, we analyze the temperature scalings of the thermal
equilibration lengths. This scaling permits us to analyze the
temperature dependence of the noise and thermal conduc-
tance. In Sec. VI, we compare our results to the experiments
in Refs. [11,12] and provide estimates on thermal and charge
equilibration lengths. We then propose in Sec. VII a unified
experimental setup allowing several independent experiments
for probing FQH edge structures in a single device. We argue
that this device is beneficial for ruling out edge reconstruc-
tion effects as well as possible sample-to-sample differences
between separate devices probing noise and the thermal
conductance. We summarize and conclude our paper in
Sec. VIII. A number of technical calculations are delegated to
Appendixes A–E.

II. MODEL OF EDGE TRANSPORT

A. Charge and energy transport

Our starting point is the generic edge segment with two
attached contacts, depicted in Fig. 3. Charge transport along
this segment is described by [44,67]

∂x �V (x) = MV �V (x). (3)

Here, �V (x) ≡ [V1(x), . . . ,VN (x)]T (with [...]T denoting vector
transpose) describes the local voltages of N edge channels and
the matrix

MV =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−
∑

n �=1 (lC1,n )−1

χ1ν1

(lC1,2 )−1

χ1ν1
. . .

(lC1,N )−1

χ1ν1

(lC2,1 )−1

χ2ν2
−

∑
n �=2 (lC2,n )−1

χ2ν2
. . .

(lC2,N )−1

χ2ν2

...
...

. . .
...

(lCN,1 )−1

χN νN

(lCN,2 )−1

χN νN
. . . −

∑
n �=N (lCN,n )−1

χN νN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(4)

describes couplings between edge channels in terms of the
channel chiralities χi = ±1 (with +1 and −1 correspond-
ing to downstream and upstream directions, respectively),
filling factor discontinuities νi, and charge equilibration
lengths lC

i, j = lC
j,i between modes i and j. The microscopic

content affecting these lengths can be obtained within a chi-
ral Luttinger liquid approach, see e.g., Refs. [39,46,51]. As
follows, we always label the modes of all edge structures in
Fig. 2 with i = 1 starting from the top. The local electric
currents �I (x) ≡ [I1(x), . . . , IN (x)]T , corresponding to �V (x),
obey a similar equation

∂x �I (x) = MI �I (x), MI = DIMVD−1
I , (5)

with the diagonal matrix DI = diag(χ1ν1, . . . , χnνn). This de-
scription of edge currents was presented also in Ref. [51] and
can further be mapped onto the capacitive circuit model in
Ref. [74]. Coherence effects between successive interchannel
scattering in all these descriptions are neglected (e.g., due to
thermal dephasing), which is a prerequisite for robust conduc-
tance quantization [42–44,67]. The present model therefore
describes incoherent transport along FQH edges, hence the
name.

Similarly to the charge transport, edge energy transport is
described by

∂x �T 2(x) = MT �T 2(x) + δ �V (x), (6)

where �T 2(x) = [T 2
1 (x), . . . , T 2

N (x)]T are the local tempera-
tures (squared), and the matrix

MT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−
∑

n �=1 (lQ
1,n )−1

χ1n1

(lQ
1,2 )−1

χ1n1
. . .

(lQ
1,N )−1

χ1n1

(lQ
2,1 )−1

χ2n2
−

∑
n �=2 (lQ

2,n )−1

χ2n2
. . .

(lQ
2,N )−1

χ2n2

...
...

. . .
...

(lQ
N,1 )−1

χN nN

(lQ
N,2 )−1

χN nN
. . . −

∑
n �=N (lQ

N,n )−1

χN nN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(7)

in which lQ
i, j = lQ

j,i are the thermal equilibration lengths (see
Appendix A for an example). The final term in Eq. (6) is the
Joule heating contribution

δ �V (x)

= e2

hκ0

N∑
n=1

(
[V1(x) − Vn(x)]2

lC
1,nχ1

, . . . ,
[VN (x) − Vn(x)]2

lC
N,nχN

)T

,

(8)

and originates from the voltage drops between the edge chan-
nels. In the matrix MT , the thermal conductance of the edge
modes are described by the numbers ni, which equal 1 for
Abelian edge channels and 1/2 for Majorana edge channels.
These numbers are related to Eq. (1) as

c =
∑

i:χi=+1

ni, (9)

c̄ =
∑

i:χi=−1

ni, (10)

νQ =
∑

i

χini. (11)

245301-4



THERMAL CONDUCTANCE AND NOISE OF MAJORANA … PHYSICAL REVIEW B 107, 245301 (2023)

The local temperatures are further related to local heat cur-
rents as

Ji(x) = niκ0

2
T 2

i (x). (12)

The transport equations (3) and (6) must be supplemented
by boundary conditions that depend on the setup. Boundary
conditions are discussed in more detail in Sec. III.

B. Charge current noise

We now focus on the regime of efficient charge equilibra-
tion, which we denote as δ ≡ L/�C

eq � 1, where L is the edge
length and

�C
eq ≡ max

(
�C

i, j

)
, χi × χ j = −1, (13)

is defined as the largest equilibration length in the set of pairs
of counter-propagating channels. As mentioned in Sec. I, this
condition is normally fulfilled on all FQH edges. Then, the
excess charge current noise S, due to a voltage bias, in any of
the two contacts (equal due to charge conservation), see Fig. 3,
is to good approximation given by [65,66,75]

S � 2e2

h�C
eq

ν−
ν+

(ν+ − ν−)
∫ L

0
dx e

− 2x
�C
eq �(x). (14)

A detailed derivation this formula can be found in Ch. 3 of
Ref. [76]. In Eq. (14), “�” should here, and below, be under-
stood as “equal in the limit of very large δ”. Furthermore,

ν+ =
∑

i:χi=+1

νi, (15)

ν− =
∑

i:χi=−1

νi, (16)

are the total filling factor discontinuities of the downstream
(+) and upstream (−) edge modes respectively. They satisfy
the relations ν+ > ν− and ν = ν+ − ν−, where ν is the effec-
tive filling factor of the edge structure. For a 5/2 − n interface,
we simply have ν = 5/2 − n for δ � 1. The exponential sup-
pression in Eq. (14) follows from the chiral nature of the edge
[65]. It implies that the noise generation is predominantly in-
fluenced by the region of size ∼�C

eq close to the most upstream
contact. We call this the noise spot.

The key quantity in Eq. (14) is the local noise kernel

�(x) ≡ Sloc[δV (x), T+(x), T−(x)]

2gloc[δV (x), T+(x), T−(x)]
, (17)

where Sloc and gloc is the local dc noise and the (dimen-
sionless) tunneling conductance, respectively. It is assumed
that all downstream and upstream edge channels charge-
equilibrate separately very efficiently, e.g., by emanating
from the same (ideal) contact [77]. Importantly, both Sloc

and gloc depend on microscopic details of the edge such
as interchannel interactions, the edge disorder strength, the
local voltage difference between the modes δV (x), and the
thermal equilibration-induced effective temperatures T± of
downstream and upstream edge modes. Appendix B out-
lines how noise kernels are obtained from a bosonization
approach.

Our procedure to find the charge and heat flows along an
edge segment is as follows. We first solve Eqs. (3) and (6) with

FIG. 4. Schematic two-terminal setup for an interface between
regions at filling 5/2 and integers n. For n < 5/2, the round arrow
depicts the downstream direction (in which the charge current flows)
while for n > 5/2, it depicts the upstream direction. Swapping the
magnetic field direction in the latter case restores the arrow direction
to indicate the downstream direction.

suitable boundary conditions. These will depend on the type
of setup. We then use these solutions to compute charge and
thermal conductances, or insert them first into Eqs. (17) and
then (14) to obtain the noise.

III. THERMAL CONDUCTANCE

A. Two-terminal thermal conductance

In this section, we compute the two-terminal thermal
conductance for various 5/2 − n (with n = 2, 3) interfaces
by applying Eq. (6) to the setup in Fig. 4. To this end, we set
the voltages in both contacts equal to zero, V̄ = �V = 0. The
solutions to Eq. (3) are then trivial, �V (x) = 0. For the thermal
transport, the boundary conditions for the top edge segment
read

Ti(0) = T̄ + �T, for χi = +1, (18a)

Ti(L) = T̄ , for χi = −1, (18b)

and for the bottom segment we have

Ti(0) = T̄ , for χi = +1, (19a)

Ti(L) = T̄ + �T, for χi = −1. (19b)

We obtain the heat currents on the top and bottom edge
segments by solving Eq. (6) for

J top
Q ≡

∑
i:χi=+1

Ji(L) −
∑

i:χi=−1

Ji(L), (20)

Jbot
Q ≡

∑
i:χi=+1

Ji(0) −
∑

i:χi=−1

Ji(0), (21)

with Ji(x) given in Eq. (12) [see also Appendix A.9 in
Ref. [76] for details in solving Eq. (6)]. Next, by differentiat-
ing the total edge current with respect to the temperature dif-
ference �T , we obtain the two-terminal thermal conductance

GQ
2T ≡ lim

�T →0

(
d
(
J top

Q + Jbot
Q

)
d�T

)
. (22)

Let us start with the edge structures Pf-2, and aPf-3, which
have only copropagating modes. For both these interfaces,
we readily find GQ

2T/(κ0T̄ ) = 3/2, independently of L and
�

Q
i, j , which follows from the fact that the heat exchanged

between copropagating channels never backscatters, and such
processes can therefore not affect GQ

2T.
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(a) (b)

FIG. 5. (a) Two-terminal thermal conductance GQ
2T (in units of the thermal conductance quantum κ0T̄ ) for the phPf-2 interface as a function

of the degree of pairwise thermal equilibration α [see Eq. (23)]. (b) GQ
2T as a function of the two equilibration parameters α and β [see Eqs. (23)

and (24)] for interfaces phPf-3, aPf-2, and Pf-3.

