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Electronic transport in the α-T3 model of pseudospin-1 fermions with a finite gap is studied within the
semiclassical Boltzmann approximation. We show that coupling of the orbital magnetic moment to the external
magnetic field, which is otherwise absent in the massless model, breaks valley symmetry, results in finite
and measurable corrections to the longitudinal and Hall conductivity, and yields a geometrical contribution
to the Hall conductivity due to the Berry curvature. We also show that, for a generic two-dimensional system,
remarkably, magnetoresistance induced by the orbital magnetic moment can be either positive or negative; the
sign depends on the amount of disorder and is different for both conventional and geometric contributions to the
magnetoresistance.
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I. INTRODUCTION

The importance of Berry’s phase and Berry curvature ef-
fects in solids is now very well established [1–5]. While Berry
curvature in solids leads to anomalous Hall effects [6], more
recently, it has been realized that it can also explain exotic
effects, such as the chiral anomaly in Weyl semimetals, within
the semiclassical Boltzmann approximation [7]. While Berry
curvature has received significant attention, the role of the
anomalous orbital magnetic moment has been explored far
less. Cognate to the Berry curvature, the orbital magnetic
moment also owes its origin to the geometrical effects in the
Bloch bands [4]. Specifically, the self-rotating angular mo-
mentum of the Bloch wave packet gives rise to an anomalous
orbital magnetic moment that couples to the external mag-
netic field via a Zeeman-like interaction. This phenomenon
has recently yielded unconventional effects in semiclassical
electronic transport [8–13].

In recent times, graphene and similar other Dirac materi-
als have received the attention of diverse audiences due to
their unconventional energy dispersion and nontrivial topol-
ogy of their Bloch wave functions [14–16]. On the other hand,
the interest in dispersionless flat bands has been rejuvenated
after the discovery of superconductivity in twisted bilayer
graphene [17]. First proposed in Ref. [18], the α-T3 model
synthesizes flat and dispersive Dirac bands in a single model.
The tight-binding description of the α-T3 model comprises
a hexagonal lattice with atoms situated at the vertices of
the hexagons and their centers. Thus the unit cell consists
of three atoms, constructing the electronic-state description
that of a triple-component fermion (pseudospin-1 fermions).
Varying the parameter α in the α-T3 lattice, one interpolates
between graphene (α = 0) and the dice lattice (α = 1). When
α ∈ (0, 1], the band structure is remarkably independent of α

consisting of a flat band at zero energy intersecting a Dirac
cone. Experimentally, in solid state physics, the α-T3 model
can be realized in trilayers of cubic lattices and Hg1−xCdxTe
quantum wells [19–21].

While the α-T3 spectrum is gapped in an external magnetic
field, the flat band remains primarily unaffected [18]. Some

other recent works have discussed the stability of the flat
bands to impurities, the presence of boundaries, and pertur-
bative radiation [22–24]. In the α-T3 model, while the Dirac
cone may gap out due to these factors, simply shifting the
chemical potential in one or more of the sublattices can also
produce a Dirac gap (massive pseudospin-1 fermions). The
massless α-T3 model’s optical, magnetic, and electronic trans-
port properties have been studied [22,25–32]; investigations
on the gapped model remain less explored. While owing cer-
tain similarities to the physics of pseudospin-1/2 fermions
in massive graphene models [10,33], as we show later, the
presence of a dispersionless (or weakly dispersive) flat band
in pseudospin-1 fermions strikingly changes the topology of
the wave functions, and, more so, the geometrical quanti-
ties such as the Berry curvature and the orbital magnetic
moment. The variation of these quantities with the lattice
parameters α is insightful as well and reflects the α → 1/α

duality.
Here we study the electronic transport properties of the

massive α-T3 model, focusing particularly on the nontrivial
role of the anomalous orbital magnetic moment. We first
discuss the implications of the Dirac gap on conventional
transport in the absence and presence of an external magnetic
field, specifically evaluating the longitudinal and the Hall
conductivity for three different disorder profiles: δ-correlated
impurities, Gaussian impurities, and screened Coulomb im-
purities. A crucial distinction between massless and massive
pseudospin-1 fermions is the presence of Berry curvature and
orbital magnetic moment. While the Berry curvature and or-
bital magnetic moment are absent in the massless case, as we
show, both acquire finite contributions in the massive model.
We show that coupling the orbital magnetic moment to the
external magnetic field breaks valley symmetry, results in
finite and measurable corrections to the longitudinal and Hall
conductivity, and yields a geometrical contribution to the Hall
conductivity due to the Berry curvature. Strikingly, the orbital
magnetic moment induces a finite magnetoresistance (longi-
tudinal), which can be either positive or negative, different
from the claim in Ref. [10] in the context of pseudospin-1/2
fermions. We show that the sign of the magnetoresistance
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FIG. 1. (a) Lattice structure of the α-T3 model. (b) Band structure of the massive α-T3 model for ψ = π/24 (solid lines) and for ψ = π/6
(dashed lines). (c) Band structure for ψ = π/4 (solid lines) and for ψ = π/3 (dashed lines). The dimensions of k are normalized by 1/a,
where a = 50 nm. We choose m = 2 meV.

