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Effects of first- and second-order topological phases on equilibrium crystal shapes
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We study equilibrium crystal shapes of a topological insulator (TI), a topological crystalline insulator (TCI)
protected by mirror symmetry, and a second-order topological insulator (SOTI) protected by inversion symmetry.
By adding magnetic fields to the three-dimensional TI, we can realize the mirror-symmetry-protected TCI and
the inversion-symmetry-protected SOTI. They each have topological boundary states in different positions: The
TCI has gapless states on the surfaces that are invariant under the symmetry operation, and the SOTI has gapless
states at the intersections between certain surfaces. In this paper, we discuss how these boundary states affect
the surface energies and the equilibrium crystal shapes in terms of the calculations of the simple tight-binding
model by using the Wulff construction. By comparing the changes in the shapes of the TI with those of the
trivial insulator through the process of applying the magnetic fields, we show that the presence or absence of
the topological boundary states affects the emergence of the specific facets in a different way from the trivial
insulator.
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I. INTRODUCTION

Crystal shapes have a large variety since they reflect mi-
croscopic physics of the respective materials. Theoretically,
the equilibrium crystal shape is the shape that minimizes the
surface free energy. The equilibrium crystal shape is deter-
mined by the surface free energy via the Wulff construction
[1–4], and one can apply this method to predict the shapes
of nanoparticles [5–7]. It is helpful to study the equilibrium
crystal shapes because the shapes of the nanoparticles play
important roles in controlling their properties [8–19]. In par-
ticular, nanoparticles of topological insulators (TIs) exhibit
unique phenomena originating from the nontrivial topology
[20–30]. However, it is not well understood how the topologi-
cal boundary states of the TIs affect their equilibrium shapes.

An interplay between symmetry and topology has led us
to a wide range of topological phases of matter, including
TIs [31,32], topological crystalline insulators (TCIs) [33–46],
and second-order topological insulators (SOTIs) [47–54]. The
three-dimensional (3D) TIs and the 3D TCIs have gapless
states on their surfaces [31–34,37,38], which are classified as
the first-order topological phase. The surface states of the TCI
appear only on the surfaces that are invariant under the sym-
metry considered [34,36–40]. On the other hand, the SOTIs
are classified as the second-order topological phase [55–87]
and do not exhibit the surface states but exhibit gapless states
at the intersections between the surfaces in the 3D system,
which are called hinge states [47,48,50,53]. Thus we expect
that such topological surface and hinge states affect equilib-
rium crystal shapes.

In this paper, we study the equilibrium shapes of a TI, a
TCI protected by mirror symmetry, and a SOTI protected by
inversion symmetry. By adding a magnetic field to the 3D
TI, we can realize the mirror-symmetry-protected TCI or the
inversion-symmetry-protected SOTI, as discussed in Secs. III
and V. Thus, by focusing on the changes in the surface

energies and the equilibrium crystal shape by adding the
magnetic fields, we study how the surface states of the TCI
protected by mirror symmetry [34,36,88–91] and the hinge
states of the SOTI protected by inversion symmetry [92–95]
affect the equilibrium crystal shape. In addition, by comparing
the changes in the shapes of the TI with those of the trivial
insulator by adding magnetic fields, we show that the topo-
logical surface states affect the equilibrium crystal shape, and
this is unique to the topological phases. We note that in our
previous work [96], equilibrium crystal shapes of TCIs pro-
tected by glide symmetry are studied. The calculation method
in the present paper is partially parallel to the previous work,
but we will see that the results are quite different because the
symmetries protecting the topological phases are different.

This paper is organized as follows. In Sec. II, we introduce
a tight-binding model of a 3D TI and calculate the surface
states. In Sec. III, by adding a magnetic field to the 3D TI
while preserving mirror symmetry, we realize the mirror-
protected TCI and calculate the surface states protected by
mirror symmetry. In Sec. IV, we calculate the surface energies
and the equilibrium crystal shapes of the TI and the TCI. In
Sec. V, we calculate the hinge states, the surface energies, and
the equilibrium crystal shape of the SOTI that are realized by
adding the magnetic field to the TI in Sec. III. A conclusion
and discussion are given in Sec. VI.

II. SURFACE STATES OF A TOPOLOGICAL INSULATOR

In this section, as a preliminary step toward calculations
of models of a TCI and a SOTI, we introduce a tight-binding
model of a TI and study its surface states.