For the other four interfaces aPf-2, Pf-3, phPf-2, and phPf-
3, we consider only pairwise thermal equilibration between
the counterpropagating channels, see Fig. 2. Thermal equili-
bration between co-propagating channels can be ignored, as
discussed in the previous paragraph. For example, for the Pf-3
interface, we consider only the thermal equilibration between
channel pairs 1-2 and 1-3. As we will show, the thermal con-
ductance then depends on the degrees of thermal equilibration
L/�

Q
i, j between these pairs. To parametrize the equilibration,

we introduce two dimensionless equilibration parameters α

and β as

α = L

�
Q
1,2

and β = L

�
Q
1,3

(23)

for the phPf-2, Pf-3, and aPf-2 interfaces and

α = L

�
Q
1,2

and β = L

�
Q
2,3

(24)

for the phPf-3 structure (note the slight difference in the
definition of β, due to their different structures). We plot the
thermal conductances as functions of α and β in Fig. 5. For
the phPf-2 interface, Fig. 5(a) shows that GQ

2T has a step-like
behavior and transitions from GQ

2T/(κ0T̄ ) = 1/2 → 3/2 with
decreasing α (there is no β parameter for this interface).
For large α the thermal transport is effectively mediated by
a single, “collective mode” with thermal quantum number
ntot = 1 − 1/2 = 1/2. For small α, the two edge channels
are essentially decoupled and heat transport occurs in both
directions along the edge. The thermal quantum numbers of
the channels then add up, ntot = 1 + 1/2 = 3/2, in their con-
tribution to GQ

2T.
The thermal conductance of aPf-2, Pf-3, and phPf-3, is

depicted in Fig. 5(b). For these interfaces, we see that, depend-
ing on which pair of modes that equilibrates most efficiently,
the thermal conductance approaches different limits. More
specifically we have

lim
α→∞
β→∞

GQ
2T = 1

2κ0T̄ , lim
α→∞
β→0

GQ
2T = 1

2κ0T̄ ,

lim
α→0
β→∞

GQ
2T = 3

2κ0T̄ , lim
α→0
β→0

GQ
2T = 5

2κ0T̄ . (25)

Similar to the phPf-2 interface, the maximum value of the con-
ductance is obtained when there is no thermal equilibration
and the contributions of all edge channels along the interface
add up, ntot = 1 + 1 + 1/2 = 5/2, as expected. The value
GQ

2T/(κ0T̄ ) = 1/2 is generated when all edge channels being
fully equilibrated (α, β → ∞) and ntot = 1 − 1 + 1/2 = 1/2,
in accordance with Eq. (2), up to corrections exponentially
small in L. Alternatively, GQ

2T/(κ0T̄ ) = 1/2 is produced for
α → ∞, β → 0, where the edge structure becomes a decou-
pled MM and a pair of two strongly equilibrated bosons,
ntot = 1/2 + 0. The zero here corresponds to a diffusive
correction, which vanishes as ∼α−1 (see, e.g., the Supple-
mental Material of Ref. [66] for a detailed discussion). In
contrast, GQ

2T/(κ0T̄ ) = 3/2 is produced by two decoupled
collective modes generating ntot = 1/2 + 1 = 3/2. The limits
in Eq. (25) are clearly idealized, and real devices have finite
values of α, β. However, to estimate the relative magnitude
of α and β requires detailed microscopic information about
interchannel energy exchange mechanisms, which generically
depend on, e.g., spin, orbital, or valley degrees of freedom of
the LLs. Incorporating these effects is a challenging problem,
which, however, lies beyond the scope of the present paper.

We end this subsection by pointing out that the experimen-
tal value of GQ

2T/(κ0T̄ ) = 1/2 for both 5/2 − 2 and 5/2 − 3
can, at least in principle, be generated from a state other than
the phPf. Consider an edge structure similar to the aPf edge
but with the MM direction reversed. Then, for full thermal
equilibration GQ

2T/(κ0T̄ ) = 1/2 is indeed produced for both
n = 2 and n = 3 (ntot = 1 − 1 + 1/2 = 1/2 and ntot = 1 −
1/2 = 1/2, respectively). The nonequilibrated limits for those
interfaces are, however, GQ

2T/(κ0T̄ ) = 5/2 and GQ
2T/(κ0T̄ ) =

3/2, respectively, which stand in contrast to the phPf, which
has GQ

2T/(κ0T̄ ) = 3/2 and GQ
2T/(κ0T̄ ) = 5/2 in this limit.

B. Thermal Hall conductance

Equation (22) describes the two-terminal thermal conduc-
tance, which we have shown to significantly depend on the
degree of thermal equilibration. Only for efficient thermal
equilibration does GQ

2T take the universal value as speci-
fied in Eq. (2). Note that in Eq. (22), the two edge current
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contributions are added (cf., Fig. 4). By instead subtracting the
two edge currents, one can define a thermal Hall conductance
as

GQ
H ≡ lim

�T →0

(
d
(
J top

Q − Jbot
Q

)
d�T

)
. (26)

In the most general case, the top and bottom edge heat currents
depend on all mutual equilibration lengths between all pairs
of counterpropagating modes. However, within the model in
Sec. II, we prove (see Appendix C for the proof) that for any
edge structure, universality emerges

GQ
H/(κ0T̄ ) = c − c̄ = νQ, (27)

provided the degrees of equilibration on the top and bot-
tom edge segments are equal, even if they are poor. Such
a situation can, e.g., be achieved by designing devices with
equal top and bottom edge segment lengths. Indeed, such a
setup was presented in Ref. [37], in which the thermal Hall
conductance was measured at ν = 2/3 and was found to be
in good agreement with the expected value GQ

H/(κ0T̄ ) = 0.
At the same time, it was found that GQ

2T/(κ0T̄ ) ≈ 0.82, in-
dicating an incomplete thermal equlibration. In the present
context, Figs. 1 and 2 suggest that a Hall type of thermal
conductance measurement for interfaces 5/2 − n would give
GQ

H/(κ0T̄ ) = 7/2 − n, 3/2 − n, and 5/2 − n for the Pf, aPf,
and phPf edges, respectively. A thermal Hall measurement
therefore unambiguously distinguishes between these three
edge structures. This conclusion holds even in the absence of
interfacing, since already n = 0 results in different GQ

H.
Let us end our treatment of the thermal conductance by

emphasizing that for edge states with copropagating channels,
there is no significant advantage gained from a thermal Hall
measurement. By contrast, for edges with counterpropagat-
ing channels, GQ

H provides information directly related to the
state’s topological order, i.e., νQ, independent of the thermal
equilibration (which might be hard to accurately control ex-
perimentally). Finally, we point out that it is simple to check,
that within our model, corresponding conclusions hold for a
similar definition of the charge Hall conductance as well, i.e.,

GH ≡ Itop − Ibot

�V
= ν

e2

h
, (28)

when top and bottom charge equilibrations are identical. Here,
Itop/bottom are defined in perfect analogy with Eqs. (20) and
(21).

IV. NOISE GENERATION ON INTERFACED EDGES

In this section, we compute the noise generated on a
single interfaced edge segment with two attached contacts.
Such a setup has been realized in experiments, see, e.g.,
Refs. [12,36,75]. We are here interested in three cases: First, in
Sec. IV A, we take the two contacts to have equal temperatures
and impose a voltage bias. This is illustrated in Fig 6(a). We
then move on to the case with no applied voltage bias, but let
the two contacts have different temperatures. Here, we first
take the most upstream contact (the left one in the figure) to
be the hot one, see Fig 6(b), and compute in Sec. IV B the
excess noise in the colder, downstream contact. We call this

FIG. 6. Schematic setups for measuring charge current noise (in
the amplifiers depicted in gray) of a single edge segment in response
to (a) a voltage bias, (b) a temperature bias applied in the “down-
stream” (ds) or (c) “upstream” (us) direction.

downstream delta-T noise. Finally, in Sec. IV C we consider
the situation in which the hot contact lies most downstream
and the noise is measured in the upstream, colder contact, see
Fig 6(c). We call this upstream delta-T noise.

A. Voltage biased edge segment

For an applied voltage bias �V , the injected downstream
charge current dissipates heat only close to one of the con-
tacts, when the charge equilibration is efficient (the hot spot
location is independent of the voltage bias direction [65]).
We assume this in the following, which further implies that
in the noise spot region, all charged edge modes equilibrate
to the same electrochemical potential [65,66]. We can then
set δ �V (x � �C

eq ) ≈ �0 [see Eq. (8)], with negligible corrections
∼ exp[−L/�C

eq] � 1 [65]. We further assume that e�V �
kBT̄ , so that in this subsection, we may set the base tempera-
ture T̄ to zero. Our computed noise then amounts to the excess
noise. Such excess noise is generated only if heat from the hot
spot can propagate upstream [see Fig. 6(a)]. This possibility
depends in turn on the edge structure and on how well the edge
channels thermally equilibrate. This feature is captured within
our model in Eq. (14). As follows, we consider the two limits
of either very efficient or very poor thermal equilibration.

1. Efficient thermal equilibration

For efficient thermal equilibration, we start by solving
Eq. (3) for the boundary conditions Vi(0) = �V (we set
V̄ = 0) for χi = +1 and Vi(L) = 0 for χi = −1. This is
done for all the charged edge channels. From the solution,
we extract the voltage drops (8), which we then insert into
Eq. (6), which is finally solved with the boundary conditions
Ti(0)=Ti(L)=0. We give examples of voltage and temperature
profiles in Appendix D. The resulting temperature profiles are
used in Eq. (14). This integral is dominated by the tempera-
tures at the noise spot, i.e., Ti(x � �C

eq ). Moreover, due to the
efficient thermal equilibration, the channel temperatures are
similar in this region. Performing the integration in Eq. (14),
these two features result in noise on Nyquist-Johnson (NJ)
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FIG. 7. (a) Excess (basis temperature T̄ = 0) noise Sexc in units of e3�V/h, where �V is the bias voltage. The noise is
computed vs the charge equilibration parameter δ = L/�C

eq for parameters causing efficient efficient thermal equilibration: (α, β ) =
{(250, 250), (100, 100), (25, 25)} [see Eqs. (23) and (24)], for solid, dashed, and dotted lines, respectively. (b) Same as (a) but in the limit
of absent thermal equilibration α, β → 0. (c) Excess noise in the presence of a temperature gradient �T in downstream (ds) or upstream (us)
direction for very efficient thermal equilibration with (α, β ) = (100, 100). (d) Same as (c) but for absent thermal equilibration. For the phPf-2
interface, we have used δ = δ23, see Fig. 8.

form [78,79]

S � 2e2

h

ν−
ν+

(ν+ − ν−)kBTns, (29)

in terms of an effective noise spot temperature Tns. This tem-
perature depends on the voltage bias �V and the way Tns

depends on L stands is in one-to-one correspondence to the
three possible cases of a thermally equilbirated edge: νQ > 0,
νQ < 0, and νQ = 0 [66]. This classification of the noise was
described in detail in Sec. I.

We first analyze the noise generated on the Pf-2 and aPf-3
interfaces. For these, we have that the noise vanishes identi-
cally, S = 0, for any value of δ and �V . This happens simply
because there are no upstream modes present that can trans-
port heat to the noise spot, and thus both ν− = 0 and �(x) = 0
(the latter equality holds because we set T̄ = 0).

The other four interfaces have c̄ �= 0, but the aPf-2 and
Pf-3 have νQ < 0 whereas phPf-2 and phPf-3 have νQ > 0.
For these four interfaces, we plot the noise S vs δ in Fig. 7(a).
We see that the noise approaches a constant value S � const.
for aPf-2 and Pf-3 but decays exponentially S � exp(−δ) for
phPf-2 and phPf-3. We also see that with increasing thermal
equilibration (increasing α, β) the noise is overall suppressed

for νQ > 0, because the heat that reaches the noise spot is
suppressed even further. In contrast, when νQ < 0, increasing
thermal equilibration leads to enhanced noise since, in this
case, there is more heat propagating upstream to the noise
spot.