depends on the amount of disorder, switching from positive to
negative for the case of conventional contribution to the Hall
effect and switching vice versa for geometric contribution
to the Hall effect. Introducing a generic model of magne-
toresistance, we conjecture that both positive and negative
magnetoresistance could be observed in the model considered
in Ref. [10]. Our analysis assumes the semiclassical Boltz-
mann approximation that remains valid for weak external
electric and magnetic fields.

II. MASSIVE PSEUDOSPIN-1 FERMIONS

A. Hamiltonian and band structure

The α-T3 model consists of three sublattices that we name
A, B, and C. Sites A and C occupy the positions corresponding
to the two sublattices in graphene, while the center of each
hexagon has an additional site, B. The hopping parameters
among various sites are tAC = t and tBC = αt . As the parame-
ter α varies from zero to one, the lattice structure interpolates
from graphene to a dice lattice. Figure 1(a) plots the repre-
sentative real-space lattice structure. Here, we consider the
α-T3 model with an additional mass term m, such that the
momentum-space Hamiltonian near the K point is expressed
as H τ

k = H τ
0 + Hm, where [34–36]

H τ
0 = τ h̄vk

⎛
⎜⎜⎝

0 cos ψ e−iτφ 0

cos ψ eiτφ 0 sin ψ e−iτφ

0 sin ψ eiτφ 0

⎞
⎟⎟⎠,

Hm = m

⎛
⎜⎜⎝

1 0 0

0 0 0

0 0 −1

⎞
⎟⎟⎠. (1)

Here τ = ±1 stands for the valley index, v is the veloc-
ity parameter, tan ψ = α, tan φ = ky/kx, and m is assumed
to have the dimensions of energy. When m = 0, the energy
spectrum is independent of α and the eigenvalues are εk = 0,
+h̄vF k, and −h̄vF k, corresponding to a flat zero-energy band
intersecting the linearly dispersing Dirac cone. It is important
to briefly discuss how the massive α-T3 model may be ex-
perimentally realized. While disorder or magnetic field may
generate a nonzero mass m, it may also be generated by

shifting the chemical potential on sublattices A and B or by
making the atoms nonidentical on the sublattices. For exam-
ple, appropriately doping trilayers of cubic lattices may result
in an effective low-energy model that resembles the massive
α-T3 model. For example, Ref. [37] studies the effect of dop-
ing on the transport properties of a cubic lattice structure.
In the presence of the mass term, the spectrum is solved by
solving the following cubic equation:

ε3
k − εk(m2 + h̄2v2k2) − mh̄2v2k2 cos(2ψ ) = 0. (2)

The above cubic equation may be solved via Carnado’s
method. The exact analytical expressions for the band dis-
persions for arbitrary values of m and ψ could be more
illuminating, so we do not discuss them here; below, we
present their approximate form in some exceptional limiting
cases:

εk(ψ = π/4) =

⎧⎪⎪⎨
⎪⎪⎩

+
√

h̄2v2k2 + m2,

0,

−
√

h̄2v2k2 + m2,

(3)

εk(h̄vk � m) =

⎧⎪⎨
⎪⎩

τ h̄vk + m cos(2ψ )/2 + O(m2),

−m cos(2ψ ) + O(m2),

−τ h̄vk + m cos(2ψ )/2 + O(m2),

(4)

εk(h̄vk � m) =

⎧⎪⎪⎨
⎪⎪⎩

m + m−1h̄2v2k2 cos2 ψ + O(k3),

−m−1h̄2v2k2 cos(2ψ ) + O(k3),

−m − m−1h̄2v2k2 sin2 ψ + O(k3).

(5)

When m �= 0, the linearly dispersing cone gaps out and the
qualitative behavior of the middle band (which is dispersion-
less for m = 0) depends on the value of ψ , roughly scaling
as ∼− cos(2ψ ). Therefore, when ψ < π/4, the middle band
hosts a holelike pocket, and when ψ > π/4, it hosts en
electronlike pocket. When ψ = π/4, the band is nondisper-
sive. When k � m/h̄v, the middle and the upper bands are
quadratic in k and are linear when k � m/h̄v. Figures 1(b)
and 1(c) present the band structure for a few different values
ψ for a fixed m. Since the band dispersion is isotropic with
respect to the polar angle φ, we plot the band structure as a
function of radial coordinate k.
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B. Conventional magnetotransport