A. Tight-binding model and symmetry

We start from a three-dimensional (3D) tight-binding
model of a Z2 TI on a primitive tetragonal lattice with lattice
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FIG. 1. Our tight-binding model of the 3D TI. (a) The crystal
structure of our model. The red (blue) arrows indicate the nearest-
neighbor (next-nearest-neighbor) hopping. (b) The Brillouin zone
and the (100), (010), and (001) surface Brillouin zone. (c) The bulk
band structure of HTI(k) with the parameters m = 2, t = 1, v = 0.4,
v′ = 0.5, and vz = 1. (d) The inversion eigenvalues of occupied
states at the high-symmetry points.

vectors a1 = (a, 0, 0), a2 = (0, a, 0), and a3 = (0, 0, a) with
a being the lattice constant:

HTI(k) =
(

m − t
∑

j=x,y,z

cos k j

)
τz ⊗ σ0

+ (v + v′ cos kz ) sin kxτx ⊗ σx

+ (v + v′ cos kz ) sin kyτx ⊗ σy

+ vz sin kzτx ⊗ σz, (1)

where σi and τi (i = x, y, z) are Pauli matrices and σ0 and τ0

are identity matrices. We set the lattice constant to be a = 1.
This model has nearest-neighbor hopping in the [100], [010],
and [001] directions and next-nearest-neighbor hopping in
the [101], [101̄], [011], and [011̄] directions [Fig. 1(a)]. This
model has time-reversal (T ) symmetry, inversion (I ) symme-
try, and fourfold rotation C4z symmetry with the rotation axis
along the z direction:

T HTI(k)T −1 = HTI(−k),

IHTI(k)I−1 = HTI(−k),

C4zHTI(k)C−1
4z = HTI(C4zk), (2)

where T = −iτ0 ⊗ σyK with K being the complex conju-
gation, I = τz ⊗ σ0, C4z = τ0 ⊗ (1 − iσz )/

√
2, and C4zk =

(−ky, kx, kz ). Furthermore, our model HTI(k) has mirror
Mz(= IC2z ) symmetry with respect to the xy mirror plane:
MzHTI(kx, ky, kz )M−1

z = HTI(kx, ky,−kz ) with Mz = −iτz ⊗
σz. In this paper, to simplify our discussion, we consider
band structures on the (hkl) surfaces up to maximum absolute
values of the Miller index hmax = kmax = lmax = 1.

Figure 1(b) shows the Brillouin zone and the (100),
(010), and (001) surface Brillouin zones. Figure 1(b) also
shows high-symmetry points KI = {� = π (0, 0, 0), X = π

FIG. 2. Band structures of HTI(k) in the slab geometries with
(a) the (100) surfaces and (b) the (001) surfaces. We choose the
parameters m = 2, t = 1, v = 0.4, v′ = 0.5, and vz = 1. The slab
thickness is 30.

(1, 0, 0), Y = π (0, 1, 0), V = π (1, 1, 0), Z = π (0, 0, 1),
U = π (1, 0, 1), T = π (0, 1, 1), R = π (1, 1, 1)}, which are
invariant under I. Figure 1(c) shows the bulk band structure of
HTI(k), where the Fermi energy is set to be zero. Figure 1(d)
shows the inversion eigenvalues of the occupied states of
HTI(k) at the high-symmetry points KI . Thus the strong Z2

topological invariant ν is ν ≡ 1 mod 2 [97], and therefore our
model is a 3D TI.

We calculate band structures of HTI(k) with periodic
boundary conditions (PBCs) in two directions and with finite
size in the remaining direction. We refer to such a geometry
as the slab geometry. For example, the slab geometry with
the (100) surfaces indicates PBCs in the x and y directions
and finite size in the z direction. Figure 2(a) shows that band
structure with this slab geometry, and we find that the gapless
surface states appear. We also calculate the band structure in
the (001) slab [Fig. 2(b)], which indicates that the gapless
surface states appear similarly to the (100) surface. By I,
Mz, and C4z symmetries, it is sufficient to calculate the (100),
(001), (101), and (111) surfaces.

B. Lattice vectors and reciprocal lattice vectors
for slab geometry

In the slab geometry with (hkl) surfaces, we choose lattice
vectors to be

a(hkl )
1‖ = (−k, h, 0),

a(hkl )
2‖ = (−l, 0, h) (3)

along the (hkl) surfaces (h �= 0). Although these vectors
form a nonprimitive unit cell in general, we choose
these vectors for convenience. Let us consider a slab
geometry with (101) surfaces. The lattice vectors
for the (101) slab are given by a(101)

1‖ = (0, 1, 0)

and a(101)
2‖ = (−1, 0, 1), as shown in Fig. 3(a-1). Then

the reciprocal lattice vectors are given by b(101)
1‖ = 2πa(101)

1‖
and b(101)

2‖ = πa(101)
2‖ . The k vector on the (101) surface is

written as k = k1‖b(101)
1‖ + k2‖b(101)

2‖ , and the high-symmetry
points are given by (k1‖, k2‖) = (0, 0), (1/2, 0), (0, 1/2),
and (1/2, 1/2). Figure 3(a-2) shows the band structure
in the slab geometry with the (101) surfaces, which
indicates the emergence of the gapless surface states. In
addition, we consider a slab geometry with (111) surfaces.
The lattice vectors are given by a(111)