2. Absent thermal equilibration

For absent thermal equilibration, downstream and up-
stream edge modes are generally at very different tempera-
tures at the noise spot. To estimate these temperatures, we
follow the approach in Ref. [36] and model the hot spot as
a point-like heat source with power [67]

P0 = e2�V 2

2h

ν−(ν+ − ν−)

ν+
. (30)

We next assume that P0 is equally divided among all edge
channels. The temperature of the modes propagating upstream
from the hot spot is thus approximated as

T− ≈
√

c̄

c + c̄

√
2P0

κ0
. (31)
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FIG. 8. Edge structure of phPf-2 with an additional pair of coun-
terpropagating integer modes. These modes are responsible for Joule
heating in the hot spot and charge partitioning in noise spot.

Since we have set the temperature in the contacts to T̄ = 0,
the downstream modes will have zero temperature at the noise
spot

T+ ≈ 0. (32)

Within the approximations (31) and (32), we compute
noise kernels �(x) in terms of finite and zero-temperature
bosonized Green’s functions. Details of these calculations are
given in Appendix B.

We present the thermally nonequilibrated noise in
Fig. 7(b). Similarly to the case of efficient thermal equilibra-
tion, the Pf-2, and aPf-3 do not generate any excess noise.
For the other interfaces, the noises are essentially constant as
functions of δ, since the heat reaching the noise spot is now in-
dependent of this parameter. The relative magnitude between
the interfaces follow from different noise spot temperatures
due to differing prefactors in Eqs. (14) and (31).

The case of the phPf-2 interface warrants here an extra
discussion. The noise of this interface was a crucial ingredient
in the interpretation of the experiment in Ref. [12]. Figure 1
shows that this structure only has a single downstream charge
mode. Hence, no partitioning would be possible and no ex-
cess noise could be generated. However, by recalling that on
sufficiently small lengthscales, x � �C

eq, there are in fact coun-
terpropagating integer modes close to both source and drain
contacts. These modes are responsible both for Joule heating
and charge partitioning. To correctly describe the noise, we
include these modes, see Fig. 8. This procedure introduces
two charge equilibration lengths between each pair of coun-
terpropagating modes. We parametrize them as δ12 ≡ L/�C

12
and δ23 ≡ L/�C

23 in the channel basis {φ1, φ2, φ3, ψ} with
χ = {+1,−1,+1,−1} and ν = {1, 1, 1/2, 0}.

As our next step, we assume that the charge equilibration
of the integer channels is much faster than their equilibra-
tion with the bosonic 1/2 mode. In terms of our equilibration
parameters, this amounts to taking δ12 � δ23. The main
contribution to the Joule heating then comes from the equi-
libration of integer channels. This limit is consistent with a
quantized expected charge conductance, since we have that

lim
δ12 → ∞
δ23 → 0

G2T = 1

2

e2

h
, (33)

which was indeed observed experimentally for the 5/2 − 2
interface [12]. With this implementation, our model describes
how the phPf-2 interface generates noise in the thermally

nonequilibrated limit, see Fig. 7(d). We note that this noise is
similar in magnitude as the phPf-3, in accordance with exper-
imental observations [12], see also the discussion in Sec. VI
below. We further note that the outlined procedure bares a
similarity with implementing edge reconstruction [69–72].
Effects of edge reconstruction are discussed in more detail in
Sec. VII.

B. Downstream delta-T noise

Here, we consider the situation where the two contacts are
at the same potential, but at different temperatures. Excess
charge current noise generated only by a temperature gradient
and in the absence of an average charge current, is known
as “thermally activated shot noise” or “delta-T noise” [80].
This noise has attracted considerable attention lately (for re-
cent work on delta-T noise for weak tunneling between FQH
edges, see Refs. [81–84]). Moreover, delta-T noise is, in fact,
at play in two-terminal thermal conductance measurements
when the central contact is at zero potential (see Sec. VII
below).

We first take the hot contact to lie upstream from the cold
contact, see Fig. 6(b). The boundary conditions are then given
in Eq. (18). We are interested in the noise in the right, cold
contact, which we call downstream delta-T noise (because the
noise is measured downstream from the heat source). Note,
however, that the noise spot lies close to the hot contact (given
that the equilibrated charge flow is from left to right). The
noise is given by a modification of Eq. (14), namely,

S � 2e2

h�C
eq

ν−
ν+

(ν+ − ν−)
∫ L

0
dx e

− 2x
�C
eq �(x)

+ 2e2

h

(ν+ − ν−)2

ν+
kB(T̄ + �T ). (34)

Here, the second term takes into account thermal fluctuations
coming from the hot, left contact [36]. The thermal noise com-
ing from the cold, right contact is suppressed by a factor that
is exponential in δ = L/�C

eq � 1 [65,76]. This term can thus
be safely neglected due to the efficient charge equilibration.
In contrast to the voltage biased edge segment (where we
assumed e�V � kBT̄ ≈ 0), we focus here on excess noise
obtained by subtracting from Eq. (34) the equilibrium noise
in the cold contact, i.e.,

Sexcess ≡ S − 2G2TkBT̄ , (35)

where G2T = e2(ν+ − ν−)/h is the two-terminal charge con-
ductance.

1. Efficient thermal equilibration

For efficient thermal equilibration, we find that the first
term in Eq. (34) for any edge structure, reduces to 2e2ν−(ν+ −
ν−)kB(T + �T )/(hν+). Adding this to the second term, we
obtain the downstream delta-T noise as

Sds � 2
e2

h
(ν+ − ν−)kB(T̄ + �T )

= 2G2TkB(T̄ + �T ). (36)
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TABLE II. Correction factors for thermally nonequilibrated
downstream (ds) excess delta-T noise [see Eq. (38)] for small and
large applied bias �T .

λds phPf-3 aPf-2 phPf-2

�T � T̄ 3/4 5/8 4/5

�T � T̄ 0.865 0.774 0.899

The corresponding downstream excess noise (35) reduces to

Sexcess
ds � 2G2TkB�T . (37)

Hence, the excess downstream delta-T noise for strong ther-
mal equilibration equals the excess NJ-like noise emanating
from the hot contact. This result is independent of νQ. We also
note that for �T = 0, the entire edge segment and the contacts
are in thermal equilibrium and Sds = 2G2TkBT̄ ⇒ Sexcess

ds = 0
as expected. In Fig. 7(c), we plot, for phPf-3, phPf-2, Pf-3,
and aPf-2, Sexcess

ds /(2G2TkB) vs δ. We see that with increasing
δ this ratio approaches unity as expected. For aPf-3 and Pf-2,
where c̄ = 0, we have trivially Sexcess

ds = 2G2TkB�T for all δ.

2. Absent thermal equilibration

In case of absent thermal equilibration, edge modes can
have very different temperatures at the noise spot. When com-
puting the noise in Eq. (34) for this case, we find that the
excess noise still takes a form similar to the NJ noise (37),
namely,

Sexcess
ds = 2λdsG2TkB�T . (38)

Here, λds ∼ O(1) is a correction factor [36], which reflects
the poor thermal equilibration. Its origin is the first term in
Eq. (34): For poor thermal equilibration, this term does take
the simple form ∼kB(T + �T ) that produced Eq. (36). In-
stead, we compute (see Appendix B) the noise kernels with
distinct temperatures at the noise spot and insert these kernels
in Eqs. (34) and (35). We then obtain Eq. (38) with the correc-
tion factors λds.

In Table II, we give the values of λds for weak temperature
bias �T � T̄ and strong bias �T � T̄ (see Appendix B 2
for the derivation). Note that the values are obtained in the
extreme limit of no thermal equilibration, while full equi-
libration amounts to λds = 1 according to Eq. (37). Partial
equilibration then corresponds to values larger than those in
Table II, but still below 1. We use the strong bias values for
the plots in Fig. 7(d).

C. Upstream delta-T noise

We now analyze the situation where the hot contact lies
downstream to the cold contact, as depicted in Fig. 6(c). The
noise is measured in the cold, upstream contact and we call
this noise upstream noise (since noise is measured upstream
of the heat source). Note that also in this case, the noise spot
is close to the left contact. The boundary conditions are now

TABLE III. Correction factors for thermally nonequilibrated up-
stream (us) excess delta-T noise [see Eq. (41)] for small and large
applied bias �T .

λus phPf-3 aPf-2 phPf-2

�T � T̄ 3/4 7/8 7/10

�T � T̄ 0.365 0.438 0.338

given in Eq. (19) and the noise reads

S � 2e2

h�C
eq

ν−
ν+

(ν+ − ν−)
∫ L

0
dx e

− 2x
�C
eq �(x)

+ 2e2

h

(ν+ − ν−)2

ν+
kBT̄ . (39)

The difference between Eq. (34) and Eq. (39) lies only in the
temperature entering the last term: Now the thermal charge
fluctuations from the hot, right contact are exponentially sup-
pressed in δ = L/�C

eq. The definition of excess noise (35) holds
also for the upstream delta-T noise.

1. Efficient thermal equilibration

Whether the noise spot acquires a temperature larger than
T̄ depends, for efficient thermal equilibration, strongly on
the thermal quantum number νQ in Eq. (1). For νQ > 0, the
upstream heat flow is exponentially small in δ and the result-
ing noise is to excellent approximation given as the NJ noise
corresponding to the cold contact

Sus � 2G2TkBT̄ . (40)

This implies Sexcess
us = 0 for all edges with νQ > 0. For νQ � 0,

the situation is similar to the voltage biased and thermally
equilibrated edge in Sec. IV A 1. The only difference is that
instead of heat coming from dissipation in the hot spot, it
comes from a heated contact. Hence, the classification pre-
sented in Ref. [66] (this classification was outlined in Sec. I)
carries over to thermally equilibrated, upstream delta-T noise.

We plot the upstream, equilibrated delta-T noise in
Fig. 7(c). The interfaces Pf-2, aPf-3, phPf-2, and phPf-3 all
have νQ > 0 (relative to their charge flows) and their upstream
delta-T noises therefore either vanish identically S = 0 (aPf-2
and Pf-3) or decay exponentially in δ (aPf-3 and Pf-2). Due
to the single Majorana mode on all interfaces, none of them
have νQ = 0. For aPf-2 and Pf-3, νQ < 0 and Sexcess

us reaches a
constant value with increasing δ.

2. Absent thermal equilibration

For very poor thermal equilibration, upstream excess delta-
T noise becomes possible in the presence of upstream modes,
c̄ �= 0. For c̄ = 0, we have that Sus � 2G2TT̄ ⇒ Sexcess

us � 0.
This is the case for Pf-2 and aPf-3 interfaces.

All other interfaces have c̄ �= 0. We compute the noise
kernels for those in Appendix B. The resulting noise can be
written as

Sexcess
us = 2λusG2TkB�T, (41)

with λus given in Table III, for both weak, �T � T̄ ,
and strong temperature bias �T � T̄ . Since the thermally
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FIG. 9. Noise kernel � dependencies on the base temperature T̄
(here, we set T̄ = 0.1 for concreteness) and applied bias �T , for
poor thermal equilibration. The boxed areas correspond to regions
in which the approximation for weak or strong biases (wb and
sb, respectively) are valid, see Appendix B 4. The downstream and
upstream noise kernels are identical for all �T, T̄ for the phPf-3
interface.

equilibrated Sexcess
us depends on νQ, we do not expect a contin-

uous limit for λus, as was the case for Sexcess
ds . The strong bias

values for λus are used for the plots in Fig. 7(d): The c̄ �= 0
interfaces display constant noise vs δ.