We first discuss conventional magnetotransport in
pseudospin-1 fermions. To this end, we focus on three specific
quantities: Longitudinal conductance (σxx), conventional Hall
conductance (σxy), and the geometrical Hall conductance
(σ a

xy). These are given by the following expressions in the
weak-field Boltzmann approximation:

σxx = e2

h̄

∫
d2k

(2π )2

(−∂ f0(εk )

∂εk

)
τk

(
∂εk

h̄ ∂kx

)2

,

σxy = e3 b

h̄

∫
d2k

(2π )2

(−∂ f0(εk )

∂εk

)(
τk ∂εk

h̄ ∂ky

)

×
(

∂εk

h̄ ∂ky

∂

∂kx
− ∂εk

h̄ ∂kx

∂

∂ky

)(
τk ∂εk

h̄ ∂kx

)
,

σ a
xy = −

∫
d2k

(2π )2
�z(k) f0(εk ). (6)

Here b is the applied magnetic field, −e is the charge of
an electron, f0(εk ) is the Fermi-Dirac distribution function,
�z(k) is the z component of the Berry curvature, and τk is the
relaxation time. The relaxation time is evaluated as [38]

1

τk
=

∫
d2k′

(2π )2
wk,k′ (1 − cos φkk′ ), (7)

where cos φkk′ is the angle between the vectors k and k′
and wk,k′ is the scattering amplitude between the states |k〉
and |k′〉, which strongly depends on the type of impurity
scattering considered. Although anisotropy on the Fermi sur-
face invalidates the use of Eq. (7), this is irrelevant here
since the band dispersion is isotropic. Here we study the
effects of three different types of impurities: (i) δ-correlated
impurities, (ii) screened Coulomb impurities, and (iii) Gaus-
sian impurities. The general form of the impurity potential
is expressed as a sum of impurity potentials located at
sites Ri:

Vimp(r) =
∑

i

u(r − Ri ), (8)

where the function u(r) takes the following form for each of
the impurity types:

uδ (r) = Vδδ(r),

uc(r) = e2e−rkTF

4πε0κr
,

ug(r) = Vge−r2/2σ 2
. (9)

The superscripts c, δ, and g stand for Coulomb, δ (delta),
and Gaussian impurities, respectively. The various parameters
used above are explained as follows: (i) for δ disorder, Vδ

is the bare impurity strength, (ii) for Coulomb disorder, κ is
the dielectric constant and kTF is the Thomas-Fermi screen-
ing wave vector, and (iii) for Gaussian disorder, Vg is the
bare impurity strength and σ is the standard deviation of the
Gaussian function. The scattering rate for each of the impurity
types can be evaluated in the lowest Born approximation to

be [38]

wδ
k,k′ = 2π

h̄

nδ
i

AV 2
δ |〈k′|k〉|2δ(εk − εk′ ),

wc
k,k′ = 2π

h̄

nc
i

A

(
e2

2ε0κ (|k − k′| + kTF)

)2

|〈k′|k〉|2δ(εk − εk′ ),

w
g
k,k′ = 2π

h̄

nδ
g

AV 2
g e−q2σ 2

σ 4|〈k′|k〉|2δ(εk − εk′ ), (10)

where A is the area, |k〉 is the energy eigenfunction obtained
by diagonalizing Eq. (1), and {nδ

i , nc
i , ng

i } represent the impu-
rity density for different impurity types.

Before proceeding further, we briefly comment on the va-
lidity of the Boltzmann approximation assumed throughout
this manuscript. The Boltzmann formalism is in general valid
if the number of occupied Landau levels is large, i.e., when the
magnetic field b � (εF − m)2/eh̄v2. For a field of b ∼ 0.01T
and for (εF − m) ∼ 4 meV, the ratio ebh̄v2/(εF − m)2 ∼ 0.4,
placing a rough limit on the range of validity of our formalism.
For higher values of magnetic fields, the lower limit on εF

increases as well. Nonetheless, we plot the respective quan-
tities over a wide range of the Fermi energy to demonstrate
the qualitative trend and the transition from the valence to the
conduction bands.