1‖ = (−1, 1, 0) and

a(111)
2‖ = (−1, 0, 1), as shown in Fig. 3(b-1), and the reciprocal
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FIG. 3. Lattice vectors and band structures of HTI(k) in the slab
geometries with (a) the (101) surface and (b) the (111) surface.
(a-1) and (b-1) The lattice vectors. The high-symmetry points are
given by �̄ = (k1‖, k2‖) = (0, 0), Ȳ = (1/2, 0), Z̄ = (0, 1/2), and
M̄ = (1/2, 1/2). We choose the parameters m = 2, t = 1, v = 0.4,
v′ = 0.5, and vz = 1. The slab thickness is 30 in the unit of the
vectors (1, 0, 1) in (a-2) and (1, 1, 1) in (b-2).

lattice vectors are given by b(111)
1‖ = 2π (2a(111)

1‖ − a(111)
2‖ )/3

and b(111)
2‖ = 2π (−a(111)

1‖ + 2a(111)
2‖ )/3. We calculate the band

structure in the slab geometry with the (111) surfaces
[Fig. 3(b-2)]. Because the surface states are protected by
time-reversal symmetry, the gapless states appear on the
(100), (001), (101), and (111) surfaces.

III. SURFACE STATES OF AN Mz-PROTECTED
TOPOLOGICAL CRYSTALLINE INSULATOR

Next, we study a TCI protected by mirror Mz symmetry.
The TCI phase can be easily realized by adding a Zeeman
term to the Hamiltonian HTI(k):

HMTCI(k) = HTI(k) + Bzσz. (4)

The Zeeman term Bzσz breaks T symmetry and preserves
Mz, I, and C4z symmetries. When time-reversal symmetry is
broken, the Z2 topological invariant ν is not well defined, and
therefore we introduce other topological invariants [98–101]
as discussed below.

Let � j denote one of the eight inversion-invariant momenta
KI . The eight � j can be indexed by three integers nl = 0, 1
defined mod 2, � j=(n1,n2,n3 ) = 1

2 (n1b1 + n2b2 + n3b3), where
b1, b2, and b3 are primitive reciprocal lattice vectors. Three
Z2 weak topological indices [101,102] are defined as

νa :=
∑

� j∧na=1

n−(� j ) (mod 2) (a = 1, 2, 3), (5)

where n−(�i ) is the number of occupied states with odd parity
at the inversion-invariant momenta � j and the summation is
taken over the inversion-symmetric momenta on the plane
na = 1. The Z4 strong topological index [101,102] is defined

as

μ1 :=1

2

∑
� j

(n+(� j ) − n−(� j )) (mod 4), (6)

where n+(� j ) is the number of occupied states with even
parity at the inversion-symmetric momentum � j . For systems
with inversion symmetry, topological phases are characterized
by the symmetry indicator XBS = (ν1, ν2, ν3, μ1) with νa =
0, 1 and μ1 = 0, 1, 2, 3.

Henceforth, we assume that the magnetic field Bz is so
small that the gap is not inverted by Bz. Then, the inver-
sion eigenvalues of occupied states at KI are the same as
HTI(k) [Fig. 1(d)], which results in νx = νy = νz = 0 and
μ1 = 2. According to Refs. [95,102–104], when the inversion
eigenvalues of occupied states satisfy these conditions in the
presence of Mz symmetry, the mirror Chern number is nontriv-
ial, and the system is in the mirror-symmetry-protected TCI
phase. The mirror Chern numbers in the kz = 0 and kz = π

sectors are defined as

C0
m := 1

2 (C0
+ − C0

−), Cπ
m := 1

2 (Cπ
+ − Cπ

− ), (7)

respectively, where C0
± and Cπ

± represent the Chern numbers
in the mirror sectors with mirror eigenvalues ±i in the kz =
0 and kz = π sectors, respectively. The Z4-symmetry-based
indicator μ1 in an insulator is related with the mirror Chern
numbers via

μ1 ≡ 2
(
C0

m + Cπ
m

)
(mod 4), (8)

where μ1 = 0, 2 [95]. The values μ1 = 0, 2 mean that the
bulk is insulating, while the values μ1 = 1, 3 correspond to
the Weyl semimetal phase [102]. Equation (8) means that
when μ1 = 2, one of the two mirror Chern numbers C0

m and
Cπ

m is an odd number, and the other is an even number,
which means the emergence of topological surface states on
mirror-symmetric surfaces, such as (100) and (010) surfaces.
In our model, the mirror Chern number in the kz = 0 plane is
C0

m = 1.
To confirm that the mirror-symmetry-protected TCI phase

is realized in our model, we calculate band structures of
HMTCI(k) in the slab geometries with the (100), (001), (101),
and (111) surfaces (Fig. 4). Figure 4(a) shows that the (100)
surface has the gapless states because this surface is invari-
ant under Mz. Figures 4(b), 4(c), and 4(d) show that gapless
surface states do not appear on the (001), (101), and (111)
surfaces. This is because these surfaces are not invariant under
Mz. In this way, the presence or absence of the gapless surface
states in the mirror-symmetry-protected TCI depends on the
surface orientation, unlike the TI protected by T symmetry.

