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Topological quantum chemistry (TQC) is a successful framework for identifying (noninteracting) topological
materials. Based on the symmetry eigenvalues of Bloch eigenstates at maximal momenta, which are attainable
from first principles calculations, a band structure can either be classified as an atomic limit, in other words
adiabatically connected to independent electronic orbitals on the respective crystal lattice, or it is topological.
For interacting systems, there is no single-particle band structure and hence, the TQC machinery grinds to a halt.
We develop a framework analogous to TQC, but employing n-particle Green’s function to classify interacting
systems. Fundamentally, we define a class of interacting reference states that generalize the notion of atomic
limits, which we call Mott atomic limits, and are symmetry protected topological states. Our formalism allows to
fully classify these reference states (with n = 2), which can themselves represent symmetry protected topological
states. We present a comprehensive classification of such states in one dimension and provide numerical results
on model systems. With this, we establish Mott atomic limit states as a generalization of the atomic limits to
interacting systems.
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I. INTRODUCTION

Topological quantum matter harbors universal and robust
physical phenomena that are appealing for fundamental re-
search as well as for applications [1–5]. The experimental
identification of topological materials can be challenging,
which may explain why topological insulators have only
been discovered following theoretical predictions [6,7], de-
spite decades of semiconductor research [8,9]. Since these
discoveries, the notion of topological states has been con-
siderably refined, starting from the 10-fold way classification
[10,11], via the inclusion of spatial symmetries in topological
crystalline insulators [12], to the concepts of fragile [13–15]
and delicate [16] topology. These concepts have also been ex-
tended to other types of systems, beyond electronic materials,
such as magnons [17,18] and optical excitations [19], to name
a few. In parallel, theoretical methods have been developed
to predict such topological phases in real materials. Aided
by density functional theory calculations, so-called symmetry
indicators [20,21] and the more comprehensive framework of
topological quantum chemistry (TQC) has allowed to identify
large numbers of candidate topological materials [22–26].

The principle underlying TQC is to relate atomic limits
(ALs), defined by placing electrons on (maximal) Wyckoff
positions of a crystallographic space group, to representations
of a set of electronic bands in momentum space [22,24,27,28].

*Corresponding author: msoldi@physik.uzh.ch

Independent of these considerations, one can obtain the rep-
resentation of a set of bands for a material of interest from
first principles band structure calculations. One says that ALs
induce band representations. The efficient identification of
band representations is obtained by listing the irreducible
representations (irreps) of Bloch states at maximal momentum
points in the Brillouin zone. Composing multiple ALs in the
real space unit cell of a crystal corresponds to adding band
representations in momentum space with positive integer co-
efficients. The generators of this space of band representations
are called elementary band representations. Importantly, the
AL-generated band representations do not span the space of
all the possible band structures.

The key statement of TQC is enclosed in the following:
If the representation of the bands of a given material does
not admit a decomposition in terms of elementary band rep-
resentations (with positive integer coefficients), the material
realizes a topological state. Note that the converse is not true
[15,29,30]: A nonmagnetic system in space group C1 may
for instance be a three-dimensional (3D) topological insulator
protected by time-reversal symmetry (TRS), but in this low-
symmetry space group there are no nontrivial irreps that could
be used to differentiate between distinct band representations.

The TQC framework is fundamentally limited in its formu-
lation to noninteracting systems and can thus only distinguish
topological and trivial systems well described in the single-
particle approximation. Topological insulators are protected
by their gap and therefore, weak interactions will not de-
stroy these phases and TQC might be applicable even with
interactions. However, interactions can lead to entirely new
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topological phases that are not adiabatically connected to
any noninteracting limit [31–33]. Fundamentally interacting
systems, such as Mott insulators like the 3d transition metal
oxides (NiO [34], MnO [35], FeO, CeO [36]) or certain sul-
fides (NiS2 [37]), are beyond the TQC classification scheme.

Here, we develop an interacting TQC (iTQC) formalism,
which provides an extension of TQC that allows to also
treat fundamentally interacting states [38]. To that end, we
start by introducing a class of interacting reference states
that extend the notion of ALs. Instead of the (single-particle)
Bloch Hamiltonian and its “bands” in momentum space, we
consider the n-particle Green’s functions g(n)(ω), with ω the
Matsubara frequency, and we extend the concept of band
representation to also be applicable in the context of these
n-particle correlation functions. Specifically, we reinterpret
the n-particle correlation functions as matrices in the space
of n-particle excitations (hence, we denote them by an under-
scored symbol) and consider the correlation functions at zero
frequency, where g(n) ≡ g(n)(ω = 0) are Hermitian, thereby
admitting a spectral ordering. Correlation functions are well
defined for interacting states, and they relate to experimental
observables in some instances. They are also numerically
accessible within advanced computational methods for mod-
eling correlated quantum materials, such as quantum Monte
Carlo (QMC) [39] and coupled cluster theory [40].

What type of topological phases can we expect to dis-
cover with this approach? First, as with TQC, the topological
properties must be indicated or protected by spatial symme-
tries. Second, when working with nth-order Green’s functions,
the phases must be discoverable from n-body correlation
functions. This is not the case for intrinsic topological or-
der, as found in the fractional quantum Hall effect and
various types of gapped spin liquids: discriminating these
phases requires the measurement of correlation functions
of extensive order N , where N indicates the number of
particles, that scales at least linearly with the system size
[41].

In the presence of interactions, superconductivity and
spontaneous symmetry breaking are abundant, and can be
characterized by local-order parameters. However, feature-
less insulating phases, which are not adiabatically connected
to free-fermion insulators, also exists and are known as
symmetry-protected topological states (SPTs) [42]. These are
presumably not as abundant and certainly very hard to discern
and discover.

The reference states proposed later on in this paper are re-
alizations of certain classes of “crystalline” and “point-group”
SPTs (cSPTs and pgSPT, resp.) [43–47], in which a symmetry
of the space group or point group acts as internal symme-
try protecting the phase. Importantly, the reference states we
propose capture a large set of cSPT classes, beyond the ones
accessible through noninteracting states. Our formulation is
suitable for identifying large classes of SPTs, naturally in-
cluding all phases discoverable by TQC. Beyond TQC, there
are fermionic SPT phases that are intrinsically interacting
[48]. Our method is in particular susceptible to bosonic SPT
phases of spins, which arise as effective descriptions of local-
ized electrons and more broadly topological Mott insulators
[49–52]. In the following, we focus on the “Hubbard” class
of models for Mott insulators as one well-known example

where such states arise. However, we expect our approach to
be general enough to be extended beyond this class of models.

II. SUMMARY OF RESULTS

The iTQC framework, summarized in Fig. 1, closely fol-
lows the basic ideas of TQC, which is the classification of
ALs. An AL consists of atomic orbitals placed at lattice sites
corresponding to some Wyckoff positions of the lattice. We
first define a reference class of many-body states in Sec. III,
which we dub n-Mott atomic limits (n-MALs), which consist
of entangled clusters of n electrons placed at some Wyck-
off positions of the lattice. These entangled clusters can be
constructed in such a way as to satisfy TRS as well as the
lattice symmetries, but to transform nontrivially under the
latter. More accurately, these reference states realize cSPTs
connected to zero-dimensional (0D) block states, as discussed
in Sec. III C. Note that, by contrast, to obtain a (noninteract-
ing) AL state, which satisfies TRS, we must always combine
Kramers pairs of orbitals at the same site, which transform
trivially under any spatial symmetry. These ideas are summa-
rized in Figs. 1(a)–1(c) for the case n = 2.

We use Green’s functions as our main tool for diagnosing
2-MALs (see Sec. IV). While the single-particle Green’s func-
tion is related to the Bloch Hamiltonian for a noninteracting
system and thus, TQC can also be viewed as a classification
scheme based on the single-particle Green’s function, a many-
body state is not fully specified by its single-particle Green’s
function. Consequently, we turn to the two-particle Green’s
function g(2), for which we derive a crucial property: For an
AL state, there is a lower bound on the eigenvalues of g(2),
which is given by the two-particle gap. Therefore, any eigen-
value of g(2), which appears below this bound, originates from
an interacting ground state. Our classification scheme thus
focuses on this part of the spectrum of g(2). Figures 1(d)–1(f)
show a comparison of the classification based on TQC and
iTQC.