The results for the various types of noise computed in
Sec. IV are summarized in Table I.

D. Downstream-upstream symmetry of phPf-3
for absent thermal equilibration

Examination of λds and λus exposes a unique relation for
the phPf-3 interface. For strong applied biases, we have for
this interface that λds ≡ 0.5 + λus. The constant offset fol-
lows from Eqs. (34) and (39) together with the fact that for
the phPf-3 the noise kernels for excess delta-T noise in the
down- and upstream bias configurations are identical, see
Appendix B 4. By computing the noise kernels for general
�T/T̄ , we find that the above downstream-upstream sym-
metry holds for all �T (as long as the thermal equilibration
is poor). In Fig. 9, this result is visualized by overlapping
solid and dashed lines for all �T at constant T̄ only for the
phPf-3 (blue). We present an experimental method to test this
symmetry in Sec. VII.

V. TEMPERATURE DEPENDENCE OF THERMAL
EQUILIBRATION LENGTHS

Here, we discuss the impact of the base temperature T̄
on the thermal equilibration. The degree of this equilibration
is determined by parameters on the form L/�Q

eq. Thus, to
investigate phenomena related to thermal equilibration, one
may either tune L, which requires advanced devices (see, e.g.,
Ref. [36]), or tune �Q

eq through its temperature dependence.
Hence, this dependence is an important edge characteristic, as
it determines

(i) The value of the two-terminal thermal conductance GQ
2T

for a given temperature T̄ and edge length L [41].
(ii) The sharpness of transitions between plateaus of quan-

tized two-terminal thermal conductances (see Sec. III A).
(iii) The magnitude of the noise generated on a single edge

segment (see Sec. III B).
In the remainder of this section, we therefore discuss the

temperature dependence of various �
Q
i, j for our considered

interfaces.
In Ref. [46], the authors argued that most thermal equili-

bration lengths scale as

�Q
eq ∼ T̄ −2, (42)

due to tunneling of particles between the edge channels. The
exponent in (42) comes from the fact that in most cases, the
most relevant (in the renormalization group sense) tunneling
operators O take the form

O ∼ ei
∑

j m jφ j or ∼ ψei
∑

j m jφ j . (43)

Here, ψ is a MM, φ j are bosons, and mj are real-valued
numbers indicating the number and charges of particles that
tunnel. When the edge is sufficiently close to a strong disorder
fixed point [43,85–87], the mj take on integer values, which
results in an integer scaling dimension of O, denoted � [30],
and the exponent α = 2(� − 1) in (42) is thus also an integer.
Away from such a point, however, the exponents are expected
to take on smaller, nonuniversal values, which depend on the
interedge interaction strength [43].

An important exception from Eq. (42) is the equilibration
length between a counterpropagating boson and Majorana
mode. The most relevant operator coupling these modes is
instead on the form [46]

O ∼ ∂xφψ i∂xψ. (44)

Essentially, Eq. (44) follows from the fact that it is impossible
to construct tunneling operators between a counterpropagat-
ing boson φ and a MM ψ (the point is that only their
combination can create electrons), and the simplest operator
exchanging energy between the modes is instead of density-
density type. This feature leads to the temperature scaling

�Q
eq ∼ T̄ −4. (45)

We present a detailed derivation of this result in Appendix A.
Equation (45) suggests that, for edges with a counterpropa-
gating boson and a MM, which is the case for phPf-2 and
phPf-3 interfaces (see Fig. 2), there can be unusually sharp
transitions between thermal conductance plateaus. They are
important signatures in thermal conductance measurements.
For example, the phPf-3 interface produces a thermal conduc-
tance transition from GQ

2T/(κ0T̄ ) = 1/2 to GQ
2T/(κ0T̄ ) = 3/2

with decreasing temperature T̄ . The scaling of this transition
is of the sharper form (45), which might enhance the prospects
of its experimental observation at not too low T̄ .
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FIG. 10. Two-terminal thermal conductance GQ
2T (in units of the

thermal conductance quantum κ0T̄ ) for 5/2 − 3 vs T̄ for FQH
interfaces with three modes and two distinct thermal equilibra-
tion lengths. For concreteness, we have chosen numerical values
�I

eq,i ∼ 5 · {10−5, 10−6, 10−7, 10−8} · T̄ −2 and �II
eq ∼ {10−16} · T̄ −4,

such that the transitions take place at temperatures below 10 mK.

Temperature scalings of the thermal equilibration lengths
enter the incoherent model (summarized in Sec. II), as [39]

�
Q
i, j = a

gi, jγi, j (ni − n j )
= aκ0T̄

GQ
i, jγi, j (ni − n j )

, ni �= n j

(46a)

�
Q
i, j = a

gi, jγi, j
= aκ0T̄

GQ
i, jγi, j

, ni = n j (46b)

Here, ni and n j are the central charges of the two modes, γi, j

is a parameter characterizing deviations from the Wiedemann-
Franz law [39,44,51], a is the typical lengthscale for
interchannel heat exchange, and GQ

i, j/(κ0T̄ ) ≡ gi, j are the di-
mensionful and dimensionless thermal conductances of this
exchange. The latter quantities can be computed within the
chiral Luttinger liquid model (see e.g., Refs. [39,46,51]).

For the special case of the counterpropagating boson and
MM, denoted φ2 and ψ , respectively, we have

�
Q
φ,ψ = a

g(nφ − nψ )γφ,ψ

= 2aκ0T̄

GQ
int

(47)

with γφ,ψ = 1 and

GQ
int = 8b2k4

Bπ5�2
0

35h̄6v2
φv4

ψ

T̄ 4κ0T̄ , (48)

as computed in Appendix A. Here, �0 is the bare coupling
strength between the channels, which we assume to be weak,
and vφ , vψ are the propagation velocities of φ and ψ , respec-
tively. The parameter b is an ultraviolet cutoff, with dimension
of length.

Knowledge of the temperature scalings of �
Q
i, j , permits us

to analyze GQ
2T vs T̄ , rather than α, β (as we did in Sec. III).

As an instructive example, we show in Fig. 10 such a plot
for the phPf-3 interface. The characteristic feature is the
presence of plateaus with different quantized values of GQ

2T.
These plateaus are associated to different regimes of equi-
librated and nonequilibrated edge modes. In this particular

example, there are two interplateau transitions, which we label
I and II . These transitions are related to thermal equilibra-
tion by electron tunneling between φ1 and ψ × φ2, transition
I , and by a density-density interaction between φ2 and the
MM ψ , transition II . From the above analysis, we have
different temperature scalings for these transitions, namely
�I

eq ∼ T̄ −2 and �II
eq ∼ T̄ −4. Figure 10 shows that for full ther-

mal equilibration (high T̄ ), GQ
2T/(kBT̄ ) = 1 − 1 + 1/2 = 1/2,

which transitions at lower T̄ to the value for absent thermal
equilibration, GQ

2T/(kBT̄ ) = 1 + 1 + 1/2 = 5/2. However, an
intermediate plateau emerges in a temperature regime when
there is a separation of the two equilibration length scales
�I

eq � �II
eq . This plateau vanishes for �I

eq ≈ �II
eq within the

range of the transition temperature. A similar analysis can be
performed for any edge structure, with its own specific set of
plateaus and transitions. The set of these two features can be
viewed as a “pin-code” of the FQH edge structure [41].

In the above analysis, we have have neglected interference
effects from scattering of bosonic plasmon waves on contact-
edge interfaces [43,88,89]. This amounts to assuming L �
LT ∼ T̄ −1, where LT is a characteristic thermal lengthscale.
Including the interference effects can potentially generate ad-
ditional plateaus [36,43].

VI. COMPARISON TO EXPERIMENTS

In this section, we compare the results from our model
to the recent experimental findings in Refs. [11,12]. We start
with the thermal conductance. In Ref. [11], the two-terminal
thermal conductance at the interface between the 5/2 state and
integer states n was observed to obey GQ

2T/(κ0T̄ ) ≈ |5/2 − n|.
We see that this result is incompatible with both the Pf
and aPf edge structures, since for Pf-2 and aPf-3, we have
GQ

2T/(κ0T̄ ) = 3/2, independently of the thermal equilibration
(see Sec. III A). The measured conductances can further be
compared with Fig. 5, where we note that the measured values
are consistent with a phPf edge structure, if we assume an
efficient thermal equilibration when interfaced with integer
modes. Indeed, among the three non-Abelian candidates in
Fig. 1, the phPf is the only one compatible with the expected
values of GQ

2T for all interfaced structures.
We further note that with decreasing temperature, and thus

decreasing degree of equilibration (see Sec. V), the thermal
conductance should increase and saturate at GQ

2T/(κ0T̄ ) = 3/2
and 5/2 for the phPf-2 and phPf-3 edges, respectively. As
mentioned in the end of Sec. III A the nonequilibrated limit
is an important check for uniquely pinpointing the edge struc-
ture. This could be tested in future experiments similar to that
in Ref. [41].

We next move on to the noise. Reference [12] reported
measurements of excess noise at interfaces of 5/2 − n for
an applied voltage bias. From our analysis in Sec. III B, we
note that for both Pf-2, and aPf-3, which consist of only
copropagating modes over long lengthscales, no excess noise
is expected for any degree of thermal equilibration. As finite,
but with L and T̄ decreasing, noise was found for both 5/2 − 2
and 5/2 − 3, the most compatible edge structure is, just as in
Ref. [12], the phPf, this time assuming the thermal equilibra-
tion to be neither full nor absent but rather in an intermediate
regime.
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Our model allows a comparison on a quantitative level: We
compare the measured noise data with our Figs. 7(a) and 7(b).
Due to the the well-established charge conductance quanti-
zation in Ref. [12], we can safely assume efficient charge
equilibration δ � 1. From our calculations, we find that the
slope of the noise vs bias voltage curve for the phPf-3 interface
approximately evaluates to

0 � ∂�V Sexc
phPf−3 � 0.113

e3

h
≈ 0.70 × 10−30 A2

µV Hz
, (49)

between the two limits of absent and full thermal equilibration
(see Appendix E for conversion between units). For this com-
parison we have chosen δ > 10. The only constraint on δ we
have is to reproduce a correctly quantized charge conductance
of G2T/(e2/h) ≈ 1/2 to good accuracy. Since this is still the
case 5 < δ < 10, our upper bound for the noise is slightly
enhanced for such choices. Access to more accurate estimates
of δ from experimental data would improve the accuracy of
our noise magnitudes. For the phPf-2 interface, our noise
approximately evaluates to

0 � ∂�V Sexc
phPf−2 � 0.086

e3

h
≈ 0.54 × 10−30 A2

µV Hz
, (50)

i.e., it is of similar magnitude to the one for phPf-3. In com-
parison, the experimentally observed noise characteristics for
both 5/2 − 2 and 5/2 − 3 were [12]

∂�V Sexc
measured ≈ 0.1 × 10−30 A2

µV Hz
, (51)

which lies within our estimate and is moreover compatible
with interfaced phPf edges that are not fully thermal equili-
brated.