IV. SURFACE ENERGY AND EQUILIBRIUM CRYSTAL
SHAPE OF A TOPOLOGICAL INSULATOR AND A

TOPOLOGICAL CRYSTALLINE INSULATOR

In the previous work [96], we discussed equilibrium shapes
of the TCIs protected by glide Gy symmetry [37,105,106],
where Gy is a mirror reflection with respect to the xz plane
followed by translation by a half of the lattice vector along
the z direction, and we studied effects of their surface states
on the equilibrium shape. As discussed in Ref. [96], the
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FIG. 4. Band structures of HMTCI(k) in the slab geometries with
(a) the (100) surfaces, (b) the (001) surfaces, (c) the (101) surfaces,
and (d) the (111) surfaces. The high-symmetry points are the same
as in the case of HTI(k). The parameters are m = 2, t = 1, v = 0.4,
v′ = 0.5, vz = 1, and Bz = 0.8.

glide-symmetry-protected TCI has exotic surface states that
depend on the parity of β in the Miller index (α0β). On
the other hand, topological phases protected by symmorphic
symmetries, such as a mirror-symmetry-protected TCI and a
SOTI protected by I symmetry, do not have such character-
istic dependence of the boundary states on the Miller index.
The TCI protected by Mz symmetry has gapless states on
the (100) surfaces and the (010) surfaces. In contrast, when
the surface is not invariant under the mirror operation, e.g.,
the (101), (102), and (001) surfaces, the surface does not
have topologically protected gapless states. In addition, the
SOTI has hinge states instead of surface states, and therefore
the hinge states may lead to the effects on the equilibrium
shape in a different way from the TCI. Thus one can expect
that the mirror-symmetry-protected TCI phase and the SOTI
phase lead to different contributions from the glide-symmetry-
protected TCI [96]. In this section, we study the equilibrium
crystal shape of the TCI protected by mirror symmetry, and in
Sec. V we study that of the SOTI.

A. Surface energy and Wulff construction

Next, we study surface energies of our model to obtain
the equilibrium crystal shape. We can calculate the surface
energies of an (hkl) surface from the band structure in the
slab geometry. The slab has finite thickness in the direction
perpendicular to the (hkl ) surface and has PBCs along the
(hkl) directions. We introduce hoppings between the top and
bottom surfaces of the slab. When the Hamiltonian has a
hopping parameter t ′ in the bulk, we introduce the hopping
λt ′ across the top and bottom surfaces with λ being a real
parameter. When we choose λ = 1, this system is equal to
a bulk crystal because it has the PBC in the [hkl] direction.
On the other hand, when we choose λ = 0, this system is
just a slab geometry having the (hkl) surfaces. We define a
Hamiltonian H (hkl )

slab (λ) with such geometry, and the surface

energy of H (hkl )
slab (λ) can be defined as

E (hkl )
surf :=

N∑
n=1

E (hkl )
slab,n

∣∣
λ=0 − E (hkl )

slab,n

∣∣
λ=1

2S(hkl )
, (9)

where E (hkl )
slab,n|λ is the energy from the nth occupied band of

H (hkl )
slab (λ), N is the total number of occupied bands, and S(hkl )

represents the area of the slab surface of H (hkl )
slab (λ). Note that

we focus only on the energy of noninteracting electrons at
zero temperature and do not consider the energies due to the
electron-electron interaction and the electrostatic energies of
nuclei.

According to the Wulff construction [1], we can obtain the
equilibrium crystal shape minimizing the total surface energy
by setting the distance hhkl between a surface with a Miller
index (hkl ) and the crystal center to be proportional to E (hkl )

surf :

E (hkl )
surf

hhkl
= ld , (10)

where ld is a constant, and we set ld = 1 in the following.
Then, the equilibrium crystal shape is given by the following
3D region:

W =
⋂

nhkl ∈S2

�nhkl , (11)

�nhkl = {
r ∈ R3 | r · nhkl � E (hkl )

surf

}
, (12)

where nhkl is the outward unit normal vector to the (hkl )
surface and S2 is the unit sphere. By using the WULFFPACK

FIG. 5. (a) and (b) Equilibrium crystal shapes obtained from the
surface energies E (hkl )

surf of our models HTI(k) and HMTCI(k), respec-
tively. (c) Surface energies of HTI(k) and HMTCI(k). The parameters
are m = 2, t = 1, v = 0.4, v′ = 0.5, and vz = 1. In the TI and the
TCI, the magnetic field strength is Bz = 0 and Bz = 0.8, respectively.
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FIG. 6. Band structures in the slab geometries of the trivial in-
sulators (a) without the magnetic field [HTI(k) with m = 4] and
(b) with the magnetic field [HMTCI(k) with m = 4]. The slab geome-
tries have the (100) surface in (a-1) and (b-1) and the (001) surface
in (a-2) and (b-2). We choose the parameter m = 4, and the other
parameters are the same as in Fig. 5. The magnetic field strength is
Bz = 0.8 in (b).

package [107], we obtain the equilibrium crystal shapes from
E (hkl )

surf in the following.