The iTQC framework then allows to classify all the pos-
sible band representations of a g(n) Green’s function induced
by n-MAL ground states as discussed in Sec. V. It is advan-
tageous to consider an idealized limit, where the many-body
Hamiltonian is spectrally flattened, in analogy with the band
flattening procedure in the single-particle case. In this limit,
we can derive analytical results for the g(2) band structure.
In particular, for an AL state, g(2) only contains eigenvalues
above the aforementioned bound [Fig. 1(e)]. However, for
a 2-MAL state constructed as a product state of a single
cluster operator acting on each unit cell, g(2) contains a single
eigenvalue below the bound, at each value of the momentum,
whose eigenvector corresponds to the 2-MAL cluster operator
out of which the 2-MAL state is formed [Fig. 1(g)]. We show
that stacking several 2-MAL operators in each unit cell just
leads to a direct sum of the g(2) bands below the bound. If we
consider all the possible 2-MAL operators compatible with
a given space group and the g(2) band structures induced by
them, then we can check whether a given g(2) band structure
can be constructed out of a sum of 2-MAL band structures.
Thus, iTQC provides a new definition of topological states: If
the band representation associated with the interaction-driven
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(a)

(d) (e) (f) (g)

(b) (c)

FIG. 1. Mott atomic limits and induced bands representations. (a) Unit cell and first Brillouin zone of the square lattice with the Wyckoff
positions and high-symmetry points marked, respectively. (b) Two sets of single-particle irreps compatible with the site symmetry group CD

4

of Wyckoff position 1a : The two blocks represent each two TRS-related states (Kramers pairs) and the colors indicate nontrivial rotation
eigenvalues under C4. (c) Examples of time-reversal symmetric two-particle irreps constructed out of the single-particle irreps in (b). In the
first row we show two example of ALs: in this case, the two states of a Kramers pair from a Slater determinant and consequently, the state
transforms in the A representation of the point group. In the second row, we show an example of an MAL, where the state transforms in the B
representation of the point group. [(d),(f)] Show examples of two-particle irreps placed in each unit cell at Wyckoff position 1a with (d) an AL
and (f) an MAL state on the square lattice. [(e),(g)] Schematically show the respective inverse spectra of the single-particle and two-particle
Green’s functions, marked by λ−1

1 and λ−1
2 .

spectrum of a Green’s function cannot be induced from ALs and
2-MALs, the state is either (i) an SPT that cannot be induced
from 0-dimensional blocks or (ii) it is a many-body state that is
dominated by many-body correlations that involve more than
two electrons.

This statement represents an extension of the TQC frame-
work that in principle can be naturally applied to n � 2.

For concreteness, we discuss the full classification of 2-
MALs in one dimension (1D) (Sec. V C), which gives an
explicit example of the procedure outlined above. In addition,
simple two-dimensional (2D) examples where the classifica-
tion can be done by hand are discussed in the Supplemental
Material (SM) [55]. Finally, we apply our formalism in
Sec. VI to four illustrative models whose ground states depart
from ideal AL and 2-MAL states: (i) the Hubbard square
[53], (ii) the Hubbard diamond chain [54], (iii) the Hubbard
checkerboard lattice [53], and (iv) the Hubbard model on a
star of David. In each case, we use exact diagonalization or
QMC to diagnose AL and 2-MAL states, and the transitions
between them.

In this paper, we restrict ourselves to the discussion of
n = 1 and n = 2, while the explicit treatment of higher values
of n is left to future work. In addition, the ideas developed
here are in principle easily extended to different types of
n-particle correlation functions, alongside an appropriate class
of reference states, while in the following we concentrate on
the anomalous retarded particle-particle Green’s function, for
n = 2.

Further details can be found in the SM [55] (see also
Refs. [56–59] therein).

III. MOTT ATOMIC LIMITS

A. n-MALs

As the overarching motivation of this paper is to de-
velop a framework useful for making predictions about real
crystalline materials, we focus on the case of TRS sys-
tems of itinerant electrons with spin-orbit coupling. We
consider systems at zero temperature, gapped, short-range
entangled, and with a unique ground state. This class of
systems, encompassed by the SPT phases, has proven to
be a promising domain for studying topological phenomena,
and allows for a detailed characterization by first princi-
ples calculations. We will not consider any sublattice or
chiral symmetry, as these are generically absent in real
crystals.

With these constraints, we single out a class of interacting
many-body states that our formalism is able to capture and
classify, and that we consider as reference states of the SPT
type. These states are the natural extension of the concept of
ALs: while ALs are product states of exponentially localized
single-particle states distributed on the lattice, n-MALs are
product states of interacting clusters of n-electrons placed on
the crystal.

To set the notation, we consider a lattice with space group
G with exponentially localized Wannier orbitals placed at
some Wyckoff positions of the lattice. We denote by xa the
positions of the sites in the orbit of a Wyckoff position of mul-
tiplicity m, where a = 1, . . . , m. The set of Wannier orbitals
placed on the site at xa must transform under a representation
ρ of its site-symmetry group Gxa .
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With these notions, we define ĉ†
r,α (ĉr,α) as the creation

(annihilation) operator of an electron placed at the unit cell
r and created (annihilated) in the single-particle state of an
orbital whose quantum numbers are described by the com-
pactified index α = (W, a, ρ, i). For an orbital located at xa,
W indicates the label of the Wyckoff position of the site at
xa, a = 1, . . . , m specifies at which xa the electron is placed,
ρ labels the representation of Gxa of the orbital, and i =
1, · · · , dim(ρ) enumerates the various orbitals placed at xa.

Noninteracting ALs are constructed as Slater determinants
of exponentially localized single-electron states ĉr,α , viz.,

|AL〉 =
∏

r

∏
α∈occ.

ĉ†
r,α|0〉, (1)

with α ranging over the occupied orbitals in each unit cell. In
some instances, we may refer to n-ALs as states of the form
(1) where each creation operator in (1) is replaced by a product
of n creation operators with different quantum numbers. A
state is called topological if it is not possible to define expo-
nentially localized Wannier orbitals compatible with the space
group, such that the decomposition (1) holds. An elementary
example are Chern bands in 2D. Therefore, in TQC, nontrivial
topology refers to an obstruction in going from a filled band
description in momentum space to a real space description in
terms of localized orbitals.

We now introduce n-MALs, which are quantum many-
body states of several electrons that are also exponentially
localized, but may not be adiabatically connected to a sin-
gle Slater determinant, or single reference state in quantum
chemistry terms, without the breaking of a relevant spatial
symmetry. The n-MALs are obtained by placing localized in-
teracting clusters of electrons on (maximal) Wyckoff positions
of the crystalline lattice, in analogy with the construction of
ALs. Hence, the wave function of an n-MAL is

|n-MAL〉 =
∏

r

∏
ξ∈occ.

Ô†
r,ξ |0〉, (2)

where each Ô†
r,ξ is now a n-particle “cluster” operator, con-

sisting of linear combinations of products of n single-particle
operators creating electrons centered at the unit cell with
lattice vector r, and the index ξ ranges over the n-particle
operators that are occupied in the unit cell.

To get an insight on the fundamental distinctions between
ALs and n-MALs, note that TRS constrains all n-MALs to
transform as real-valued 1D irreps of the site-symmetry group
of their site, leaving ±1 as possible eigenvalues for any spatial
symmetry. Conversely, TRS single Slater determinant states
always transform with eigenvalue +1: They are composed
of products of Kramers pairs of electrons, which contribute
complex conjugate eigenvalues λ and λ�, such that λλ� = +1
is the symmetry eigenvalue of the whole pair [53]. Hence,
n-MALs of type (2) are characterized by transformation rules
under symmetry action that in principle can be distinct from
the set of all the possible representation realized by TRS ALs.

Some of the states described by (2) can be adiabatically
connected to ALs, while others form an adiabatically discon-
nected class of states. With the iTQC framework, we aim to
identify these classes by means of the Green’s function band
representation, as we will discuss later.

Some prominent examples of n-MALs are (i) valence bond
states [60], (ii) coupled cluster wave functions [40], and (iii)
cluster Mott insulators with star of David order, as shown in
this paper.

B. 2-MALs

In practice, in the present paper we will specialize to the
case n = 2. In the following, we denote 2-MALs as MALs for
compactness of notation, unless otherwise stated, and main-
tain the label n-MALs for the general case.