We finally estimate the thermal equilibration lengths from
noise data measured at lengths L = {28, 38, 48, 58} µm in
Ref. [12], see Fig. 11. For concreteness, we use the phPf-3
edge structure and compute, for a given set of α, β, δ, the
temperature profiles for a given bias �V � T̄ ≈ 0. These
profiles are then used with Eq. (14) to obtain the noise
S(α, β, δ). In Fig. 11, we present S(L) profiles for two sets
of model parameters that reasonably reproduce the observed
length-dependent noise. For set 1 (blue triangles), we have
taken (α, β, δ) = (6, 10, 100) and for set 2 (green triangles),
we took (α, β, δ) = (4, 8, 25). For the shortest length L =
28 µm, the values δ = 100 and δ = 25 correspond to �C

eq ≈
0.28 µm and �C

eq ≈ 1.12 µm, respectively. Both these charge
equilibration lengths accurately produce G2T/(e2/h) = 1/2,
as observed experimentally.

For both parameter sets, we find that thermal equilibration
lengths

3 µm �
{
�

Q
12, �

Q
23

}
� 7 µm (52)

fits the data well.

VII. COMBINED CONDUCTANCE AND NOISE
MEASUREMENTS IN A SINGLE DEVICE

In this section, we propose a device designed for mea-
surements of both GQ

2T and various types of noise in a single
device, see Fig. 12. This device is beneficial for two main

FIG. 11. Length-dependent noise S(L) at the 5/2 − 3 inter-
face. The red squares and dashed, black line are measured
noise data and a fit, respectively, from Ref. [12]. The data is
obtained for interface lengths L = {28, 38, 48, 58} µm and was
normalized to S(L = 28 µm). Blue and green triangles is our com-
puted noise for a phPf-3 interface. For the sets 1 and 2, we
used parameters (α, β, δ) = (6, 10, 100) and (α, β, δ) = (4, 8, 25)
at L = 28 µm respectively, to obtain the normalizing constants
S(L = 28 µm) = {0.023, 0.026}�V × 10−30A2/(µV Hz) and thus
S(L)/S(L = 28 µm).

FIG. 12. Schematic setup to measure both the two-terminal ther-
mal conductance and noise for FQH interfaces. The source contacts
S1, S2, and Sn feed currents into the central contact �, dissipating
power P and establishing the electrical potential V�, see Eqs. (53) and
(54). The dissipated power results in an increased temperature T�,
which can be extracted from excess noise in the downstream contact
A1. Heat is carried away from � by edge modes along interfaces
between gated regions (with fillings ν1, ν2, n, and νin) or with the
vacuum (thick, black lines). Upstream noise for the νin − n interface
can be measured for either P = 0, V� �= 0 or P �= 0, V� = 0, see the
text in Sec. VII.
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reasons: First, it can be used to rule out possible sample-to-
sample differences between separate devices targeted towards
noise and conductance measurements. Second, it can be used
to exclude effects of edge reconstruction [69–72]. To do so is
particularly important, since in its presence, and under con-
ditions of poor thermal equilibration, any edge structure can
produce excess upstream noise. The benefit with our device is
that the two-terminal thermal conductance at poor equilibra-
tion gives access to the total number of edge channels (with
MM’s counted as a “half-channel”). This number can can be
used to ascertain that in the noise measurements there is no
upstream heat transport in nontopological, spurious upstream
modes from edge reconstruction. In describing our device
below, we will also point out some subtleties in GQ

2T mea-
surement schemes for states with counter-propagating edge
channels, and how to remedy them.

In Fig. 12, four QH regions are connected to a central, float-
ing contact �, which can act as a hot reservoir when electrical
currents impinge on it. We take the three regions with fillings
ν1, ν2, and n as the source regions: the source contacts S1, S2,
and Sn inject currents I1 = ν1V1e2/h, I2 = ν2V2e2/h, and In =
nVne2/h, respectively, and V1, V2, and Vn are the corresponding
three bias voltages with respect to ground. The drain contacts
D1, D2, Di, and Din are grounded, and the amplifiers A1 and Ai

are floating. Note that the currents that emanate from � and
enter the amplifiers are emitted to grounded contacts. Thus,
these currents do not propagate back into source contacts. The
filling in the region νin is here tuned to 5/2 (or to some other
state of interest), and this region is interfaced with a region
with integer filling n.

The contact potential V� and the dissipated electrical power
P can be tuned independently. They are given as

V� = h

e2

I1 + I2 + I3

ν1 + ν2 + max(νin, n)
, (53)

P = h

2e2

(
I2
1

ν1
+ I2

2

ν2
+ I2

n

n
− (I1 + I2 + In)2

ν1 + ν2 + max(νin, n)

)
. (54)

Strictly speaking, Eq. (54) holds when the sourced edges
have νQ > 0. If this is not the case, it is not evident that all
dissipated power heats the central contact. Instead, some Joule
heat can leak out back on the source edge via upstream modes,
without heating the contact. This produces a correction to
Eq. (54), which will influence how the thermal conductance
is extracted from the experimental data. We refer to Ref. [36]
for a detailed discussion on this issue. However, this possible
complication can be avoided by tuning the fillings ν1 and ν2

to, e.g., integer values. Then, it is certain that Eq. (54) is the
dissipated power in the contact. In the following, we assume
that this is the case.

Two operational modes with the device are of particular
interest for this paper:

(i) P = 0 and V� �= 0 and the noise in the amplifier Ai

is measured vs V�. This configuration realizes the setup in
Fig. 6(a), upon the identification V� = �V and assuming n <

5/2. For n > 5/2, the charge flow direction along the interface
is from Ai to � but this flow can be reversed by swapping
the magnetic field direction [12]. Since Ai is floating, no net
current is injected into � for n > 5/2. Note that the charge

fluctuations emanating from the hot contact in Fig. 12 is split
between four edges. This requires a minor modification of
the downstream noise as compared to Secs. IV A and IV B.
Specifically, the device geometry is taken into account by
substituting in Eqs. (36),(37), (40), and (41),

G2T → G∗
m,

1

G∗
m

= 1

Gm
+ 1∑

k �=m Gk
. (55)

Here, Gm is the equilibrated charge conductance of edge m,
where m = 1, (in − n) labels the two outgoing edges with
amplifiers and k = 1, 2, in, (in − n) labels all outgoing edges.

(ii) P �= 0 and V� = 0. This produces the situations con-
sidered in Figs. 6(b) and 6(c). A measurement of the excess
noise downstream of the central contact [see Fig. 6(b)] allows
to determine its excess temperature T� = T̄ + �T . In turn,
access to this noise allows extraction of the two-terminal
thermal conductance [33]. Let us mention that V� = 0 is not
a necessary condition when measuring the thermal conduc-
tance. However, finite V� leads to additional hot spots in
the device (close to all drain contacts downstream of �).
In the presence of upstream heat flow, the generated heat at
these points could potentially effect the heating of the central
contact. Such complications are absent for V� = 0. Ideally,
the downstream noise for this purpose is probed on an edge
with c̄ = 0 (e.g., at contact A1 with ν1 tuned to an integer).
This choice avoids possible corrections to the downstream
thermal noise, compare Eq. (36) and Eq. (38). In fact, it is
very useful to compare the downstream noises in A1 and Ai

to investigate the validity of the NJ relation [78,79] for QH
states with counter-propagating channels and poor thermal
equilibration. To illustrate this, we consider ν1 having only
downstream modes. The excess noise in A1 is then obtained
from Eq. (36) as

Sexcess,1
ds

2G∗
1

= kB�T . (56)

With the assumption of no upstream modes above, this expres-
sion holds independently of any equilibration. In contrast, the
excess noise in Ai reads

Sexcess,i
ds

2G∗
in−n

= λdskB�T, (57)

where λds does depends on the thermal equilibration of
the νin − n interface. Only for full thermal equilibration is
λds = 1.

The ratio between Eq. (56) and Eq. (57) allows extraction
of λds,

λds =
(

Sexcess,i
ds

2G∗
in−n

)
×
(

Sexcess,1
ds

2G∗
1

)−1

. (58)

We next move on to upstream noise measurements. By
swapping νin and n, the noise in Ai corresponds to upstream
delta-T noise as presented in Fig. 6(c) [again, the substitution
(55) is needed]. Similarly to the downstream delta-T noise,
the upstream delta-T can be measured vs �T where the latter
is obtained from Eq. (56).
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Finally, we discuss measurements of the phPf-3
downstream-upstream symmetry of the delta-T noise at poor
thermal equilibration, as presented in Sec. IV D. To detect
this symmetry, we propose to first measure the downstream
delta-T noise (34), but in contrast to the excess noise (35),
one subtracts in this case the hot contact thermal noise, i.e.,

Sds
�T ≡ S − 2G∗

in−nkB(T̄ + �T ) = G∗
in−n

2
�ds. (59)

This quantity can then be compared with the upstream delta-T
noise (39) for which the cold contact thermal noise is sub-
tracted

Sus
�T ≡ S − 2G∗

in−nkBT̄ = G∗
in−n

2
�us. (60)

In going from Eqs. (34) and (39) to Eqs. (59) and (60),
we have again used the conductance substitution (55). The
downstream-upstream symmetry is now exposed in the ratio

Sds
�T

Sus
�T

= �ds

�us
, (61)

which uniquely equals unity for the phPf-3 interface. Compar-
ison of delta-T noises for thermally nonequilibrated interfaces
thus provides another experimental signature to distinguish
between non-Abelian candidate states.

VIII. SUMMARY AND CONCLUSIONS

We have presented a comprehensive theoretical description
of quantum transport along interfaces formed between integer
(n = 2 and n = 3) QH states and non-Abelian Pf, aPf, and
phPf candidates for the ν = 5/2 state. Such interfaces isolate
the “non-Abelian part” of the edge and was used in recent ex-
periments [11,12], to distinguish between different candidate
theories.

For such interfaces and experiments, we have here in detail
determined the impact of thermal equilibration on the edge
thermal conductance as well as on excess noise on volt-
age or temperature biased edge segments (so-called delta-T
noise). In contrast to Abelian edges, non-Abelian 5/2 − n
interfaces feature Majorana modes, which although charge
neutral, may influence the charge current noise generated
on the edge. A major finding is that non-Abelian interfaces
with counterpropagating modes are highly sensitive to thermal
equilibration. This feature produces a significant length and
temperature dependence for the two-terminal thermal con-
ductance. For the noise, the degree of thermal equilibration
influences the noise magnitude, the length dependence of
the noise, as well as the Nyquist-Johnson relation for charge
current noise emanating from a heated contact. Our more
quantitative results are summarized in Table I.