B. Equilibrium crystal shapes of a topological insulator
and a topological crystalline insulator

Figures 5(a) and 5(b) show the equilibrium crystal shapes
of HTI(k) and HMTCI(k), respectively. The parameters are the
same as those in the calculations of the band structure in
Figs. 2–4. Then Fig. 5(c) shows the surface energies of the
TI and the TCI; this figure indicates that the (001), (101), and
(111) surface energies of the TCI are lower than those of the
TI. In contrast, the (100) surface energy of the TCI is almost
the same as that of the TI. It can be seen from these surface
energies that the (001) surface of the TCI is more likely to
appear than the (001) surface of the TI. Indeed, the (001)
surface of the TCI appears more extensively than that of the
TI as shown in Figs. 5(a) and 5(b).

We can explain the difference of the crystal shapes between
the TI and the TCI as follows. As we show in Fig. 4, the
(001), (101), and (111) surfaces of the TCI do not have gapless
states, while the gapless states appear on the (100) surface.
The gapped surfaces make the surface energies lower, which
makes the (001), (101), and (111) surfaces more favorable.

To support this explanation, we also calculate the band
structure and the crystal shapes of trivial insulators. When
we choose the parameter m = 4 in both HTI(k) and HMTCI(k)
instead of m = 2, trivial insulator phases are realized in both
HTI(k) and HMTCI(k). This is because the change from m = 2
to m = 4 leads to band inversion at the � point, resulting in
the symmetry indicator being μ1 = 0, which corresponds to
the topologically trivial phase. Figures 6(a) and 6(b) show
the band structures of HTI(k) and HMTCI(k) with m = 4,
where the trivial insulators are realized. From these results, we

FIG. 7. (a) and (b) Equilibrium crystal shapes of trivial insulators
realized in our model (a) without the magnetic field and (b) with the
magnetic field. (c) Surface energies of the trivial insulator with and
without the magnetic field. The parameters of the model are the same
as in Fig. 6.

confirm that the gapless surface states do not appear in either
of these cases. Figures 7(a) and 7(b) show the trivial insulators
with and without the magnetic field, and these shapes are
almost the same. This result is different from those of the TI
and the TCI in Fig. 5. As for the TI and the TCI, the difference
in their crystal shapes originates from the magnetic field.
In contrast, the magnetic field does not produce significant
changes in the crystal shapes of the trivial insulator. It can
be seen from these results that the change in the crystal shape
induced by the magnetic field in Fig. 5 is due to the topological
surface state in HTI(k) and HMTCI(k) with m = 2.

Figure 7(c) shows the difference between the surface ener-
gies of the trivial insulators with and without the magnetic
field. As shown in Figs. 6(a) and 6(b), surface bands are
absent in the trivial insulators, unlike the TI and the TCI.
Thus the difference in Fig. 7(c) does not arise from surface
bands but from the changes in the bulk bands through the
magnetic field. Thus, within this model, the changes in the
surface energies and the crystal shapes by the magnetic field
in Fig. 5 are mainly by the topological surface states because
the contribution from the bulk bands is tiny.

V. SURFACE ENERGY AND EQUILIBRIUM CRYSTAL
SHAPE OF A SECOND-ORDER TOPOLOGICAL

INSULATOR

In the following, we study how the hinge states affect
the crystal shape of the SOTI protected by I symmetry. For
this purpose, to begin with, we calculate band structures of a
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FIG. 8. Band structures of HSOTI(k) in the slab geometries with
the (a) (100), (b) (001), (c) (101), (d) (1̄01), (e) (111), and (f) (1̄11)
surfaces. The high-symmetry points are the same as in the case of
HTI(k). The parameters are m = 2, t = 1, v = 0.4, v′ = 0.5, vz = 1,
Bx = Bz = 0.5, and By = 0.3. The thickness of the slab geometries
with the (hkl) surface is 30 times the length of the vector (h, k, l).

tight-binding model of the SOTI protected by I symmetry

HSOTI(k) = HTI(k) +
∑

i=x,y,z

Biσi. (13)

This model is constructed by adding a Zeeman term to HTI(k).
Unlike the model equation (4) of the TCI protected by mirror
symmetry, the Zeeman field is no longer along the z axis. The
Zeeman term breaks T , Mz, and C4z symmetries but preserves
I symmetry. Because Mz symmetry is broken, the topological
surface states protected by Mz symmetry do not appear, unlike
the mirror-symmetric TCI.