A MAL can be in general written as

|MAL〉 =
∏
r,ξ

Ô†
r,ξ |0〉, Ô†

r,ξ =
∑
α,β,u

Mξ
αβuĉ†

r,α ĉ†
r+u,β , (3)

where the coefficients Mξ

αβu are constrained by TRS and the
spatial crystalline symmetries of the relevant space group,
and ξ labels the type of MAL cluster operator. We assume
that distinct cluster operators do not overlap, and therefore
Ô†

r,ξ commute pairwise [61], [62]. In Eq. (3), we introduce
the lattice vector u to take into account the spatial separation
between pairs of electrons. In momentum space, the MAL
operator depends on a single momentum q, and reads

Ô†
q,ξ = 1√

N

∑
r

e−iq·rÔ†
r,ξ

= 1√
N

∑
k,α,β,u

ei(−k+q)·uMξ
αβuĉ†

k,α
ĉ†
−k+q,β

. (4)

Note that the definition in Eq. (3) also includes ALs with
an even number of electrons. The MAL operators transform
under two-particle representations ρ of the space group G.
We discuss the explicit form of ρ and how to systematically
construct MAL operators compatible with a certain space
group G in the SM [55].

As an explicit example of MALs, we consider a 1D lattice.
Depending on the spatial embedding in a 3D system, the 1D
system may be considered in the presence of mirror symmetry
or inversion symmetry (I) [63], and in the following we
only focus on the latter. Let us consider the case of Wyckoff
position 2c, which has twofold multiplicity, equipped with
a Kramers pair of orbitals (Fig. 4). We denote the creation
operator at the unit cell coordinate r = 0, · · · L − 1 as ĉ†

r,a,σ ,
where σ ∈ {↑,↓} is the spin, and a ∈ {1, 2} labels the two 2c
sites [64]. The antiunitary TRS acts as

T ĉ†
r,a,σT −1 = i

∑
σ ′=↑,↓

σ
(2)
σ ′σ ĉ†

r,a,σ ′ , (5)

where we denote with σ (i), i = 1, 2, 3 the three Pauli matrices,
and inversion acts as

I ĉ†
r,a,σI−1 =

∑
a′=1,2

σ
(1)
a′a ĉ†

−r,a′,σ , (6)

where we understand r mod L. An example of a two-electron
cluster operator, constructed out of the available single-
electron creation operators, is

Ô†
r,MAL = 1√

2
(ĉ†

r,1,↑ĉ†
r,1,↓ − ĉ†

r,2,↑ĉ†
r,2,↓), (7)
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which obeys

IÔ†
r,MALI−1 = −Ô†

−r,MAL. (8)

The operator in Eq. (8) creates a two-electron cluster that
transforms with inversion eigenvalue (−1), when we choose
r = 0 as inversion center. It is easy to prove that the ground
state

|MAL〉 =
L−1∏
r=0

Ô†
r,MAL|0〉 (9)

cannot be connected adiabatically to any 2-AL ground state:
For odd L, it has inversion eigenvalue (−1), while any TRS
AL state has inversion eigenvalue (+1) [53]. As no TRS AL
behaves the same way at the same filling, the state in Eq. (9)
has to be considered as a representative of a distinct phase.

C. MALs and SPTs

We now discuss how MALs realize SPT phases. Crys-
talline SPTs and pgSPTs [43–47] are SPT phases whose
protecting symmetries are crystalline space-group or point-
group symmetries, which act as internal on-site operations on
portions of the unit cell, called “blocks” in this context [65].
A block b of the unit cell is left invariant under a subset of
the point group, Gb ⊂ G, i.e., elements of Gb act as on-site
or internal symmetries on the block. Let us first recall a few
properties of the pgSPTs, following Ref. [43]. A possible
construction scheme for such phases consists in decorating
different db-dimensional unit cell blocks b (db = 0, 1, 2 for
3D systems) with db-dimensional SPTs. In Ref. [43], Eq. (1)
defines the “block states” as

|
〉 =
⊗
b∈B

|ψb〉 , (10)

where each factor |ψb〉 corresponds to an SPT wavefunction in
db dimensions defined on block b, whose protecting symmetry
belongs to Gb. For the case of a 0D block, one says that |ψb〉
has a “Gb charge”, meaning that it transforms under a 1D
Gb irrep, and different irreps correspond to distinguished 0D-
block SPTs. The classifications of pgSPTs with point group G
in d dimensions and bosonic degrees of freedom are provided
by the cobordism classification, and can be decomposed as
follows (Eq. 2 in Ref. [43])

C(G) = C0(G) × · · · × Cd−1(G), (11)

where Cdb (G) is the classification of SPTs built only out of db

blocks. For fermionic degree of freedom the factorization of
Eq. (11) does not hold, a fact that we can ignore in this paper,
as we argue below.

From Eqs. (3) and (10), we see that MALs are 0D-block
state cSPTs. Our interest here are TRS fermionic MALs that
conserve particle number. Particle number conservation U (1)
and TRS T thus have to be imposed in addition to the symme-
try G. MALs have even fermion parity, otherwise they would
not have a unique TRS ground state. Therefore, time-reversal
T 2 = (−1)F = +1 (F being the fermion parity) is repre-
sented as in bosonic states. MALs thus follow the bosonic
C0(G) classification, supplemented by the TRS constraint and
particle number conservation. The relevant symmetry group

TABLE I. Classification of 0D-block SPTs. Classification of SPT
phases constructed from 0D-block states, where the symmetries
of the systems include charge conservation U (1), and TRS ZT F

4 ,
generated by T = TK, where T is the unitary part of TRS and
T 2 = (−1)F , F the fermion parity. The three columns correspond
to the case of no additional internal symmetry (indicated by Z1), and
a twofold graded internal symmetry that commutes (indicated by Z2,
[S, T ] = 0) or anticommutes (indicated by Z2, {S, T } = 0) with the
unitary part of TRS.

U (1)�ZT F
4

ZF
2

Z1 Z2, [S, T ] = 0 Z2, {S, T } = 0

Noninteracting Z Z × Z Z
Interacting Z Z × Z × Z2 Z × Z2

for classifying the 0D-block SPTs is thus G0 = U (1)�ZT F
4

ZF
2

× G̃,

where G̃ is the unitary on-site symmetry of the block, and
ZF

2 is the fermion partity. For concreteness, we exemplify
this for the case G̃ = Z2 with generator S that could origi-
nate from mirror, twofold rotation or inversion symmetry and
contrast it to G̃ = Z1. Table I lists the classification for both
cases, differentiating whether the system is interacting or not.
The noninteracting case corresponds to ALs, where Z simply
counts the number of occupied Kramers pairs. Importantly,
interactions allow for an additional Z2 grading, which is re-
alized by MALs and allows for 0D-block states odd under
S. We illustrate in Fig. 2(a) how these blocks can be used
to build pgSPTs in wallpaper group p4, that has fourfold
rotation symmetry and translation symmetry. At the Wyckoff
positions 1a and 1b we can place MALs with C4 eigenvalues
±1 and at the Wyckoff position 2c we can place MALs with
C2 eigenvalues ±1. This results in a Z2 × Z2 × Z2 group of
pgSPT phases beyond those that have an AL representation.

A practical question is, given a (non-fixed-point) correlated
many-body state, how one computes topological invariants
that allow to place the state in this classification. These SPT
invariants can be obtained as the U (1) phases of a quantum
system defined on a spacetime manifold potentially equipped
with a background symmetry bundle and having a topology,
which probes the relevant spatial symmetries. Thus far, such
invariants have been extracted from the ground states of in-
teracting models for only a handful of examples by applying
partial symmetry operations [66,67], by gauging the protect-
ing symmetry [68], and by computing a partial transpose

(a) (b)

FIG. 2. Crystalline SPTs. (a) Classification of 0D-block cSPTs in
a C4 symmetric unit cell with TRS T 2 = +1. (b) Illustration of the
action of a partial symmetry operation applied to a subsystem in the
square lattice. The pink region indicates the subsystem and the blue
lines indicate the new lattice connections after the partial C4 rotation
is applied to the subsystem.
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operation [69]. Concretely, the invariants are obtained as the
ground-state expectation value of a partial point-group oper-
ation, i. e., a point-group operation applied to a subsystem.
Since one needs to perform such an operation on a subregion
of the space that is large compared with the correlation length
of the system, it typically involves taking the expectation
value of an operator that implements O(Ld ) swap operations
where L > ξ (the correlation length) and d is the dimension
of space. Figure 2(c) shows an example of how a partial
symmetry operation acts for the square lattice case: first, the
C4 rotation is applied to a subsystem of size Ld , comparable
with the total system size, while leaving the rest of the system
unchanged. The expectation value of this operation on the
initial ground state allows to extract the topological invariant.