To comment more, in the presence of a magnetic field
(B = ∇ × A) applied in the z direction, the Hamiltonian of
the massive α-T3 model becomes

H =
√

2h̄v

lB

⎛
⎜⎝

0 a cos ψ 0

a† cos ψ 0 a sin ψ

0 a† sin ψ 0

⎞
⎟⎠

+ m

⎛
⎜⎝

1 0 0

0 0 0

0 0 −1

⎞
⎟⎠, (11)

where

a = lB
2

(x − iy),

a† = lB
2

(x − iy),

lB =
√

h̄

eB
,

� = k + eA
h̄

. (12)

Since the evaluation of the energy spectrum at arbitrary values
of ψ yields complicated expressions, we can choose a special
case of ψ = π/4. The energy spectrum (in the conduction
band) is then given by εn = √

m2 + 2 eBh̄v2n. The difference
in energy between two successive Landau levels is given by
�E = eh̄Bv2/m. For the quasiclassical approximation to be
valid �E � εF − m. This places a limit on the magnetic field
for a fixed value of the chemical potential. Alternatively, we
may also say that, for a fixed value of the magnetic field, the
theory is valid only when the Fermi energy is above a certain
threshold. In Fig. 2, we plot �E/(εF − m) as a function of the
magnetic field and the Fermi energy for ψ = π/8. We note
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FIG. 2. �E/(εF − m) as a function of the Fermi energy and
magnetic field for the α-T3 model. We choose ψ = π/8.

that, for higher values of the magnetic field, the Fermi energy
needs to be larger for the Boltzmann analysis to be valid.

Returning back to magnetotransport, we first discuss the
case of massless fermions. Even though the energy spectrum
is independent of the parameter ψ , the eigenfunctions are ψ

dependent, and therefore one may expect qualitative and/or
quantitative differences in the transport behavior. In particular,
note that

|〈k′|k〉|2 = 1

4
cos2

(
φ − φ′

2

)
[cos(φ − φ′) + 3]

+ 1

8
cos(4ψ ) sin2(φ − φ′) (13)

depends nontrivially on ψ . Thus the scattering rate and con-
ductivity depend crucially on ψ as well. We evaluate the
conductivity by numerically calculating conductivity from
Eq. (6). In Fig. 3 we plot the conductivity for the massless
α-T3 model. We find that for δ disorder, the longitudinal

FIG. 3. Conductivity for the α-T3 model when m = 0 and ψ =
π/4. (a) σxx and (b) σxy for different disorder types. Comparison of
σxx for different values of ψ is presented in (c) for Gaussian impu-
rities and in (d) for Coulomb impurities. σ o

αβ represent the values of
σαβ at εF = 2 meV. We chose kTF = 0.1 nm, σ = 6 nm, b = 0.01T ,
κ = 1, and Vδ = Vg = 1 meV × (100 nm)2.

FIG. 4. Conductivity in the case of α-T3 lattice with a finite mass
term. Longitudinal conductivity for (a) ψ = π/12 and (c) ψ = π/4.
Hall conductivity for (b) ψ = π/12 and (d) ψ = π/4. We chose m =
1 meV. All other parameters are chosen as in Fig. 3.

conductivity σxx is independent of the Fermi energy, similar
to graphene. This is because for a δ-type disorder, the scat-
tering rate wkk′ is momentum independent and therefore, on
increasing the carrier density, the scattering time τk decreases
due to increase in the Fermi surface area. This decrease in
the scattering time is exactly compensated by the increase in
the density of states, resulting in a density independent con-
ductivity. For Gaussian disorder, the scattering rate (wkk′ ∼
e−|k−k′ |2 ) decreases with increasing Fermi surface, and so is
the case with Coulomb disorder (wkk′ ∼ 1/|k − k′|2). This
accounts for the increased conductivity with increase in the
Fermi energy, again resembling graphene. On the other hand,
the Hall conductivity depends on the curvature of the Fermi
surface, which is inversely proportional to the Fermi energy.
The Hall conductivity is thus seen to decrease with increasing
Fermi energy for all disorder profiles. Furthermore, we also
compare the effect of disorder for different values of the pa-
rameter ψ . We find that changing ψ quantitatively affects the
dependence on the Fermi energy, as shown in Figs. 3(c) and
3(d). Increasing ψ from zero to π/4 decreases the magnitude
of the conductivity.

We next consider the presence of a finite nonzero mass. The
band structure, as observed in Fig. 1, acquires a gap between
the lower band and the middle band and also between the
middle band and the upper band. Furthermore, the electron-
hole symmetry is typically violated, except when ψ = π/4.
When ψ = π/4, the middle band remains dispersionless but
is otherwise dispersive for any general value of ψ . Valley
symmetry is, however, retained, and hence we focus only near
one of the two valleys. In Fig. 4 we plot the longitudinal as
well as the Hall conductivity for two values of the parameter
ψ . When ψ = π/12, and if the Fermi energy lies either in the
valence or the conduction band, we observe the longitudinal
conductivity [Fig. 4(a)] to be almost independent of electron
density for Gaussian and δ impurities, indicating the reminis-
cence of Dirac-like dispersion in the limit ψ → 0. The small
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peak in conductivity when εF < 0 is due to the dispersive
middle band. For Coulomb impurities, we observe a linear
dependence on Fermi energy similar to the massless case.
When ψ = π/4, the density dependence is no longer constant
for Gaussian and δ impurities, indicating a departure from the
Dirac limit [Fig. 4(c)]. The central peak is absent in this case
due to the dispersionless middle band. The Hall conductivity
peaks (with opposite signs) when the Fermi energy is just
above or below the band gap [Fig. 4(b) and Fig. 4(d)]. The
electron-hole asymmetry is also reflected in the Hall conduc-
tivity in Fig. 4(b).