A. Surfaces of a second-order topological insulator

To see the gapped surface states of our model, we calcu-
late band structures of HSOTI(k) in the slab geometries with
various surfaces [Figs. 8(a)–8(f)]. These results show that
gapless surface states do not appear. The (101) surface is not
equivalent to the (101̄), (011), (01̄1), or (01̄1̄) surfaces, and
the (111) surface is not equivalent to (1̄11), (11̄1), or (1̄1̄1)
because the C4z symmetry is broken. Therefore we need to
calculate the (100), (010), (001), (110), (11̄0), (101), (101̄),
(011), (01̄1), (111), (1̄11), (11̄1), and (1̄1̄1) surfaces for our
purposes. Figures 8(c) and 8(d) show that the band structure
in the slab geometry with the (101) surface is different from
that with the (1̄01) surface. In addition, Figs. 8(e) and 8(f)
also show that the (1̄11) surface states behave differently
from the (111) surface. These anisotropic surface states are

FIG. 9. Band structures of HSOTI(k) in the rod geometries with
the PBC in the (a-1) x, (b-1) y, and (c-1) z directions. (a-2),
(b-2), and (c-2) The real-space distributions of the zero-energy states,
corresponding to (a-1), (b-1), and (c-1). The parameters are the same
as those in Fig. 8. The system sizes of the rod geometries are 30×30.

characteristic of the SOTI and are different from those of the
TI and the TCI protected by mirror symmetry.

B. Hinge states of a second-order topological insulator

Next, to confirm that hinge states emerge in this model,
we calculate band structures with the PBC in one direc-
tion and with finite sizes in the other two directions. We
refer to such a geometry as a rod geometry (Fig. 9).
Figure 9(a-1) shows that the gapless states appear in the
rod geometry with the PBC in the x direction and with the
finite sizes in the y and z directions. Figure 9(a-2) indicates
the real-space distribution of the eigenstates at E = 0 within
the yz plane. From this result, we find that the hinge states
appear along the x direction. In addition, we obtain the band
structures shown in Fig. 9(b-1) [Fig. 9(c-1)] and the real-
space distribution of zero-energy states shown in Fig. 9(b-2)
[Fig. 9(c-2)] in the rod geometry with the PBC in the y (z)
direction. It can be seen from these results that the hinge states
also appear along the y and z directions, at the I-invariant
positions.

C. Equilibrium crystal shape of a SOTI

By using a similar method to that used with the TI and the
TCI, we obtain an equilibrium crystal shape of the SOTI from
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FIG. 10. Equilibrium crystal shape obtained from the surface en-
ergies E (hkl )

surf of our model HSOTI(k), seen from four different angles.
The red lines between the surfaces indicate the positions of the hinge
states. The parameters are the same as those in Fig. 8.

the surface energies E (hkl )
surf defined in Eq. (9). Figure 10 shows

the equilibrium crystal shape of the SOTI. As we described
above, the (101) surface energy is different from the (1̄01) sur-
face energy, unlike the TI and the TCI in the previous section.
This difference in the surface energies results in the presence
of the (101) surface and the absence of the (1̄01) surface. In
addition, the (011) surface energy is also different from that
of the (01̄1) surface energy, resulting in the emergence of the
(011) surface being more extensive than the emergence of
the (01̄1) surface. Such anisotropy in how the facets appear
also occurs for the (111), (1̄11), (11̄1), and (1̄1̄1) surfaces, as
shown in Fig. 10.

In order to understand such an anisotropic equilibrium
shape of the SOTI with I symmetry, we focus on the
following surface theory. We introduce the surface Dirac
Hamiltonian [92,95]

HDirac = vs(ks×n) · σ + mnn · σ, (14)

where n is the normal vector of the surface, ks is the wave
vector parallel to the surface, and mn is the surface Dirac mass.
Here, we assume that the Dirac mass is determined uniquely
by n. Figure 10 shows the positions of the hinge states, which
appear between the surfaces with a positive Dirac mass mn and
the surfaces with a negative mn. For example, the (100), (010),
and (001) surfaces have a positive mn because these surfaces
are penetrated by the outward pointing magnetic field, while
the (1̄00), (01̄0), and (001̄) surfaces have a negative mn. The
presence of surfaces with a positive mn and surfaces with

FIG. 11. The surface energies of HTI(k) and HSOTI(k). The
parameters are m = 2, t = 1, v = 0.4, v′ = 0.5, and vz = 1. The
magnetic field strength in HSOTI(k) is given by Bx = Bz = 0.5 and
By = 0.3. The thickness of the slab geometries with the (hkl) surface
is 30 times the vector (h, k, l).

a negative mn leads to the vanishing of mn between these
surfaces, which corresponds to the emergence of hinge states
[92]. This behavior of mn makes surface energies higher be-
tween the surfaces with a positive mn and the surfaces with
a negative mn, which makes this surface not likely to appear.
Actually, Fig. 10 shows that such surfaces are less likely to
appear. For instance, the (1̄01) surface, which is between the
(001) surface (positive mn) and the (1̄00) surface (negative
mn), does not emerge in Fig. 10. In this way, the behaviors
of the Dirac mass can explain the anisotropic crystal shape of
the SOTI.