Depending on the form in which the state is represented,
the computation of such an expectation value can be of vastly
different numerical complexity. In 1D systems, if the ground
state is known in a matrix-product state (MPS) form, it is
possible to efficiently evaluate the partial symmetry action on
the ground state [70]. On the other hand, diagrammatic QMC
calculations as well as higher-dimensional tensor networks are
typically not suited for computing such high-order operator
expectation values.

IV. GREEN’S FUNCTIONS

A. Single-particle retarded Green’s function

In this section, we review a few properties of the
single-particle Green’s functions, which will be relevant in
connection to higher-order Green’s functions.

Consider in real time the retarded Green’s function with an
electron created at time t = 0 and another annihilated at time
t ,

g(1)
αβ (t, k) = i�(t )〈{ĉk,α (t ), ĉ†

k,β
(0)}〉GS, (12)

where the brackets 〈...〉GS indicate the expectation value over
the ground state (assumed to be unique and gapped), and
k, α, β describe the quantum numbers of the created and
annihilated electrons. Equivalently, we can write the single-
particle Green’s function in terms of Matsubara frequency ω.
Focusing on the case of zero frequency for reasons that will
become clear in the following discussion, by Fourier trans-
forming Eq. (12) to Matsubara frequency and setting ω = 0
we obtain

g(1)
αβ (ω = 0, k) = − 〈ĉk,α[Ĥ − E0]−1ĉ†

k,β
〉GS

+ 〈ĉ†
k,β

[Ĥ − E0]−1ĉk,α〉GS (13)

with Ĥ the many-body Hamiltonian of the system, and E0

the energy of the ground state. Although Eq. (13) results in a
single number, for a specific choice of {k, α, β}, the collection
of all the possible g(1)

αβ (ω = 0, k) can be interpreted as a ma-
trix g(1)(ω = 0, k) with indices α, β, for each sector of fixed
k—where here and in the following we use the underscore
to denote matrices. This interpretation of the single-particle
Green’s function as a matrix allows to compute a spectrum of
g(1)(ω = 0, k). Note that g(1)(ω = 0, k) is a hermitian matrix,
yielding a real spectrum. The eigenstates vξ of g(1)(ω = 0, k)

naturally define operators of the type

â†
k,ξ

=
∑

α

vξ
α ĉ†

k,α
, (14)

which we refer to as the eigenstates of g(1)(ω = 0, k).
We first recall the role of g(1)(ω, k) for noninteracting sys-

tems. In this case, the Hamiltonian is written as

Ĥ =
∑
k,α,β

ĉ†
k,α

h(k)αβ ĉk,β , (15)

and the single-particle Bloch Hamiltonian h(k) is related
to g(1)(ω, k) through the relation g(1)(ω, k) = [iω − h(k)]−1.
Based on these considerations, TQC can be thought of as
a classification scheme for the spectrum of g(1)(ω = 0, k)
instead of the band representations of h(k) [71]. [In the fol-
lowing, we refer to g(1)(ω = 0, k) as g(1)(k) or simply g(1),
when we consider all the k sectors at once, as we always
set the frequency to be equal to zero, unless otherwise stated.]
The eigenvectors of g(1)(k), as defined in Eq. (14), are thus
the single-particle states, which make up the single Slater
determinant ground state, and the eigenvalues yield the inverse
energies. Also, states obtained by applying the operators (14)
on the vacuum are eigenstates of the Hamiltonian. In fact, the
spectrum of −[g(1)]−1 can be interpreted as a band structure,
and in this sense we speak about the “band representation” of
g(1). Turning to the case with interactions, one possible avenue
to extend TQC is to calculate g(1)(ω = 0, k) and invert it to
obtain an effective Hamiltonian. Indeed, previous works have
focused on applying the TQC framework to the single-particle
Green’s function in the interacting case, and the resulting
effective Hamiltonian was termed topological Hamiltonian
[54,72–76], which also includes the self-energy. The choice
of considering g(1) at zero frequency relies on it being suf-
ficient to capture the topological properties of the system.
This approach has proven successful in capturing topolog-
ical properties of states that are adiabatically connected to
noninteracting systems (single Slater determinants). The only
significant difference to classifying band structures of Bloch
Hamiltonians regards the notion of equivalence classes via
band gaps: For two band representations of g(1) to be equiv-
alent, they have to be deformable into each other (while
retaining symmetries and the locality of the operator) not only
without any eigenvalue crossing infinity (corresponding to the
normal noninteracting band gap), but also with no eigenvalue
crossing zero (corresponding to poles in the self-energy when
Mott gaps open) [75,77].

However, unlike the noninteracting case, an interacting
state is generically not fully specified by g(1), and for in-
trinsically interacting topological states the aforementioned
approach to identify topology fails. For interacting states,
there are in general a number of nontrivial n-particle Green’s
functions g(n), where n = 1, · · · , N for a system with parti-
cle number N , which cannot be reconstructed from the sole
knowledge of g(1). While evaluating all the N correlation func-
tions is not feasible in practice, one can truncate the series, as
is done in the Bogoliubov-Born-Green-Kirkwood-Yvon hier-
archy [78]. For some classes of states, this truncation is exact:
For instance, in the n-MALs states the n-particle Green’s
function completely describes the system, since correlations
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are constrained to involve at most n electrons at a time, if the
n-particle operators creating clusters of electrons at different
unit cells do not overlap. Based on this statement, we will
see in Sec. V how to use g(2) to diagnose the interacting or
noninteracting nature and symmetry properties of an MAL
ground state. In the present paper, we focus on the information
contained in the two-particle Green’s function g(2), although in
principle the generalization to higher-order Green’s functions
g(n) should be straightforward.

B. Two-particle retarded Green’s function

We build the iTQC formalism based on the two-particle
retarded Green’s function describing the amplitude for the cre-
ation of two electrons at real time t = 0, and the annihilation
of two electrons at a later time t ,

g(2)
r1r2,r′

2r′
1;αβ,γ δ

(t )

= −�(t )
〈[

ĉr2,β (t )ĉr1,α (t ), ĉ†
r′

1,γ
(0)ĉ†

r′
2,δ

(0)
]〉

GS. (16)

Again, the expectation value 〈· · · 〉GS is taken over the many-
body ground state of the Hamiltonian. The transformed
version of Eq. (16) as a function of imaginary (Matsubara)
frequency ω reads

g(2)
r1r2,r′

2r′
1;αβ,γ δ

(ω) = − 〈
ĉr2,β ĉr1,α[iω + E0 − Ĥ ]−1ĉ†

r′
1,γ

ĉ†
r′

2,δ

〉
GS

+ 〈
ĉ†

r′
1,γ

ĉ†
r′

2,δ
[iω − E0 + Ĥ ]−1ĉr2,β ĉr1,α

〉
GS,

(17)

where E0 indicates the ground state energy and Ĥ is the many-
body Hamiltonian of the system. It is useful to write Eq. (17)
in the Lehmann decomposition [79],

g(2)
r1r2,r′

2r′
1;αβ,γ δ

(ω)

= −
∑

m∈HN+2

〈GS| ĉr2,β ĉr1,α |m〉 〈m| ĉ†
r′

1,γ
ĉ†

r′
2,δ

|GS〉
iω + E0 − Em

+
∑

n∈HN−2

〈GS| ĉ†
r′

1,γ
ĉ†

r′
2,δ

|n〉 〈n| ĉr2,β ĉr1,α |GS〉
iω − E0 + En

, (18)

where HN±2 indicates the Hilbert space of N ± 2 particles,
and we assumed that the many-body ground state lies in the
N-particle sector of the Fock space. Expressions analogous
to Eqs. (16), (17), and (18) apply for electronic creation and
annihilation operators acting in momentum space. The coun-
terpart of (17) with electronic operators acting in momentum
space is

g(2)
k1,k2,αβ,γ δ

(ω, q)

= −〈
ĉ−k1+q,β ĉk1,α[iω + E0 − Ĥ ]−1ĉ†

k2,γ
ĉ†
−k2+q,δ

〉
GS

+ 〈
ĉ†

k2,γ
ĉ†
−k2+q,δ

[iω − E0 + Ĥ ]−1ĉ−k1+q,β ĉk1,α

〉
GS,

(19)

which is determined by three different momenta: the internal
momenta k1, k2, and the total momentum exchanged q. We
now restrict our attention to a smaller class of Green’s func-
tions, as compared to Eq. (19), by introducing the constraint
that the pair of operators that create (annihilate) electrons are

local in space. The requirement of locality is obtained by
demanding that they are not further than a certain distance
umax apart, meaning r2 = r1 + u and r′

2 = r′
1 + v, for a range

of |u|, |v| < umax. This allows to include correlations between
pairs of electrons on sufficiently short distances, which we
expect to be the ones dominating the essential entanglement
structure of a gapped ground state. Note that u, v also depend
on the indices α, γ , and in principle also condition the allowed
β, δ (see the SM [55]). This constraint of locality is necessary
to obtain a finite dimensional matrix from the set of g(2)

expectation values, such that its dimensions are independent
of system size—at fixed q. The more generic type of g(2), as
the one in Eq. (19), has the momentum labels k1, k2, apart
from q, over which it needs to be diagonalized, leading to
a number of eigenvalues that does not increase linearly with
system size.