III. BERRY PHASE EFFECTS IN PSEUDOSPIN-1
FERMIONS

A. Orbital magnetic moment and Berry curvature

Until now, we have neglected the effects of Berry curvature
(�k) and the orbital magnetic moment (mk). In the limit when
the mass m = 0, both of these quantities vanish exactly. When
the mass is nonzero, the orbital magnetic moment, as well
as the Berry curvature, are finite and peak at certain points
in the Brillouin zone. More generally, the presence of Berry
curvature in a system implies breaking either time-reversal
(TR) or spatial inversion (SI) symmetry. The Berry curvature
is evaluated as

�
nγ

k = i
∑
n′ �=n

〈n|dH/dkα|n′〉〈n′|dH/dkβ |n〉 − (α ↔ β )(
εn

k − εn′
k

)2 ,

(14)

where n is the band index, α, β, and γ represent the
components of the vector, and |n〉 is the energy eigenket. Si-
multaneously, the self-rotation of the Bloch wave packet also
generates an intrinsic anomalous orbital magnetic moment
that is given by [1]

mn
k = −ie

2h̄
〈∇kn| ×[

H − εn
k

] |∇kn〉 . (15)

In Fig. 5 we plot the orbital magnetic moment and the Berry
curvature for all three bands as a function of the radial mo-
mentum k and the lattice parameter ψ . Specifically we plot
the z component of mk and �k since the x and y components
are zero. As discussed, both the orbital magnetic moment
and the Berry curvature acquire finite values in the Brillouin
zone. When ψ → 0, the lower two bands touch each other
away from k = 0 [Fig. 1(b)], which generates a peak in the
Berry curvature and the orbital magnetic moment. In the limit
ψ → π/2, the upper two bands touch each other away from
k = 0, which generates similar peaks as well. This feature is
consistent with the fact that the model has a α → 1/α duality,
i.e., in the limit of ψ → 0 and ψ → π/2 the model maps onto
the graphene lattice. We restrict our discussion to τ = +1 as
switching the valley index only reverses the sign of the orbital
magnetic moment and the Berry curvature. Importantly, we
also note the qualitative differences in the Berry curvature
distribution and the orbital magnetic moment between the
spin-1/2 Dirac fermions in a gapped graphene model [33]
and the pseudospin-1 fermions here. In the model of gapped
graphene, these quantities peak exactly at the K point unlike
what we observe in Fig. 5.

FIG. 5. Orbital magnetic moment mk for (a) the lower band,
(c) the middle band, and (e) the upper band as a function of the
radial momentum and the parameter ψ for the α-T3 lattice model.
The corresponding Berry curvature is displayed on the right panels,
(b), (d), and (f), respectively. Here, k is in the units of 1/a, mk is in
the units of ave, and �k is in the units of 1/a2. The mass parameter
was chosen m = 1 meV and τ = +1.

A nonzero flux of Berry curvature in the Brillouin zone
leads to a geometrical contribution to the Hall conductivity,
but since here the overall Berry curvature vanishes on adding
contributions from both the valleys, the geometrical contri-
bution to the Hall conductivity is zero. However, as we shall
shortly see, a small but finite magnetic field results in a finite
geometrical Hall conductivity (along with the usual Lorentz-
force driven Hall conductivity) due to the breakdown of valley
symmetry. More specifically, the anomalous magnetic mo-
ment couples to the applied magnetic field as εn

k → εn
k − mn

k ·
b, where b is the applied magnetic field. Since the sign of the
orbital magnetic moment is opposite at both the valleys, the
valley symmetry is lost on application of magnetic field. This
is highlighted in Fig. 6, which plots the energy dispersion of
the α-T3 model both in the presence and absence of orbital
magnetic moment. Interestingly, we find that the energy dis-
persion not only shifts upwards or downwards depending on
the valley, but multiple Fermi surfaces may result depending
on the value of the chemical potential due to unequal shifting
of various bands. For example, in Figs. 6(a) and 6(b), if the
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FIG. 6. Band structure of the α-T3 model considering the effect
of coupling to the magnetic field due to a finite anomalous orbital
magnetic moment. (a) τ = +1, ψ = π/12, (b) τ = −1, ψ = π/12,
(c) τ = +1, ψ = π/4, and (d) τ = −1, ψ = π/4. The dashed lines
represent the dispersion without considering the orbital magnetic
moment, i.e., ebh̄v2/(εF − m)2 � 0.4. The shaded region represents
the region where quasiclassical analysis is fully valid. We choose
b = 0.01 T.