To support the above explanation of the crystal shape of
the SOTI in terms of the hinge states and the Dirac mass,
we show a comparison of the surface energies between the
TI and the SOTI (Fig. 11). We find that the (101), (011), and
(111) surface energies of the SOTI are lower than those of
the TI. In contrast, the (1̄01), (01̄1), (1̄11), (11̄1), and (1̄1̄1)
surfaces have higher surface energies than those of the TI.
These surfaces are between the surfaces with a positive mn

and the surfaces with a negative mn. This result is consistent
with our explanation of the crystal shape of the SOTI based
on the behaviors of mn and the hinge states.

In addition, we demonstrate through a more quantita-
tive analysis that the boundary states of the SOTI lead to
these anisotropic surface energies. For our purposes, we con-
sider the (hkl) surface with the surface normal vector n =
(r sin θ cos φ, r sin θ sin φ, r cos θ ) and focus on the depen-
dence of the surface energy on φ with r and θ being fixed.
We choose θ = π/4 to study the (h01) and (0k1) surfaces
(h, k = 1 or 1̄). We also focus on the surface energies E (hkl )

surf

with E (101)
surf as the reference value:

�E (hkl )
(101) := E (hkl )

surf − E (101)
surf . (15)

As discussed in the Appendix, �E (hkl )
(101) can be approximated

by

�E (hkl )
(101) 
 E (hkl )

Dirac

2S(hkl )
− E (101)

Dirac

2S(101)
, (16)

for the (h01) and (0k1) surfaces (h, k = 1 or 1̄), where E (hkl )
Dirac

is the energy obtained from the surface Dirac Hamiltonian
HDirac(k) and given by

E (hkl )
Dirac := 2λ

3v2
s k2

c

(|mn|3 − (
v2

s k2
c + m2

n

) 3
2
)
, (17)

where mn := B · n/|n| and λ and kc are real parameters.
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FIG. 12. �E (hkl )
(101) and �E (hkl )

(111) obtained from the tight-binding
model (TB) HSOTI(k) and from the effective theory (ET) [Eq. (16)].
The parameters in HSOTI(k) are the same as those in Fig. 8. The pa-
rameters in ET are λ = 1, vs = 1. We choose θ = π/4 and kc = 0.41
for �E (hkl )

(101) and θ = cos−1(1/
√

3) = sin−1(
√

2/3) and kc = 0.47 for

�E (hkl )
(111).

Figure 12 shows �E (hkl )
(101) obtained from the direct cal-

culations of the tight-binding model HSOTI(k). Figure 12
also shows that Eq. (16) obtained from our effective sur-
face theory is in good agreement with the results from the
tight-binding model. Furthermore, to analyze the (hk1) sur-
face energies (h, k = 1 or 1̄), we introduce �E (hkl )

111 defined
similarly to �E (hkl )

(101) as �E (hkl )
(111) = E (hkl )

surf − E (111)
surf . Figure 12

also indicates �E (hkl )
(111) obtained from the tight-binding model

HSOTI(k), and we find that these results are almost identical
to our effective surface theory �E (hkl )

(111) 
 E (hkl )
Dirac/(2S(hkl ) ) −

E (111)
Dirac /(2S(111)). Thus we conclude that the dependence of

the surface energies on the angle φ can be understood in
terms of the mass term in the surface Dirac Hamiltonian. In
Fig. 12, the results are slightly different between the effec-
tive theory and the tight-binding model because the effective
theory is just an approximate theory. In the tight-binding
model, the strength of the coupling between the magnetic
field and the spin differs in the x and z directions, while the
coupling in the effective theory is isotropic in both of these
directions.

As discussed above, the surface energies E (hkl )
surf of HSOTI(k)

are so different between φ and φ + π that they affect the
equilibrium shape. This is because the Dirac mass mn behaves
in an anisotropic manner in the SOTI. The glide-symmetry-
protected TCI discussed in the previous work [96] does not
have such a dependence of the surface energy on φ. Thus
this is a clear difference between the I-symmetry-protected
SOTI and the glide-symmetry-protected TCI in the effects of
the boundary states on the equilibrium shapes.

VI. CONCLUSION AND DISCUSSION

In this paper, we study surface energies and equilibrium
crystal shapes of a topological insulator, a topological crys-
talline insulator, and a second-order topological insulator. To
begin with, we calculate surface states and surface energies
of the topological insulator. We obtain the equilibrium crystal
shape of the topological insulator from the surface energies
by using the Wulff construction. Next, we study surface states

and surface energies of a topological crystalline insulator
protected by mirror symmetry, which can be realized by
adding a magnetic field to the topological insulator without
breaking mirror symmetry. The topological surface states of
the topological crystalline insulator appear only on specific
surfaces which are invariant under the mirror operation. By
comparing the crystal shape of the topological insulator with
that of the topological crystalline insulator, we discover that
the presence and the absence of the topological surface states
affect their crystal shapes. In addition, we find that this effect
does not occur in trivial insulators, and this effect is unique
to the topological insulator and the topological crystalline
insulator. In addition to the topological crystalline insulator,
we discuss surface energies of a second-order topological in-
sulator, which can also be realized by adding a magnetic field
to the topological insulator while breaking mirror symmetry
and preserving inversion symmetry. We obtain an equilibrium
crystal shape of the second-order topological insulator from
the surface energies and unveil that the hinge states of the
second-order topological insulator affect its crystal shape. The
hinge states make specific surface energies higher, and the
surfaces are less likely to appear than the other surfaces. This
leads to a more anisotropic crystal shape of the second-order
topological insulator than the topological insulator and the
topological crystalline insulator.