In contrast to the two-terminal thermal conductance and the
noise, we have proved that for the thermal Hall conductance,
as it was defined in Eq. (27), the thermal equilibration de-
pendency drops out for a generic edge structure, provided the
two involved edge segments have the same degree of thermal
equilibration. Such experimental conditions were put forward
in Ref. [37]. Our results suggest that a similar experiment
performed at ν = 5/2 provides a clear distinction between all
candidate states, without any interfacing.

The authors of Refs. [11,12], interpreted their noise and
thermal conductance measurements as pointing towards the
phPf as the realized state in GaAs/AlGaAs. On the qualitative
level, our findings favor such an interpretation as well. We
further computed the voltage biased noise for phPf-2 and
phPf-3 interfaces, and our results are quantitatively consistent
with the experimentally obtained values. Importantly, our cal-
culations show that the measured noise magnitude is indeed
consistent with a FQH edge that is not fully thermally equi-
librated, which was a crucial feature for the interpretation in
Ref. [12].

We would like to further emphasize that the interpretation
in Ref. [12] favoring the phPf state is based on the absence
of edge reconstruction. If this effect would be present, any
edge can generate noise for poor thermal equilibration. This
severely complicates the interpretation of the experimental
data. Ideally, one would therefore like to confidently rule out
such effects. To address this problem, we proposed a device to
do precisely that, by allowing thermal conductance and noise
measurements in the same sample. Combining such measure-
ments permits an unambiguous determination of the edge
structure. We also pointed out some potential issues (high-
lighted previously in Ref. [36]) with the standard two-terminal
thermal conductance setup [33] for edges with counterpropa-
gating modes. Here, we proposed concrete improvements of
the setup in order to mitigate these issues.

While our paper targeted the famous ν = 5/2 state, we
envision that it can be generalized for the purpose of pinpoint-
ing edge structures of other exotic FQH states, such as the
even-denominator states in graphene [90–96] or the state at
ν = 12/5 [97–99].

Some of the results in this paper were reported in the
Master thesis Ref. [76].
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APPENDIX A: HEAT EXCHANGE BETWEEN
COUNTER-PROPAGATING BOSON

AND MAJORANA MODES

The phPf-2 edge structure, depicted in Fig. 2, consists of
two modes: One bosonic mode φ and one Majorana mode
ψ . This structure is valid for lengthscales L � �C

eq, where the
contribution of integer edge modes can be neglected. A low-
energy effective description of the two counterpropagating
modes is then given by the free Lagrangian density

L0 = 2

4π
∂xφ(∂t − vφ∂x )∂xφ + iψ (−∂t − vψ∂x )ψ, (A1)
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where vφ and vψ are the mode velocities. Our goal is to
compute the heat exchange between the two modes due to
a coupling between them. The edge electron operator reads
ψei2φ , so we cannot introduce electron or quasiparticle tun-
neling operators to couple these modes. Instead, the simplest,
most relevant (in the renormalization group sense) operator
coupling the channels is given by the density-density operator
[46]

O = ∂xφψ i∂xψ. (A2)

We therefore add to L0 the point-like perturbation

LT = �0δ(x)∂xφψ i∂xψ, (A3)

where �0 is the coupling constant, assumed to be weak. We
thus seek the heat current and intermode thermal conductance
induced by LT , treated as a weak perturbation.

To do so, we consider the unperturbed bosonic energy
current, which is given in terms of the stress energy tensor
of the upstream bosonic field Tφ ≡ (∂xφ)2, as [32]

J (0)
Q,φ (d, t ) = h̄

v2
φ

2π
Tφ (t̃ ). (A4)

Here, t̃ = t − d
vφ

is a shifted time referring to the transport of
energy a small distance d away from the point x = 0. In the
interaction picture, the average heat current in the presence of
LT , can be written as

〈JQ,φ (t )〉 = 〈
T e

i
h̄

∫
t H ′(t )J (0)

Q,φ (t̃ )e− i
h̄

∫
t H ′(t )

〉
, (A5)

where H ′ is the Hamiltonian corresponding to LT , and T
denotes time ordering. We next expand the time-evolution
operators up to O(�2

0 ). Collecting terms corresponding to the
same order in �0, the first and second-order correction to the
heat current become

J (1)
Q,φ (t ) = i

h̄

∫ t

−∞
dt ′[H ′(t ′), J (0)

Q,φ (t̃ )
]

(A6)

and

J (2)
Q,φ (t ) = i2

h̄2

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′[H ′(t ′′),

[
H ′(t ′), J (0)

Q,φ (t̃ )
]]

,

(A7)

respectively. The commutators in these expressions can be
computed with operator product expansions with the stress
energy tensor [30]. After some algebra, we find the corrections
to the average energy current in terms of the modes Green’s
functions as 〈

J (1)
Q,φ (t )

〉 = 0 (A8)

and 〈
J (2)

Q,φ (t )
〉 = �2

0

h̄

∫ ∞

−∞
(∂τ Gφ (τ ))Gψ (τ ) dτ. (A9)

In Eq. (A9), the integrand is given in terms of the finite
temperatures Green’s functions, Gφ (τ ) and Gψ (τ ) [30], which
read

Gφ (τ ) ≡ 〈∂xφ(τ, 0)∂xφ(0, 0)〉

=
[
πbkBTφ

h̄vφ

csc

(
πkBTφ

h̄vφ

(b − ivφτ )

)]2

. (A10)

with b the UV cutoff, and

Gψ (τ ) ≡〈Tψ (τ, 0)Tψ (0, 0)〉

=
[
πbkBTψ

h̄vψ

csc

(
πkBTψ

h̄vψ

(b − ivψτ )

)]4

+ c2

36

(
πkBTψ

h̄vψ

)4

, (A11)

where c = 1/2 and Tψ = ψ i∂xψ for the MM ψ .
For completeness, we give also the correlation function for

a tunneling operator of the form O ∼ ψei2φ1+φ2 . From the
statistical independence of the involved fields we obtain

〈O(τ )O†(0)〉 ∝ Gφ1 (τ )Gφ2 (τ )Gψ (τ ), (A12)

with

Gφ (τ ) ≡ 〈eiνφφ(τ,0)eiνφφ(0,0)〉

=
[
πbkBTφ

h̄vφ

csc

(
πkBTφ

h̄vφ

(b − ivφτ )

)]1/νφ

(A13)

in which νφ ∈ {1/2, 1}, and

Gψ (τ ) ≡ 〈ψ (τ, 0)ψ (0, 0)〉

=
[
πbkBTψ

h̄vψ

csc

(
πkBTψ

h̄vψ

(b − ivψτ )

)]
. (A14)

Next, we insert the expressions for Gφ (τ ) from Eq. (A10) and
Gψ (τ ) from Eq. (A11) into Eq. (A9) and shift variables {τ →
τ + i b

vφ
− i h̄βφ

2 }. Following Ref. [100], the integral boundaries
are switched back for a properly introduced cut-off b that sat-
isfies h̄vφβφ > b. Setting the temperatures Tψ = T̄ + �T

2 and
Tφ = T̄ − �T

2 , gives to leading order in �T the interaction
induced heat current

〈
J (2)

Q,φ (t )
〉 = 8b2k6

Bπ7�2
0

105h̄7v2
φv4

ψ

T̄ 5�T . (A15)

The corresponding interaction thermal conductance thus reads

GQ
int = lim

�T →0

(
d

d�T

〈
J (2)

Q,φ

〉) = 8b2k4
Bπ5�2

0

35h̄6v2
φv4

ψ

T̄ 4κ0T̄ . (A16)

As our final step, we consider an array of points, distanced
with the length a, with couplings on the form (A3) and take
the continuum limit (see Refs. [39,51,65,67]). This procedure
relates the conductance (A16) to the thermal equilibration
length as

�Q
eq = a

gγφ,ψ (nφ − nψ )
= 2a

gγφ,ψ

= 2aκ0T̄

GQ
intγ

∼ T̄ −4, (A17)

which is Eq. (47). For the interaction (A3), we have γφ,ψ = 1.

APPENDIX B: COMPUTATION OF NOISE KERNELS

Our approach to compute noise kernels �(x) =
Sloc(x)/[2gloc(x)] follows that in Ref. [75]. The local
noise Sloc and local tunneling conductance gloc generically
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read

Sloc(x) ≈ 4
∫ ∞

−∞
〈O(τ, 0)O†(0, 0)〉 dτ (B1)

and

gloc(x) ≈ 2i
∫ ∞

−∞
τ 〈O(τ, 0)O†(0, 0)〉 dτ. (B2)

Here, we have assumed zero-voltage difference between the
edge channels, since at the noise spot, edge channels equi-
librate to the same electrochemical potential. Furthermore, O
denotes the most relevant tunneling operator coupling charged
edge channels, and the corresponding correlation function can
be expressed as a product of Green’s functions [see Eqs. (A13)
and (A14)] as

〈O(τ, 0)O†(0, 0)〉 = �2
0

(2πb)2

∏
k

Gk (τ, 0). (B3)

Here, k ∈ {ψ, φi∈{1,2}}, b is a short distance cut-off, and �0 is
the bare coupling amplitude. As follows, we compute �(x)
for various interfaces in the two limiting cases of efficient
and absent thermal equilibration. We emphasize that all x
dependence in �(x) enters in the mode temperature profiles
Tk (x).

1. Voltage biased charge current noise for absent
thermal equilibration

a. phPf-3

For this interface, equilibrated charge transport is from
right to left (see Fig. 2). The hot spot and noise spot are
therefore interchanged in comparison to Fig. 6(a). Heat from
the hot spot is transported upstream by the bosonic 1/2 mode.
Absence of thermal equilibration leads, with the procedure
outlined in Sec. IV A 2, to the temperatures Tφ1 = Tψ = T+ =
0 and Tφ2 = T− =

√
4P0
5κ0

. Following the same approach as in
the previous section, using Eqs. (A13) and (A14), we arrive at
the noise kernel

��V
phPf−3 = 12ζ (3)

π2
kBT−, (B4)

where ζ (z) is the Riemann zeta function.

b. aPf-2 and Pf-3

In treating the interfaces aPf-2 and Pf-3, we notice that
they are constructed by the same set of modes but in oppo-
site directions. They are therefore expected to generate the
same charge current noise and thus to have the same form
of �(x), also in absence of thermal equilibration. With use
of Eqs. (31) and (32), the modes’ temperatures are given by

Tφ1 = 0, Tφ2 ≈ Tψ = T− =
√

6P0
5κ0

, we arrive at

��V
aPf−2 = ��V

Pf−3 ≈ 1.604kBT−. (B5)

c. phPf-2

For the phPf-2 interface, we take into account an additional
pair of integer modes, which are not thermally equilibrated
(see the discussion in Sec. IV A 2 and Fig. 8). The charge

transport equation (3) then takes the form

∂x �V (x) = δ12

L

⎛
⎝−χ1/ν1 χ1/ν1 0

χ2/ν2 −χ2/ν2 0
0 0 0

⎞
⎠
⎛
⎝V1(x)