Fermi level intersects in the upper band, one may encounter
a situation where, on application of a magnetic field, an
electronlike Fermi surface additionally acquires one or two
holelike Fermi surfaces due to the bending of both the upper
band and the middle band. Similarly, if the chemical potential
intersects the lower band, then an analogous situation may
arise in the other valley [Figs. 6(c) and 6(d)]. Furthermore, an
interesting situation is encountered if the chemical potential
intersects close by the middle band, where the Fermi sur-
face consists of electron and holelike pockets on the positive
and negative valleys, respectively, or vice versa, depending
on the direction of the magnetic field. This may result in
exact compensation of charges for ψ = π/4 at a suitable
value of the chemical potential [Figs. 6(b) and 6(d)], yield-
ing a compensated semimetal. In Fig. 6 we shade the region
where we generally expect the quasiclassical approximation to
be valid. Typically, in the vicinity of the level crossings the
validity would hold for a lesser value of magnetic field. We
next discuss the implications of the effect of orbital magnetic
moment and Berry phase on electronic transport.

B. Unconventional transport

In Fig. 7, we plot the longitudinal conductivity for the
α-T3 lattice in the presence of orbital magnetic coupling as
a function of the Fermi energy. The behavior of longitudinal
conductivity is strikingly different when compared to the case
when the orbital magnetic moment is absent. In Fig. 7(a),
we observe that the lower band contributes only just below
the Fermi energy and the middle band has two large peaks
far above and below εF, each accompanied by two smaller
peaks. The upper band has a contribution above and below
εF as well. As expected, the conductivity profile is congruent

FIG. 7. (a), (c) Longitudinal conductivity as a function of the
chemical potential including the effect of orbital magnetic moment.
The red, green, and blue curves indicate the contribution from the
lower (1), middle (2), and upper (3) bands, respectively. The black
curve indicates the net contribution. Here m = 1 meV and b =
0.01 T. (b), (d) The corresponding Hall conductivity. The dominant
contribution is from the middle band. All plots are normalized with
respect to their absolute maximum values.

with the band structure presented in Figs. 6(a) and 6(b). The
Hall conductivity [Fig, 7(c)], being sensitive to the Fermi
surface curvature, has a primary contribution from the middle
band that peaks when the band is either close to being fully
occupied or fully empty. We find that the Hall contribution
from the upper and the lower band are at least one order
lesser than the contribution of the middle band. Figure 7(b)
and Fig. 7(d) present the longitudinal and Hall conductivity
when ψ = π/4, where electron-hole symmetry is restored in
this case. Furthermore, we find that, unlike Fig. 3 and Fig. 4,
the qualitative trend is much less sensitive to the nature of
the underlying impurities, because the primary deviations on
account of the orbital magnetic moment further remove the
Diracness in the dispersion of the quasiparticles.

The nontrivial Berry curvature of the energy bands guaran-
tees a nonzero charge that is given by

Cn = 1

2π

∫
d2k �n

k. (16)

In Fig. 8(a), we plot the local valley charge for the massive
α-T3 lattice at the τ = +1 valley as a function of the param-
eter ψ . The presence of nonzero local valley charge gives
rise to a geometrical contribution to the Hall conductivity,
given by

σ a
xy =

∑
n

∫
d2k

(2π )2
�n

k f n
0 (k). (17)
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FIG. 8. (a) Valley charge at τ = +1 as a function of the parame-
ter ψ . (b) The geometrical Hall conductance contribution of τ = +1
as a function of the Fermi energy. We chose m = 1 meV. Since Cn

at τ = −1 is negative of the value at Cn, the total geometrical Hall
conductance given by the contribution of the two valleys is zero. In
plot (b), different curves represent the different values of ψ/π .

The valley charge Cn defined in Eq. (16) integrates the Berry
curvature locally around the valley. The integration cutoff
is chosen typically corresponding to the energy of 5 meV;
however, this is arbitrary and Cn is independent of the cutoff.
In Fig. 8(b), we plot the geometrical Hall conductance contri-
bution of τ = +1 as a function of the Fermi energy. Since Cn

at τ = −1 is of the opposite sign of Cn at τ = +1, the total
geometrical Hall conductance given by the contribution of the
two valleys is zero.