In this paper, we discussed the surface energies and the
equilibrium crystal shapes when we applied magnetic fields
to a topological insulator. In our model, the Zeeman effects
are of the same order of magnitude as the hopping amplitudes.
In real materials, the coupling between spin and the magnetic
fields is very small, and it might be difficult to experimentally
observe the effect of the magnetic field in a topological insu-
lator. On the other hand, magnetic dopants can open a sizable
surface band gap of a topological insulator, compared with the
external magnetic field [108–110]. One example of such mag-
netic topological insulators is Fe-doped Bi2Se3, and a massive
Dirac cone has been observed with the size of the band gap
being approximately 50 meV [108]. When the surface band
gap induced by magnetic dopants becomes non-negligible in
comparison to the hopping amplitudes, the magnetic topo-
logical insulator is suitable for experiments to confirm our
theory. Lastly, we comment on the stability of the edges of
graphene that our results might suggest. Graphene has edge
states at the zigzag edges, while the edge states are absent on
the armchair edges [111]. According to Refs. [112,113], the
armchair edges are generally stabler than the zigzag edges.
Thus, while various contributions other than the edge states
affect the edge stability, the absence of the edge states might
partially contribute to the stability of the armchair edges of
graphene.
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APPENDIX: EFFECTIVE SURFACE THEORY IN TERMS
OF A DIRAC HAMILTONIAN

In this Appendix, we show that �E (hkl )
(101) defined by Eq. (15)

can be approximated by Eq. (16). Note that we focus on the

(h01) and (0k1) surfaces (h, k = 1 or 1̄). From the definition
of E (hkl )

surf [Eq. (9)], we get the following equation:

�E (hkl )
(101) =

N−Nsurf∑
n=1

(
E (hkl )

slab,n

∣∣
λ=0 − E (hkl )

slab,n

∣∣
λ=1

2S(hkl )
− E (101)

slab,n

∣∣
λ=0 − E (101)

slab,n|λ=1

2S(101)

)

+
N∑

n=N−Nsurf +1

(
E (hkl )

slab,n

∣∣
λ=0 − E (hkl )

slab,n

∣∣
λ=1

2S(hkl )
− E (101)

slab,n

∣∣
λ=0 − E (101)

slab,n

∣∣
λ=1

2S(101)

)
, (A1)

where Nsurf is the number of occupied bands forming the sur-
face states, n = 1, 2, . . . , N − Nsurf corresponds to bulk states,
and n = N − Nsurf + 1, . . . , N corresponds to surface states.
Here, we make an approximation

E (hkl )
slab,n

∣∣
λ=0 
 E (101)

slab,n

∣∣
λ=0 (n = 1, 2, . . . , N − Nsurf ),

E (hkl )
slab,n

∣∣
λ=1 
 E (101)

slab,n

∣∣
λ=1 (n = 1, 2, . . . , N ) (A2)

for the (h01) and (0k1) surfaces (h, k = 1 or 1̄) because the
hopping amplitudes in the [h01] and [0k1] directions are the
same in our model, and we neglect the effect of the magnetic
field. Thus �E (hkl )

(101) can be rewritten as a sum of contributions
from surface states

�E (hkl )
(101) 


N∑
n=N−Nsurf +1

(
E (hkl )

slab,n

∣∣
λ=0

2S(hkl )
− E (101)

slab,n

∣∣
λ=0

2S(101)

)
, (A3)

for the (h01) and (0k1) surfaces (h, k = 1 or 1̄). Also, we can
expect that the right-hand side of Eq. (A3) is also determined
mainly by the surface band structure around k = 0. Further-
more, we assume the energy bands forming the surface states
around k = 0 can be described by the surface Dirac Hamil-
tonian [Eq. (14)]. Thus we get �E (hkl )

(101) 
 E (hkl )
Dirac/(2S(hkl ) ) −

E (101)
Dirac /(2S(101)), where E (hkl )

Dirac is defined by

E (hkl )
Dirac := λ

2A

∫ 2π

0
dθ ′

∫ kc

0
kdkE−(k), (A4)

where we use the polar coordinates (k, θ ′) for the k plane
on the surface, A is the area of the integral range A = k2

c π ,
and E−(k) is the negative eigenvalue of the Dirac Hamilto-
nian HDirac(k): E−(k) = −√

v2
s k2 + m2

n. Here, kc is a cutoff
wave vector for the Dirac cone. By performing the integral of
Eq. (A4), we find that E (hkl )

Dirac is given by Eq. (17), and therefore
we get Eq. (16) in the main text.
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