V2(x)
V3(x)

⎞
⎠

+ δ23

L

⎛
⎝0 0 0

0 −χ2/ν2 χ2/ν2

0 χ3/ν3 −χ3/ν3

⎞
⎠
⎛
⎝V1(x)

V2(x)
V3(x)

⎞
⎠ (B6)

with ν1 = ν2 = 1, ν3 = 1/2 and χ1 = −χ2 = χ3 = 1. The
boundary conditions are

V1(0) = �V, V2(1) = 0 , and V3(0) = �V. (B7)

To ensure a quantized charge conductance, we choose δ12 �
δ23. In general it is not possible to give accurate estimates on
δ12 and δ23 without further experimental data. For our purpose
it is sufficient to adjust them such that G2T/(e2/h) = 1/2 to
good accuracy. Within this description, charge partitioning
occurs mainly within the region 0 � x � δ12. Furthermore,
the Joule heating contribution is nonzero and leads to a total
dissipated power of

P0 = 3

π2

e2V 2
0

hκ0

∫ δ12

0

[
δ12(V1 − V2)2 + δ23(V2 − V3)2

]
dx,

(B8)

where we omitted the x dependence of Vi for notational ease.
The process of interest for the noise characteristics on the
phPf-2 edge is the charge tunneling between the bosonic
channels of filling ν1 = 1 and the electronic mode comprised
of ν2 = 1/2 and the MM ψ . Then, the noise kernel for absent
thermal equilibration is the same as in the phPf-3 case with the

temperature T− =
√

2P0
3κ0

. Following the same steps as before,
the noise is computed vs the charge equilibration length δ23,
giving a noise of similar magnitude as for absent thermal
equilibration on the phPf-3 edge for a ratio 3 � δ12/δ23 � 5.
The deviation from the expected G2T , is less than 0.5% if
δ23 � 8, which is what we assume here.

2. Downstream delta-T noise for absent thermal equilibration

For this type of noise, the appropriate boundary conditions
are given in Eq. (18). We consider the limiting cases of a weak
bias (wb), �T � T̄ and strong bias (sb), �T � T̄ by expand-
ing the expressions to first order in �T/T̄ and setting T̄ = 0,
respectively. We refer to the corresponding noise kernels as
�(wb)(x) and �(sb)(x), respectively. Following the same steps
as in Appendix A, using a shift of variables such that the
mode with the largest temperature, say Tm and thus smallest
βm ≡ [kB(T̄ + �T )]−1 fulfills h̄vmβm > b and performing the
integrals, we arrive at our desired expressions. In case of weak
applied bias T̄ � �T , we find to first order in �T

�
(wb)
phPf−3(x) = 2kBT̄ + kB�T, (B9a)

�
(wb)
aPf−2(x) = 2kBT̄ + kB

2
�T, (B9b)

�
(wb)
phPf−2(x) = 2kBT̄ + 6kB

5
�T, (B9c)
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which reduce to the equilibrium NJ form for vanishing ap-
plied bias �T as expected. For large bias �T � T̄ we obtain
instead

�
(sb)
phPf−3(x) = 12ζ (3)

π2
kB�T, (B10a)

�
(sb)
aPf−2(x) = 9ζ (3)

π2
kB�T, (B10b)

�
(sb)
phPf−2(x) = 17π4

60(π2 log(4) + 3ζ (3))
kB�T . (B10c)

3. Upstream delta-T noise for absent thermal equilibration

For the upstream delta-T noise, we use the boundary con-
ditions from Eq. (19). The noise kernels are computed in a
similar manner as for the downstream delta-T noise. To first
order in �T we find for weak applied biases �T � T̄ ,

�
(wb)
phPf−3(x) = 2kBT̄ + kB�T, (B11a)

�
(wb)
aPf−2(x) = 2kBT̄ + 3kB

2
�T, (B11b)

�
(wb)
phPf−2(x) = 2kBT̄ + 4kB

5
�T, (B11c)

which reduce to equilibrium noise for �T → 0. For strong
bias �T � T̄ , we find

�
(sb)
phPf−3(x) = 12ζ (3)

π2
kB�T, (B12a)

�
(sb)
aPf−2(x) =

(
log(4) + 3ζ (3)

π2

)
kB�T, (B12b)

�
(sb)
phPf−2(x) = π4

60ζ (3)
kB�T . (B12c)

4. Downstream-upstream delta-T noise symmetry of phPf-3
at poor thermal equilibration

As depicted in Fig. 9, the most striking feature is that the
downstream and upstream noise kernels are uniquely equal for
the phPf-3 interface (blue curves in Fig. 9). This equality is
clearly manifest also in the asymptotic expressions: compare
(B9a) and (B11a), respectively (B10a) and (B12a).

Mathematically, this “downstream-upstream symmetry”
follows from the fact that the exponent of the downstream
and upstream sectors in the product of edge mode Green’s
functions [see Eq. (B3)] are equal. More specifically, we have
for the phPf-3 interface that

Gφ1 (τ, T̄ + �T )Gφ2 (τ, T̄ )Gψ (τ, T̄ + �T )

∝ Gφ1 (τ, T̄ )Gφ2 (τ, T̄ + �T )Gψ (τ, T̄ ). (B13)

Here, the first and second line correspond to downstream and
upstream bias conditions, respectively. Moreover, the propor-
tionality factor in Eq. (B13), which includes powers of mode
velocities and temperatures, crucially drops out when dividing
the noise with the conductance to obtain �, see Eq. (17). Rela-
tions similar to (B13) do not hold for any other edge structure
in Fig. 2. Our proposal to test this symmetry is presented in
the end of Sec. VII.

5. Some integrals and their computation

In computing the noise kernel for a voltage biased phPf-3
interface, we face integrals

Sloc ∝
∫ ∞

−∞

sech2(z)

(π + 2iz)2 dz, (B14)

gloc ∝
∫ ∞

−∞

sech2(z)

π + 2iz
dz. (B15)

Integrals of this kind can be solved by using Mittag-Lefflers’
theorem [101], which amounts to expanding the hyperbolic
functions as

sech2(z) = −
∞∑

k=0

[
1

(z − A)2
+ 1

(z + A)2

]
, (B16)

where A = i π
2 (2k + 1). Similar expansions can be found for

other hyperbolic functions, e.g., sech(z). Inserting the series
expansion back into Eqs. (B14) and (B15), exchanging the
order of integration and summation, we arrive at

Sloc ∝ ζ (3)

π2
and gloc ∝ π

6
. (B17)

For other integrals, complex contour integration and the
residue theorem are more useful. For example, in the case of
delta-T noise at phPf-2 we encounter an integral

Sloc ∝
∫ ∞

−∞

1

cosh(z)3(π + 2iz)2
dz. (B18)

Substituting z → 2πt and manipulating the resulting expres-
sion leads to

Sloc ∝ 1

8π

∫ ∞

−∞

1

cosh(2πt )3
(

1
4 − it

)2 dt . (B19)

The right-hand side can now be written as a derivative

Sloc ∝ − 1

8π

∫ ∞

−∞

∂2

∂a2

(
ln(a − it )

cosh(2πt )3

)∣∣∣∣∣
a=1/4

dt

≡ − 1

8π

∂2

∂a2
J (a)

∣∣∣
a=1/4

. (B20)

We next write the function J (a) as an integral along the closed
rectangular contour γ (z), defined by

−R → R → R + i → −R + i → −R, R ∈ R+, (B21)

in the complex z plane as

J (a) = −
∮

γ (z)

ln (�(a − iz))

cosh(2πz)3
dz

= −2π i
∑

i

Res

(
ln (�(a − iz))

cosh(2πz)3
, zi

)
, (B22)

where we used the residue theorem in the final step with
the two third-order poles z1 = i/4 and z2 = 3i/4 enclosed
by γ (z). After some additional algebraic manipulations, we
arrive at

J (a) = 1

8π2

[
ψ (1)(a + 3/4) − ψ (1)(a + 1/4)

]
+ 1

2

[
ln(�(a + 3/4)) − ln(�(a + 1/4))

]
, (B23)
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where ψ (1)(z) = ∂2
z ln �[z] is the trigamma function. Combin-

ing Eqs. (B20) and (B23) gives

1

8π

∫ ∞

−∞

1

cosh(2πt )3
(

1
4 − it

)2 dt = 17π

480
. (B24)

The same method be can be used to produce the following
identity:∫ ∞

−∞

1

cosh(2πt )3(a − it )n
dt = (−1)n−1

(n − 1)!

dnJ (a)

dan
, n ∈ Z+.

(B25)

APPENDIX C: PROOF OF THE UNIVERSALITY
OF GQ

H FOR EQUAL THERMAL EQUILIBRATION
ON TOP AND BOTTOM EDGES

Here, we prove Eq. (27), namely that the thermal Hall
conductance (26) is universal as long as the two edges have
the same degree of equilibration (even if it is poor).

We consider a generic edge structure with k downstream
(ds) and N − k upstream (us) modes, and write the heat trans-
port equation (6) (with δ �V = 0, since we assume no voltage
bias) as

∂x�θ (x) = MT �θ (x). (C1)

Here, we defined �θ (x) = �T 2(x), and the matrix MT (7) satis-
fies the heat current conservation law∑

j

(MT )i j = 0, ∀i. (C2)

The general solution of Eq. (C1) for an edge segment with
length L > 0 can be written as

�θ (L) = eLMT �θ (0), (C3)

which we express in ds and us blockform as(�θds(L)

�θus(L)

)
=

(
A B
C D

)(�θds(0)

�θus(0)

)
. (C4)

Here, the block matrices A ∈ Rk×k , B ∈ Rk×(N−k), C ∈
R(N−k)×k , and D ∈ R(N−k)×(N−k). In terms of these matrices,
the heat conservation law (C2) translates to∑

j

Ai j +
∑

j

Bi j = 1, ∀i, (C5)

∑
j

Ci j +
∑

j

Di j = 1, ∀i. (C6)

Next, we rearrange the terms in Eq. (C4) as(�θds(L)

�θus(0)

)
=

(
A − BD−1C BD−1

−D−1C D−1

)(�θds(0)

�θus(L)

)
. (C7)

Let us now consider the top edge, for which the boundary con-
ditions read �θds(0) = (T̄ + �T )2 × (1, . . . , 1)T

k and �θus(L) =
T̄ 2 × (1, . . . , 1)T

N−k (see Fig. 4). Plugging these quantities into

Eq. (C7), we write the top edge heat current (20) as

J top
Q = κ0

2

⎛
⎝ ∑

i:χi=+1

niθ
i
ds(L) − T̄ 2

∑
i:χi=−1

ni

⎞
⎠

= κ0

2

(
(T̄ + �T )2

∑
i, j:χi=+1

ni(A − BD−1C)i j

+ T̄ 2
∑

i, j:χi=+1

ni(BD−1)i j − T̄ 2
∑

i:χi=−1

ni

)
, (C8)

where in the second line we used Eq. (C7). For the bot-
tom edge, we have reversed boundary conditions �θds(0) =
T̄ 2 × (1, . . . , 1)T

k and �θus(L) = (T̄ + �T )2 × (1, . . . , 1)T
N−k .