As noted before, the presence of a magnetic field induces
a Zeeman-like contribution to the energy spectrum that is of
opposite sign at both valleys; hence the contribution of the
geometrical Hall conductivity at both valleys does not cancel
out due to their Fermi surfaces being dissimilar as a result of
coupling to the magnetic field. This yields a finite geometric
Hall conductance, as plotted in Fig. 9(a), which shows σ a

xy
as a function of b for various values of the parameter ψ .
In evaluating σ a

xy, we have fixed the Fermi energy so that it
intersects only the upper band with a single Fermi surface
and thus contributions from the middle and the lower bands
are zero. In Fig. 9(b) we plot the ratio of the geometrical
Hall conductivity (σ a

xy) to the conventional conductivity (σxy)
for three different values of the disorder potential. While the
strength of the disorder potential does not affect the geometric
Hall conductivity, it does affect the conventional Hall con-
ductivity. Depending on the strength of the disorder, σ a

xy/σxy

can be either lesser or greater than one. The ratio, however,
is largely independent of the magnetic field since both the

FIG. 9. (a) Total geometrical Hall conductivity σ a
xy as a function

of the magnetic field. (b) The ratio of the geometrical (σ a
xy) and the

conventional Hall conductivity (σxy) for three different values of the
disorder potential Vδ and fixed ψ = π/4. In plot (a), different curves
represent the different values of ψ/π .

FIG. 10. Total geometrical Hall conductivity σ a
xy as a function of

the Fermi energy.

geometrical and the conventional Hall conductivity increase
linearly with b. Last, we also highlight another important
difference between conventional and geometrical Hall con-
ductivity: Their opposite signs. In Fig. 10 we plot the total
geometrical Hall conductivity as a function of the Fermi en-
ergy. On comparison to Ref. [29], which calculates σxy in the
ultraquantum limit, we reproduce some qualitative features,
such as σxy becomes large near μ = 0 and flips sign around
μ = 0.

C. Magnetoresistance

We now discuss the (longitudinal) magnetoresistance in
the α-T3 model. Magnetoresistance from a single parabolic
band is ideally zero (but conductivity is typically nonzero).
Deviations from parabolicity and/or multiband effects may
however yield a finite magnetoresistance. In the present case,
the dissimilarity of the Fermi surfaces on account of the
magnetic field yields a finite longitudinal magnetoconductiv-
ity σxx(B). Depending on how the Hall conductivity varies
with the magnetic field (and how much), we anticipate a
nontrivial magnetoresistivity in the α-T3 model. Before ex-
plicitly evaluating the magnetoresistance in the α-T3 model,
we consider a generic toy model for magnetoresistance. The
Hall conductivity, whether geometric or conventional, typi-
cally has a linear dependence on the magnetic field, while
the longitudinal magnetoconductivity is typically quadratic.
This motivates us to consider the following conductivity
tensor:

σ̂ =
(

βh2 + σ o γ h + ηh

−γ h − ηh βh2 + σ o

)
. (18)

Here h is the dimensionless magnetic field, the dimen-
sionless longitudinal conductivity at zero magnetic field is
σ o, β is the quadratic coefficient of the longitudinal con-
ductivity, γ is the linear coefficient of the conventional
contribution to the Hall conductivity, and η is the linear
coefficient of the geometrical contribution to the Hall con-
ductivity. Since both the conventional and the geometric
Hall conductivities are typically linear in h, it is possi-
ble to do this segregation. The magnetoresistivity δρ(h) is
defined as

δρ(h) = ρxx(h) − ρxx(0)

ρxx(0)
, (19)
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where ρxx(h) is the (1,1) component of the resistivity tensor
ρ̂ = σ̂−1. In the current model,

δρ(h)

= σ o[h2(β ) + σ o]

h4(β )2 + h2(γ + η)2 + 2h2σ o(β ) + (σ o)2
− 1. (20)

We may Taylor expand δρ(h) in powers of magnetic field as

δρ(h) = − [(γ + η)2 + σ o(β )]

(σ o)2
h2

+ [(γ + η)4 + (σ o)2(β )2 + 3σ o(β )(γ + η)2]

(σ o)4
h4

+ O(h6). (21)

It is possible to analytically calculate the nth power of h in the
series expansion of δρ(h), and we find that the coefficients
always appear in the numerator, separately in the powers of
(γ + η) and β. However, a second-order expansion is gener-
ally sufficient for our purpose, as we are focusing only in the
limits of low magnetic fields.

We first analyze the conventional contribution to mag-
netoresistivity, i.e., we set η = 0. Clearly, at lower values
of magnetic field, the magnetoresistivity is positive if β <

−γ 2/σ o; for all other cases the magnetoresistivity is negative.
The sign of magnetoresistivity is independent of the sign
of γ or, in other words, independent of the type of charge
carriers in the system, as expected. In the low-field limit,
when the magnetoconductivity is negative and if quadratic
coefficient β is negative and below <− γ 2/σ o, we obtain pos-
itive magnetoresistivity. Above a critical value of the magnetic
field, hc = (

√
−γ 2 − βσ o)/β, the magnetoresistivity eventu-

ally becomes negative. Remarkably, the same analysis works
for the geometric contribution as well. To evaluate the geo-
metric contribution, we set γ = 0. We again find that in the
low-field limit, when the magnetoconductivity is negative and
if quadratic coefficient β is negative and below <− η2/σ o, we
obtain positive magnetoresistivity and negative magnetoresis-
tivity otherwise.