With the locality constraint in place and by taking into
account translational invariance, one obtains

g(2)
αβu,γ δv (ω, q)

= 1

N

∑
r,r′

eiq·(r−r′ )g(2)
r,r+u,r′,r′+v,αβ,γ δ (ω)

:= 1

N

∑
r,r′

eiq·(r−r′ )g(2)
r,r′,αβu,γ δv (ω)

= 1

N

∑
k1,k2

ei(−k1+q)·ue−i(−k2+q)·vg(2)
k1,k2,αβ,γ δ

(ω, q), (20)

showing that our requirement of locality is in fact equivalent
to tracing out the internal momenta k1 and k2.

In analogy to the discussion in Sec. IV A, the collection
of all the expectation values (20) can be recast into a matrix,
indicated as g(2)(ω, q). For each value of momentum q, we
define {(α, β, u), (γ , δ, v)} as compact indices for g(2)(ω, q).
This corresponds to considering the two electronic creation
(annihilation) operators as a single operator, and the Green’s
function can be seen as a matrix with entries

g(2)
(αβu),(γ δv)(ω = 0, q) = 〈Ôq,(αβu)[Ĥ − E0]−1Ô†

q,(γ δv)〉GS

+ 〈Ô†
q,(γ δv)[Ĥ − E0]−1Ôq,(αβu)〉GS,

(21)

where we defined

Ô†
q,(γ δv) = 1√

N

∑
k

ei(−k+q)·v ĉ†
k,γ

ĉ†
−k+q,δ

. (22)

We dub the matrix g(2)(ω = 0, q) with entries defined in
Eq. (21) the two-particle radius confined Green’s function,
which is the central object for the classification of MAL
states presented in this work. In the following, we refer to
g(2)(ω = 0, q) as g(2)(q)—or simply g(2) when all the q sectors
are considered—for compactness. We note that for bosonic
correlation functions, there can be an order-of-limits ambigu-
ity with respect to taking the limits ω → 0 and q → 0. In
our computations we always perform the ω → 0 limit first
by setting ω = 0 from the start. Since Eq. (21) depends on
a single momentum q, the number of its eigenvalues scales
linearly with the system size. Hence, by diagonalizing the
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matrix g(2)(q) at each q, one obtains a set of eigenvalues
that can be interpreted as a “band structure” of g(2). Each

eigenstate v
ξ

q(αβu) of the matrix g(2) can now naturally be used
to define a two-particle operator

Ô†
q,ξ = 1√

N

∑
(αβu)

v
ξ

q(αβu)

∑
k

ei(−k+q)·uĉ†
k,α

ĉ†
−k+q,β

, (23)

which we will refer to as an eigenstate of g(2). After diago-
nalizing g(2), we consider its inverse spectrum rather than the
original set of eigenvalues, in analogy to the approach used
to analyze g(1) and such that the resulting eigenvalues can be
expressed in units of energy.

Note that, when the ground state is a noninteracting state
(hence a single Slater determinant) and at ω = 0, for any
eigenvalue λ2 of g(2) it holds that

1

λ2
� �g(2) := min(�N+2, �N−2), (24)

where we defined

�N+2 := Emin(N + 2) − E0 > 0,

�N−2 := Emin(N − 2) − E0 > 0, (25)

with Emin(N ± 2) the lowest energy eigenvalue of the Hamil-
tonian in the N ± 2 particle sector. The latter statement can be
understood by considering the electronic operators in Eq. (23)
in the diagonal basis of the noninteracting Hamiltonian Ĥ .
Each eigenstate of g(2) can lead to a nonzero expectation value
for one and only one of the two terms in Eq. (18), while
the other one has to give a zero contribution. When both the
single-particle operators appearing in the two-particle eigen-
states correspond to nonoccupied states in the noninteracting
ground state, they contribute to the first term in Eq. (21), while
if they are both occupied they only contribute to the second
term in Eq. (21). For a two-particle operator with one occupied
and one nonoccupied operator, the total contribution is zero.
Therefore, any eigenvalue of g(2) that violates the bound (24)
is an indication of an interacting ground state, since it would
not be present in a purely Slater determinant state. These are
the eigenvalues that we focus on in our classification scheme.

The eigenvalues of g(1) and g(2) taken at zero frequency
do not have an immediate physical interpretation in terms of
quasiparticles [74], but nevertheless some understanding in
this direction can be developed. An eigenstate Ô†

q,ξ of the two-
particle Green’s function naturally corresponds to two-particle
excited states of the form

|
ex〉 = Ô†
q,ξ |GS〉 , |
̄ex〉 = Ôq,ξ |GS〉 , (26)

with Ô†
q,ξ as defined in Eq. (23). In the case of a generic state,

Eq. (26) will not give exact eigenstates of the Hamiltonian;
however, they can serve as an ansatz for two-particle excita-
tions. The [g(2)]−1 eigenvalue with eigenstate Ô†

q,ξ gives an
estimate of the energy difference between the particle-particle
(|
ex〉) and hole-hole (|
̄ex〉) excited states. Therefore, states
of the form Eq. (26) corresponding to eigenstates violating
the bound (24) can be interpreted as “bound states” in the
particle-particle spectra. States that are far above the bound
(24) will correspond to the particle-particle continuum and

are therefore less interesting. For the systems we study, the
particle-particle continuum is generally well separated from
the bound states below the bound, allowing these eigenstates
to be clearly identified. For systems where this separation of
scales is not clear, our method will not be applicable.

Let us finally comment on the choice of Green’s function.
Whereas an AL is created by acting with one-particle electron
operators, Eq. (1), a 2-MAL is created by acting on the vac-
uum with a two-particle operator, Eq. (2). The noninteracting
topology is successfully diagnosed with the Green’s function
of Eq. (13) and this motivates the choice of Eq. (21), i. e.,
the particle-particle response function, to diagnose the topol-
ogy of interacting states, as it resembles the structure of the
single-particle correlation function, with the replacement of
single-particle operators with two-particle operators. Indeed,
as discussed in the later sections, this quantity shows a clear
and easily identifiable signature of a MAL phase in terms of a
single low-lying band.

However, this choice of two-particle correlation function
is not the only possibility. Instead of considering the Green’s
function of the form of Eq. (20), we could for instance evalu-
ate the Green’s function of the particle-hole type, i. e.,

g(2)
ph,r1,r2,r′

1,r
′
2,α,β,γ ,δ

(ω)

= FTω

[ − �(t )
〈[

ĉ†
r2,β

(t )ĉr1,α (t ), ĉ†
r′

1,γ
(0)ĉr′

2,δ
(0)

]〉]
, (27)

which probes particle-hole like excitations on the ground
state, as opposed to particle-particle excitations. This correla-
tion function, rearranged into a matrix and after setting ω = 0,
has a positive semidefinite spectrum, and it has a noninter-
acting bound analogous to the one of Eq. (24). In this case,
the bound is set by 1/�N , where �N = Eex(N ) − E0 is the
energy gap in the N-particle sector, with Eex(N ) the energy
of the first excited state in the N-particle sector. This is true
if one discards the contribution coming from the overlap with
the ground state in the Lehmann decomposition, which would
result into a divergent eigenvalue. Although the particle-hole
Green’s function may be useful to distinguish different MALs,
in general it results into a more complicated band structure, as
we show in Sec. V A and the SM [55]. Hence, we choose the
particle-particle correlation function g(2), which shows a clear
signature in its spectrum through which MALs can be more
straightforwardly detected.