The bottom edge heat current (21) then reads

Jbot
Q = − κ0

2

⎛
⎝ ∑

i:χi=+1

niθ
i
ds(L) − T̄ 2

∑
i:χi=−1

ni

⎞
⎠

= κ0

2

⎛
⎝T̄ 2

∑
i, j:χi=+1

ni(A − BD−1C)i j (T̄ + �T )2

+
∑

i, j:χi=+1

ni(BD−1)i j − (T̄ + �T )2
∑

i:χi=−1

ni

⎞
⎠.

(C9)

The crucial next step is the assumption that the degrees of ther-
mal equilibration on the top and bottom edges are identical.
This translates to identical block matrices A, B, C, and D for
the two edges. Then, and only then, can we combine the two
currents as

J top
Q − Jbot

Q

= κ0

2
((T̄ + �T )2 + T̄ 2)

×
⎛
⎝ ∑

i, j:χi=+1

ni(A − BD−1C + BD−1)i j −
∑

i:χi=−1

ni

⎞
⎠.

(C10)

Now, by using Eqs. (C5) and (C6), and identifying∑
i:χi=+1

ni = c, (C11)

∑
i:χi=−1

ni = c̄, (C12)

the dependence on A,B, C, and D cancels out, and we find
that Eq. (C10) reduces to

J top
Q − Jbot

Q = κ0

2
((T̄ + �T )2 + T̄ 2)(c − c̄). (C13)

Finally, inserting this expression into the definition of GQ
H ,

given in Eq. (26), gives our desired result (27). Our proof
generalizes the theoretical analysis for ν = 2/3 in Ref. [37]
to any edge structure.
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APPENDIX D: COMPUTATION OF VOLTAGE AND
TEMPERATURE PROFILES FOR THE phPf-3 INTERFACE

We compute the noise and thermal conductance of all
considered edge structure by using voltage and temperature
profiles of the edge channels within the incoherent tunneling
model introduced in Sec. II. Below, we present in detail their
derivation for the phPf-3 interface using boundary conditions
for charge current as well as down- and upstream delta-T
noise. Other edge structures are treated in a perfectly analo-
gous manner.

We begin by labeling the edge channels as 1,2,3 from top
to bottom according to Fig. 2. Transport along the edge is
characterized by the channel specific filling factors νi, heat
conductances ni and chiralities χi, given by

(1) ν1 = 1 , n1 = 1 , χ1 = +,
(2) ν2 = 1/2, n2 = 1 , χ2 = −,
(3) ν3 = 0 , n3 = 1/2, χ3 = +.
These values further specify the transport matrices MV

and MT in Eqs. (4) and (7) as

MT = α

⎛
⎝−χ1n2 χ1n2 0

χ2n1 −χ2n1 0
0 0 0

⎞
⎠

+ β

⎛
⎝0 0 0

0 −χ2n3 χ2n3

0 χ3n2 −χ3n2

⎞
⎠ (D1)

and

MV = 1

�C
eq

(−χ1

ν1

χ1

ν1
χ2

ν2
−χ2

ν2

)
. (D2)

1. Charge current noise, �V �= 0, �T = 0

For the charge current noise, the appropriate boundary
conditions are

Ti(0) = 0, for i ∈ {1, 2, 3} (D3a)

Vi(0) = �V, for χi = +1 (D3b)

Vi(1) = 0, for χi = −1. (D3c)

Here, we assumed that e�V � kBT̄ so that we may set the
base temperature T̄ → 0. The voltage profiles �V (x̃) for the
two charge carrying channels along the edge segment are
obtained by solving Eq. (3). They are visualized in Fig. 13.
Clearly the voltage drop occurs only on the right-hand side
of the edge segment. This is the hot spot. Note also that
the voltage profiles are independent of the degree of ther-
mal equilibration, since the processes leading to charge and
thermal equilibration are considered to take place at different
lengthscales. Knowledge of �V (x̃) allows us to further compute
the Joule heating contribution in Eq. (8). For efficient thermal
equilibration, we next solve Eq. (6) and obtain temperature
profiles, which depend on the pairwise degrees of thermal
equilibration: α = L/�

Q
eq,12, β = L/�

Q
eq,23 [see Eq. (24)], as

well as the charge equilibration parameter δ = L/�C
eq. Here, L

denotes the edge segment length and we define here x̃ = x/L
as a rescaled coordinate along the segment. The channel re-
solved temperature profiles are visualized in Fig. 14(a) for
two different sets of thermal equilibration lengths. We see
that large α, β (red curves) are needed to have all channels at

FIG. 13. Channel resolved voltage profiles V1(x) and V2(x) of the
charge carrying channels at phPf-3 using δ = 20.

similar temperatures at the noise spot (i.e., for x̃ � 1) and thus
to describe efficient thermal equilibration. This is contrasted
by the blue curves for which α is not large and the channels
are at different temperatures at the noise spot. Absent thermal
equilibration on the other hand corresponds to �

Q
eq,ij → ∞ and

Eq. (6) simplifies to

∂x̃ �T 2(x̃) = δ �V (x̃). (D4)

The channel resolved temperature profiles for this solution are
given in Fig. 14(b).

2. Downstream delta-T noise, �V = 0, �T �= 0

This type of noise corresponds to the boundary conditions

Vi(0) = 0 = Vi(1), for i ∈ {1, 2, 3} (D5a)

Ti(0) = T̄ + �T, for χi = + (D5b)

Ti(1) = T̄ , for χi = − (D5c)

which leads to trivial voltage profiles Vi(x̃) ≡ 0,∀i. As a con-
sequence, the energy transport equation Eq. (6) simplifies to

∂x̃ �T 2(x̃) = MT �T 2(x̃). (D6)

For efficient thermal equilibration, this equation is solved
to obtain temperature profiles in terms of (α, β ). Here, we
consider the strong temperature bias limit, �T � T̄ , and
consider the temperature profiles to leading order in �T/T̄ .
The resulting temperature profiles are shown in Fig. 14(c).
In case of absent thermal equilibration, the energy transport
equation reads

∂x̃ �T 2(x̃) = 0. (D7)

Hence, the temperature profiles of the channels will be con-
stant and follow immediately from the boundary conditions,
see Fig. 14(d).

3. Upstream delta-T noise, �V = 0, �T �= 0

For the upstream delta-T noise, we use the boundary con-
ditions

Vi(0) = 0 = Vi(1), for i ∈ {1, 2, 3} (D8a)

Ti(0) = T̄ , for χi = + (D8b)

Ti(1) = T̄ + �T, for χi = −. (D8c)
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(a) (b)

(c) (d)

(e) (f)

FIG. 14. Channel resolved temperature profiles for channels 1, 2, and 3 of the phPf-3 interface. The distance along the edge segment
is parametrized x̃ = x/L. (a) Temperature profiles for voltage biased charge current noise for two sets of parameters: Superscript (1) labels
profiles for the choice (α, β, δ) = (100, 100, 20) (red lines) and (2) are profiles for (α, β, δ) = (2, 100, 20) (blue lines). Both parameters sets
correspond to finite thermal equilibration. (b) Same as (a) but for poor thermal equilibration. [(c),(d)] Same as (a) and (b) but for downstream
delta-T noise for strong temperature bias �T � T̄ . [(e),(f)] Same as (a) and (b) but for upstream delta-T noise for strong temperature bias
�T � T̄ .

Hence, the voltage profiles are also trivial Vi(x̃) ≡ 0,∀i and
we obtain the temperature profiles using Eq. (D6) for efficient
and Eq. (D7) for absent thermal equilibration. The resulting
temperature profiles are visualized in Fig. 14(e) and Fig. 14(f),
respectively.

4. Connection of temperature profiles to noise

The phPf-3 interface has νQ > 0 so that for full thermal
equilibration, the heat transport is dominantly in the down-
stream direction [see Fig. 2]. Any upstream heat transport
is exponentially suppressed in L [66]. For the situation of
voltage biased charge current noise, in the regime of efficient
thermal equilibration, we find nonvanishing temperatures only
in the region x̃ ≈ 1. This is seen from the red curves in
Fig. 14(a). This characteristic region, called the hot spot, is
a result of Joule heating close to the right (most downstream)
contact and the dominantly downstream thermal transport. We

see that the effective temperature at the noise spot is very
small: Tns ≈ 0, and we expect small noise as well S � 0.
Indeed, by inserting the temperature profiles in the noise
kernel �(x) = kBT (x̃) in Eq. (14) and integrating, we ob-
tain exponentially suppressed noise S ∼ exp(−δ), plotted in
Fig. 7(a).

For thermally equilibrated down- and upstream delta-T
noise, the boundary conditions for an edge with νQ > 0 im-
ply equal and constant temperatures of all channels at the
noise spot [see Figs. 14(c) and 14(e)]. This leads to a hot
spot temperature Tns = T̄ + �T and Tns = T̄ for down- and
upstream delta-T noise respectively. The corresponding noise
profiles are shown in Fig. 14(c). Absent thermal equilibration
on the other hand leads to constant but different temperatures
of the channels at the noise spot for the three cases. We
explore the out-of-equilibrium situation in the noise spot by
using the Green’s function method outlined in Appendix B 1
to compute noise kernels �(x̃) with the full temperature
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profiles in case of charge current noise. This leads to the noise
plots in Fig. 7(b). For thermally nonequilibrated down- and
upstream delta-T noise there is no additional source of heating
along the edge. Following the same approach as for charge
current noise in Appendix B 1, we find a modified NJ noise
for down- and upstream delta-T noise, described by Eq. (38)
and Eq. (41) respectively. Adjusting MV , MT as well as the
boundary conditions according to the transport properties of
the involved channels, the temperature and noise profiles of
the other interfaces in Fig. 7 are obtained following the same
steps.

APPENDIX E: UNIT CONVERSION WITHOUT TEARS:
FROM THEORIST TO EXPERIMENTALIST UNITS

The voltage bias noise excess noise Sexc computed using
our approach is expressed in units of e3�V/h. Let us denote
the noise in such units as Sexc

�V . To connect these units to more
experimentally relevant units, we start by using the current-

voltage relation for chiral edge transport

I0 = ν
e2

h
�V. (E1)

This relation holds for efficient charge equilibration, and is
manifest experimentally by robust charge conductance quan-
tization. By using this relation, we rewrite the noise in terms
of the source current I0 with the notation

Sexc
I0

= Sexc
�V

�V

I0

ν

h

e2
. (E2)

For a voltage bias �V given in µV , the excess noise can then
be written as

Sexc ≈ 6.20492

(
Sexc

�V

�Ve3/h

)
× 10−30 A2

µV Hz
. (E3)

Alternatively, for a bias current I0 given in nA, we have

Sexc ≈ 1.602

(
Sexc

�V

�V
· I0

ν

)
× 10−28 A2

nA Hz
. (E4)
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