For conventional Hall conductivity, the coefficient γ de-
pends on the disorder strength, but coefficient η is independent
of disorder for the geometric Hall conductivity. The contri-
bution to the coefficient β mainly arises from the coupling
of the anomalous orbital magnetic moment to the magnetic
field and is therefore independent of the disorder strength.
Note that, in particular, we are focusing on the intrinsic con-
tribution due to the orbital magnetic moment and the extrinsic
contribution due to the orbital magnetic moment is likely to
be dependent on the disorder. Finally, σ o clearly depends on
the strength of the disorder. It is thus likely that the magne-
toresistivity contribution from the conventional Hall effect or
the geometrical Hall effect can be either positive or negative
due to competing effects of β (independent of disorder) and
γ (dependent on disorder), and σ o (dependent on disorder).
Although, our model is applicable to the system considered in
Ref. [10] (gapped graphene), a discussion on the possibility
of both signs of magnetoresistance remains absent in their
work. We conjecture that, as a result of orbital magnetic
moment coupling, both positive and negative magnetoresis-

FIG. 11. Magnetoresistivity in the α-T3 model for various values
of the parameter ψ . Panels (a), (c), and (e) plot the contribution due
to conventional Hall effect, for different disorder strengths; (b), (d),
and (f) plot the contribution due to geometrical Hall effect. We use
Dirac type impurities here and V0 = 1 meV × (100 nm)2.

tance should be observed in gapped graphene (Ref. [10]) as
well.

In Fig. 11 we plot the magnetoresistivity for the α-T3

model, separately for the conventional and the geometrical
Hall contributions, thus revealing their qualitative differences.
As the strength of disorder is increased, we observe that
the conventional contribution to magnetoresistivity switches
sign from negative to positive, and decreases in the overall
magnitude, because on increasing the disorder strength, the
condition β < −γ 2/σ o is satisfied much more easily. Even
though 1/σ o increases on increasing disorder, γ 2 decreases
even more rapidly, thus making the requirement for β to
be lesser than −γ 2/σ o easier to be realized, yielding pos-
itive magnetoresistivity. Contrary to this, we find that, on
increasing disorder, the geometrical contribution to the mag-
netoresistivity changes sign from positive to negative. This is
because 1/σ o increases on increasing disorder, but η2 remains
constant, therefore making it harder to realize the condition
β < −η2/σ o for positive magnetoresistivity. Furthermore, the
magnitude of magnetoresistivity increases as well, because
the magnitude of the geometrical Hall conductivity remains a
constant, while that of σ o decreases. We close this section with
the remark that the geometrical electronic transport quantities
will also reflect on the geometrical thermoelectric quantities.
For instance, the derivative of the Hall conductivity with
respect to the Fermi energy yields the Nernst effect, which
should also be substantially measurable here. We defer the
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evaluation of geometrical thermoelectric coefficients in the
α-T3 model to future works.

IV. CONCLUSIONS

While the α-T3 model of pseudospin-1 fermions owes
similarities to the model of pseudospin-1/2 Dirac fermions,
the effects on electronic transport are more nuanced. Even
though their energy dispersion is qualitatively similar,
presence of the middle band in the α-T3 lattice changes
the wave functions’ topology and, more so, the distribution
of the Berry curvature and the orbital magnetic moment
in the Brillouin zone. Here we studied electronic transport
in the α-T3 model and evaluate their conventional as well
as the geometrical transport responses in the presence
of weak electric and magnetic fields. First, we listed out
the differences arising in the conventional conductivity
(longitudinal and Hall) for three different types of impurities:
δ-correlated disorder, Gaussian disorder, and Coulomb
disorder. Second, we studied the Berry curvature and orbital
magnetic moment of the pseudospin-1 fermions and evaluate
their geometrical transport responses. An important finding

of this work is that coupling the orbital magnetic moment to
the external magnetic field breaks valley symmetry, results
in finite and measurable corrections to the conductivity,
and yields a nontrivial geometrical Hall conductivity due to
the nonzero distribution of the flux of the Berry curvature.
Third, we found that a finite longitudinal magnetoresistance
is induced by the orbital magnetic moment, which can be of
either sign: Positive or negative, depending on the amount of
disorder, a feature which can be contrasted to pseudospin-1/2
fermions discussed in Ref. [10]. Recent material advances
and upcoming experiments on Hg1−xCdxTe quantum wells,
trilayers of cubic lattices that may realize pseudospin-1
fermions, makes our study even more appropriate.
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