C. Transformation properties

In this section, we shortly outline how to derive the trans-
formation properties of g(2). Consider an element h ∈ G of the
space group G acting on the electronic operators by a unitary
symmetry operator Uh. A MAL cluster operator that respects
the symmetries of the space group G transforms linearly ac-
cording to a set of real-space representations A of the space
group G

UhÔ†
r,ξU −1

h =
∑
ξ ′

Ar
ξ ′ξ (h)Ô†

r′,ξ ′ , (28)

with r′ the position of the cluster operator after transformation.
As a MAL operator transformed to momentum space, e. g.,
as in Eq. (4), can only depend on the momentum q, it must
transform under a consistent representation ρq of the space
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group G,

UhÔ†
q,ξU −1

h =
∑
ξ ′

ρ
q
ξ ′ξ (h)Ô†

q′,ξ ′ , (29)

with q′ = Rq, R the action of h in momentum space. From this
latter expression and Eq. (21), we deduce that g(2) transforms
under the action of h as

g(2)
(α,β,u),(γ ,δ,v)

(q)

=
∑

(α,β,u)′,(γ ,δ,v)′
[ρq(h)(α,β,u)′(α,β,u)]

∗

× ρq(h)(γ ,δ,v)′(γ ,δ,v)g
(2)
(α,β,u)′,(γ ,δ,v)′

(q′), (30)

see the SM [55] for a proof.

V. CLASSIFICATION OF GREEN’S FUNCTION
BAND STRUCTURES

So far, we have introduced the concept of n-MALs, and
particularly the one of MALs, and we have defined the two-
particle radius confined Green’s function for general many-
body states. In this section, we will bridge the two concepts
and see how from the spectrum of g(2) we can infer properties
of ground states that can be written exactly as MALs, or that
can be adiabatically connected to those.

As we mentioned shortly at the end of Sec. IV A, an n-
particle correlation function g(n) completely determines a state
characterized by up to n-body correlations. This is exactly
what is realized in n-MALs, as they are constructed as product
states of nonoverlapping n-particle operators and therefore
confine correlations to engage at most n electrons.

In Sec. V A, we derive the band representations of g(2) for
MAL states in the limit of a spectrally flattened many-body
Hamiltonian. In this simplified scenario, the potential of g(2) in
diagnosing MAL states properties becomes apparent. In Sec.
V B, we propose a framework to derive a full classification
of the g(2) band representations of the class of MAL states
in the limit of spectrally flattened many-body Hamiltonians.
Subsequently, in Sec. VI, we explore how this extends to more
realistic systems, and we present numerical results for several
representative model Hamiltonians in 0D, 1D, and 2D.

A. Spectrally flattened many-body Hamiltonian limit

As a simplified example to understand the connections
between two-particle radius confined Green’s functions and
MAL states, we compute the spectrum of g(1) and g(2) in the
case of an AL or an MAL ground state, using the spectrally
flattened many-body Hamiltonian. The latter is a many-body
extension of the concept of “flat band Hamiltonian”, or “spec-
tral flattening”, used in the context of topological band theory
[80]. In the following, we refer to the spectrally flattened
many-body Hamiltonian simply as flattened Hamiltonian, for
compactness.

The flattened Hamiltonian is defined as

Ĥ = 1 − � |GS〉 〈GS| , (31)

where |GS〉 indicates the many-body ground state of the
system, with energy (1 − �). Any generic many-body state

orthogonal to |GS〉 has energy 1, hence the system has a many-
body gap �, which separates the ground state from all excited
states. We consider a lattice with a set of unit cells �, where
the local Hilbert space of each unit cell is composed of three
orbitals, each containing two single-particle states connected
by TRS. We label these states by 1, 2, 3 and their TRS partners
by 1̄, 2̄, 3̄. The two states belonging to each orbital are related
by TRS as follows:

T ĉ†
r, jT −1 = ĉ†

r, j̄
, T ĉ†

r, j̄
T −1 = −ĉ†

r, j, j = 1, 2, 3. (32)

We successively consider the AL ground state

|AL〉 =
∏
r∈�

ĉ†
r,1ĉ†

r,1̄
|0〉 , (33)

and the MAL ground state

|MAL〉 =
∏
r∈�

Ô†
r |0〉 =

∏
r∈�

(
ĉ†

r,1ĉ†
r,2̄

− ĉ†
r,1̄

ĉ†
r,2

)
√

2
|0〉 , (34)

where we explicitly wrote an expression for the Mξ coeffi-
cients of Eq. (3). From Eqs. (33) and (34), it follows that
at a filling of two electrons per unit cell we require two
single-particle states to construct an AL, whereas for an MAL
operator we require four single-particle states connected pair-
wise by TRS.

As a basis set of operators entering in g(1), we consider
the creation and annihilation operators of the three orbitals in
each unit cell (ĉ†

r, j, j = 1, 2, 3, 1̄, 2̄, 3̄, ∀r ∈ �). As a basis
for g(2), we consider all the possible products of two such
single-particle operators taken at the same r, i. e., we set
umax = 0. The case of umax > 0 is discussed in the SM [55],
where we show that the extension of the radius beyond umax =
0 does not change the universal features in the spectrum of
g(2) relevant to us [81]. By virtue of the bound in Eq. (24),
we separate the flattened Hamiltonian spectrum of g(2) into
two contributions: the continuum, composed by eigenvalues
whose inverse lies above or at the many-body gap between the
N and N ± 2 sectors of the Hilbert space �g(2) (λ−1

2 � �g(2) =
�), and the interaction driven spectrum of g(2), with inverse

eigenvalues lying strictly below this gap (λ−1
2 < �). With the

considerations that follow, we will reproduce the schematic
forms of g(1) and g(2) already outlined in Figs. 1(e)–1(g).

With the AL in Eq. (33) as a ground state of the flattened
Hamiltonian (31), g(1) and g(2) are diagonal in our chosen
basis. The eigenvalues of g(1) split into λ1 = −1/� and λ1 =
+1/� contributions [see Fig. 3(a)], respectively given by the
eigenstates of g(1) corresponding to nonoccupied (ĉ†

r, j, j =
2, 2̄, 3, 3̄) and occupied (ĉ†

r, j, j = 1, 1̄) single-particle oper-
ators in the ground state. By listing all the eigenstates of
g(1) with positive eigenvalue, the AL ground state can be
exactly reconstructed. On the other hand, g(2) has a λ2 = 1/�

eigenvalue for any two-particle operator obtained from single-
particle operators either both occupied or both nonoccupied in
the ground state, while it has λ2 = 0 for any product mixing
an occupied and a nonoccupied single-particle operator [see
Fig. 3(c)]. Hence, all eigenvalues of g(2) for an AL belong
to the continuum spectrum, meaning that it is not possible to
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(a) (b) (c) (d)

FIG. 3. Green’s functions spectra with a spectrally flattened
Hamiltonian. [(a),(b)] One- and [(c),(d)] two-particle Green’s func-
tions inverse spectra for a AL or MAL ground state, evaluated in
the flattened Hamiltonian limit. We plot −λ−1

1 , instead of λ−1
1 to

maintain the analogy with the topological Hamiltonian. Thick lines
indicate eigenvalues with multiplicity higher than one, while the thin
line in the MAL g(2) inverted spectrum indicates a singly degenerate
eigenvalue. In (b), there is a band of eigenvalues corresponding to
the empty orbitals 3, 3̄ at −λ−1

1 /� = 1, whereas, for comparison,
in Fig. 1(g) this line is missing since there are no empty orbitals
remaining in the local Hilbert space.

identify the exact form of the AL ground state from the g(2)

spectrum alone.
Note that the identification of −[g(1)]−1 with the single-

particle Hamiltonian is only justified for a noninteracting
Hamiltonian. This is very clear in the flat-band Hamiltonian
scenario; since the band structure of −[g(1)]−1 bears no re-
semblance with the many-body Hamiltonian. Although the
flattened Hamiltonian spectrum as well as the spectrum of
[g(1)]−1 have two levels, their degeneracies are different.

For the MAL ground state of Eq. (34), g(1) is again diagonal
in our chosen basis, and it has eigenvalues λ1 = −1/� deriv-
ing from nonoccupied single-particle operators, and λ1 = 0
for any single-particle operator that appears in the ground state
[see Fig. 3(b)]. The spectrum of g(1) is therefore not useful to
determine the exact structure of the MAL ground state. For
the MAL state, g(2) has a diagonal block, with eigenvalues
λ2 = 1/� for eigenstates composed by two nonoccupied op-
erators, and λ2 = 1/(2�) for operators that mix nonoccupied
single-particle operators and operators appearing in the MAL
state. There is a remaining nondiagonal sector of the g(2)

matrix spanned by the operators Vr = {ĉ†
r,1ĉ†

r,2̄
, ĉ†

r,1̄
ĉ†

r,2} (al-
ready Pauli antisymmetrized). In this subspace of two-particle
operators, g(2) assumes the form

g(2)|Vr = 1

�

(+1 −1
−1 +1

)
. (35)

This leads to a set of eigenvalues λ2 = 2/� belonging to the
interaction driven spectrum [see Fig. 3(d)]. The associated
eigenstates are given by the two-particle operators Ô†

r appear-
ing in Eq. (34). The block of g(2) in Eq. (35) yields another
eigenvalue λ2 = 0, with eigenstates given by the two-particle
operator (ĉ†

r,1ĉ†
r2̄

+ ĉ†
r,1̄

ĉ†
r,2)/

√
2. Note that the set of eigen-

values discussed above are the same for operators in every
decoupled unit cell r, leading to a flat band in momentum
space.

Importantly, the Fourier transform of the eigenstates of
this interaction driven band are exactly the two-particle MAL
operators composing the ground state. Hence, the eigenstates

of the interaction driven band carry the same transformation
properties under the symmetries of the system as the MAL
operators of the ground state. We say that an MAL operator
induces an interaction driven band in the spectrum of g(2),
meaning that the presence of such an operator in the ground
state leads to the existence of a band belonging to the interac-
tion driven spectrum of g(2), and the eigenstates of this band
are the momentum-space transformed version of the MAL
operators of the ground state.

Note that a band belonging to the interaction driven spec-
trum of g(2) can only exist if the ground state is an entangled
state, adiabatically disconnected from any single Slater de-
terminant state. This can be understood for instance by
considering g(2) in real space: When adding or removing a

cluster Ô†
r to the ground state of Eq. (34), the resulting state is

nonzero in both cases due to the entanglement between the
electrons. As both terms in Eq. (21) contribute to the final
expectation value, the bound in Eq. (24) can be violated.

As a conclusion of this section, we shortly consider the
spectrum of g(2)

ph
, as introduced in Eq. (27), for the AL and

MAL states of Eqs. (33) and (34). For the AL ground state,
there is no eigenvalue lying in the interaction driven spectrum,
which is once more identified as the part of the inverted
spectrum falling below �, therefore all the eigenvalues lie
at either λ−1

ph /� = 1 or they diverge λ−1
ph /� → ∞. In con-

trast to the case of g(2), there is also a divergent eigenvalue

λ−1
ph /� = 0 due to the overlap between the MAL after the

action of density-like operators, i. e., of the form ĉ†
i ĉi, with

the ground state. For the MAL case, let us first note that the
MAL state can be equivalently reexpressed as follows:

|MAL〉 =
∏
r∈�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1√
2
(ĉ†

r,1ĉr,1̄ − ĉ†
r,2ĉr,2̄ )ĉ†

r,1̄
ĉ†

r,2̄
|0〉

1√
2
(ĉ†

r,1ĉr,2 + ĉ†
r,1̄

ĉr,2̄ )ĉ†
r,2ĉ†

r,2̄
|0〉

1√
2
(ĉ†

r,2̄
ĉr,1̄ + ĉ†

r,2ĉr,1)ĉ†
r,1ĉ†

r,1̄
|0〉

1√
2
(ĉ†

r,1̄
ĉr,1 − ĉ†

r,2̄
ĉr,2)ĉ†

r,2ĉ†
r,1 |0〉 .

(36)

For each of these lines, the operator in parenthesis contributes
to the spectrum of g(2)

ph with an eigenvalue λ−1
ph /� = 1/2. In

addition, there are two eigenvalues stemming from density-
like operators, which appear in the interaction driven part
of the spectrum, one with λ−1

ph /� = 1/2 and another with

λ−1
ph /� = 0, which is divergent due to a nonzero overlap with

the ground state when acting with density terms on the MAL
state.

Further details on the calculations outlined in this sec-
tion are discussed in the SM [55].

In summary, from the results obtained in this section we
infer that the g(1) spectrum is useful in determining the form
of an AL ground state, but it is not enough to characterize
an MAL. On the other hand, the spectrum of g(2) allows to
determine the form of an MAL. The g(2)

ph
spectrum also carries

information on the structure of an MAL, although it has an
increased complexity.
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B. Classification of g(2) band structures

In this section, we outline how to classify MAL ground
states in the limit of a flattened Hamiltonian, based on their
g(2) spectrum.

Different ALs can be distinguished by their g(1) spectrum,
as discussed in Sec. IV A, and their classification was already
exhausted in the context of TQC. To classify distinct TRS
MALs, we solely consider the interaction driven part of the
g(2) spectrum, which is absent for ALs but appears for MALs
with two-particle entanglement.

We define the interaction driven band representation of
g(2) as the collection of representations ρq of the little groups
Gq in which the eigenstates of the interaction driven bands of
g(2) transform. It is only well defined if a gap separating the
interaction driven and the continuum spectrum of g(2) exists.

The g(2) spectrum of any MAL state with a flattened Hamil-
tonian is obtained by combining the g(2) spectra that would
result from each two-particle operator in Eq. (3), at a fixed
unit cell r, taken individually: Every 2-AL operator induces
a set of eigenvalues in the continuum spectrum, and every
MAL operator disconnected from any AL operator induces an
interaction driven band in the spectrum of g(2). Hence, in order
to fully classify the interaction driven band representations of
g(2), it is enough to consider all the possible bands induced
by states where there is a single MAL cluster operator acting
in each unit cell. All the remaining cases can be deduced
from the latter by superimposing the bands induced by each
MAL cluster operator appearing in the MAL state. We call the
minimal set of band representations that span all the possible
interaction driven band representations of g(2) the elementary
MAL-induced band representations (EMAL).

In the following, we describe how to obtain the list of
EMALs for every space group G. We consider a crystalline
insulator with space group G and a set of orbitals placed
at sites xa, xb, · · · (a = 1, · · · , m1, b = 1, · · · , m2, · · · ) be-
longing to Wyckoff positions with multiplicities m1, m2, · · · ,
and transforming in a direct sum of representations of the
site-symmetry groups Gxa , Gxb, · · · . Interaction driven band
representations obtained from orbitals that are placed at non-
maximal Wyckoff positions can be adiabatically connected
to those at maximal Wyckoff positions without the breaking
of any symmetry, hence they do not contribute to generating
distinct band representations (see the SM [55]), as it happens
in TQC [22]. Therefore, we only consider orbitals placed at
maximal Wyckoff positions.

As a first step towards generating a band representation
of g(2), we need to find all the two-particle local cluster rep-
resentations A in which two-particle MAL cluster operators
transform. These representations are constructed out of the
single-particle representations of the orbitals, and have to be
compatible with the space group G. This aspect is discussed
in the SM [55]. This cluster representation induces a represen-
tation of g(2) in the space group G

(A ↑ G) = ρ. (37)

Then, the method to classify band representations proceeds
as in TQC. To find the band representation induced by ρ at
some specific value of the momentum q, one has to subduce

FIG. 4. One-dimensional lattice. Wyckoff positions of a 1D lat-
tice. The inversion center coincides with the Wyckoff position 1a.

the representation (37) to the little group Gq, leading to a two-
particle momentum representation

(ρ ↓ Gq) = ρq. (38)

The collection of representations (38) at the maximal mo-
menta of the Brillouin zone have to be continuously connected
via maximal momentum lines, and this leads to certain com-
patibility relations. In principle, these compatibility relations
need to be solved numerically using a graph theory algorithm
[22].

This way, all the possible band representations induced by
MAL states compatible with the space group G have been
listed, provided that the list of A representations is exhaustive.
By comparing the band representation of a Green’s function
of interest to the such constructed band representations, in the
limit of flattened Hamiltonian and by restricting the ground
states to the class of MAL states, iTQC provides a new defini-
tion of topological states: If the band representation associated
to the interaction-driven spectrum of a Green’s function cannot
be induced from ALs and 2-MALs, the state is either (i) an SPT
that cannot be induced from 0-dimensional blocks or (ii) it is a
many-body state that is dominated by many-body correlations
that involve more than two electrons.

In Sec. V C, we discuss the full classification of EMALs in
1D, which gives an explicit example of the procedure outlined
above. In addition, simple 2D examples where the classifica-
tion can be done by hand are discussed in the SM [55], and in
future work we plan to compile the full tables for all 2D and
3D space groups.

C. Complete classification of ALs and MALs in 1D

One-dimensional systems are already an interesting testing
ground for our formalism. Within TQC, they only allow for
trivial phases. These are either ALs or obstructed ALs, for
which the atomic positions do not coincide with the Wyckoff
positions of the AL Wannier functions. An example for the
latter is the Su-Schrieffer-Heeger model for spinful electrons
[82]. With interactions, however, it is possible to find phases
described by MALs. In Sec. VI B, we provide a 1D model
and demonstrate how iTQC can be used to identify different
phases.

In 1D crystals there are three Wyckoff positions: 1a, 1b,
and 2c (Fig. 4), and as ALs and MALs operators placed at 2c
are adiabatically connected to the ones placed at 1a and 1b,
these cases can be discarded. In this section, we consider only
inversion symmetry among the spatial crystalline symmetries,
since different AL phases are not mirror indicated in 1D TRS
crystals. The site symmetry groups of the sites at Wyckoff
positions 1a and 1b are isomorphic to Ci. Hence, the relevant
point group is the double group of Ci (No. 2), and it contains
the identity (E ), inversion (I), 2π rotation (Ē ), and the double
inversion (ĒI) operations [83]. This group has four 1D irreps:
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the spinless [Trρ(Ē ) = +1] representations Ag and Au, and the
spinful [Trρ(Ē ) = −1] representations Āg and Āu, where the
subscript g (u) indicates that the representation is even (odd)
under inversion (see Table S1 in the SM [55]).

Hence, the site symmetry groups of the sites at Wyckoff
positions 1a and 1b both admit two types of spinful orbitals,
either with physical irrep even (ĀgĀg) or odd (ĀuĀu) under
inversion, which are often simply referred to as s and p or-
bitals [84]. The corresponding creation operators acting in
momentum space are labeled by ĉ†

k,α
, with α = (W, τ, σ ).

Here, τ ∈ {ĀgĀg, ĀuĀu} indicates the spinful orbital represen-
tation of the site-symmetry group Gx of a site x at Wyckoff
positions W ∈ {1a, 1b}, and σ ∈ {↑,↓} is the spin degree of
freedom, which enumerates the two states connected by TRS
in each orbital.

The action of inversion and TRS on the orbitals transform-
ing in the two possible τ irreps is

τσ ′σ (I ) = ±1σ ′σ , τσ ′σ (T ) = iσ (2)
σ ′σ , (39)

where the plus sign holds for τ = ĀgĀg and minus sign for
τ = ĀuĀu. Note that inversion acts trivially on the spin de-
gree of freedom. The site symmetry group representation in
momentum space induces the Wyckoff position-dependent
representations at momentum q, which read

ρ
q
1a(I ) = 1, ρ

q
1b(I ) = eiq, (40)

for inversion, while TRS acts by complex conjugation.
After having listed the allowed single-particle representa-

tions τ , we need to find the representations of two-particle
operators consistent with the space group and constructed
from single-particle state representations. In general, this task
can be rather cumbersome, but it is enough to narrow down the
search to some restricted cases to obtain a full classification of
EMALs in 1D: we only consider MAL operators constructed
out of single-particle operators that are placed at the same
(maximal) Wyckoff position and same unit cell. Then, the
local cluster representation A is obtained by taking tensor
products of pairs of the single-particle representations τ , and
the two-particle representation ρ becomes the tensor product
between A and the momentum space representations induced
by the site symmetry groups (40) (see the SM [55]). The rel-
evant multiplication rules are Āg ⊗ Āg = Āu ⊗ Āu = Ag, and
Āg ⊗ Āu = Au. Explicitly, the possible A representations are
given by

(ĀgĀg) ⊗ (ĀgĀg) = Ag ⊕ Ag ⊕ Ag ⊕ Ag,

(ĀuĀu) ⊗ (ĀuĀu) = Ag ⊕ Ag ⊕ Ag ⊕ Ag,

(ĀgĀg) ⊗ (ĀuĀu) = Au ⊕ Au ⊕ Au ⊕ Au, (41)

for both the Wyckoff positions 1a and 1b. Each tensor product
in (41) is four-dimensional and splits into a 1D spin-0 and
a 3D spin-1 sector. The constraints of TRS and uniqueness
of the ground state single out the spin-0 sector, as it is the
only nondegenerate representation appearing in the presence
of SU (2) symmetry, leaving only a single term, out of four,
in each line of Eq. (41). For the spin-1 sector, three 1D repre-
sentations should be filled to fulfill SU (2) symmetry, leading
to an AL state. This leaves us with two possible types of A
representation, Ag or Au, irrespective of whether we consider
orbitals at 1a or 1b.

To obtain the full two-particle representation ρ, we con-
sider the tensor product between local cluster spin-singlet
irreps A and one of the momentum space representation ρ

q
W of

Eq. (40), depending on whether the orbitals are placed at the
1a or 1b Wyckoff position sites. This leads to the two-particle
representations

ρW,Ag = Ag ⊗ ρ
q
W , ρW,Au = Au ⊗ ρ

q
W , (42)

with W ∈ {1a, 1b}.
The two-particle representations are labeled by the A repre-

sentation from which they originate and the position of the two
orbitals, which is unique as the two single orbital locations
coincide.

To give an explicit example, we write an MAL operator
transforming in the ρ1a,Au representation, subduced to a spe-
cific momentum q, as

Ô†
q,1a,Au

= 1√
2N

∑
k

(
ĉ†

k,1a,ĀgĀg,↑ĉ†
−k+q,1a,ĀuĀu,↓

− ĉ†
k,1a,ĀgĀg,↓ĉ†

−k+q,1a,ĀuĀu,↑
)
, (43)

with N the number of unit cells in the 1D lattice.
Based on the set of 1D two-particle representations of

Eq. (42), the list of EMALs for the 1D space group with
inversion (1̄) can be inferred. Table II lists the irrep of the g(2)

interaction driven bands at the maximal momenta � (k = 0)
and X (k = π ) of the Brillouin zone, obtained by subducing
the representation ρ of each MAL operator to the little groups
G� and GX . Note that some of the EMALs can be induced by a
2-AL operator (e. g., Ô†

1a,Ag
), while others cannot be obtained

by any 2-AL operator (e. g., Ô†
1a,Au

). This follows from the fact
that some of the MALs can be adiabatically connected to ALs
without the breaking of any relevant symmetry of the crystal
point group, and by tuning off interactions in the system, while
there are intrinsically interacting MALs disconnected from
any noninteracting state.

In 1D, the MAL classification exhausts all the possibili-
ties in terms of inversion eigenvalues at maximal momenta,
meaning that any single interaction driven band representation
of g(2) is equivalent to one of the EMALs listed in Table II.
For a state constructed as a product of more than one MAL
operator per unit cell, there will be multiple interaction driven
bands in the spectrum of g(2), each one described by one
of the band representations of Table II. However, states not
adiabatically connected to MALs or ALs will not be captured
by this classification, and may for instance result in a number
of interaction driven bands, which is not compatible with
the number of predicted interaction driven bands at the same
filling.

In 2D, the classification is richer, and MALs do not realize
all the possible combinations of representations at maximal
points, in principle allowing for topologically nontrivial band
representations in g(2), or, once more, for bands that are not
captured by the MAL ansatz.

VI. NUMERICAL RESULTS

So far, we have only made statements on the classification
of MALs in the limit of a flattened Hamiltonian. With more
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TABLE II. MAL band representation in 1D. The first column lists all the labels of the two single-particle representations τ, τ ′ whose tensor
products give rise to an allowed two-particle representation ρ. The resulting ρ’s labels are listed in the second column. The columns for the
g(2) representations contain the representations of the lowest lying band in g(2) obtained by subducing ρ to the maximal momenta � and X . In
the last two columns, the irreps of the lowest lying bands of the particle-hole Green’s function g(2)

ph
are listed, see Sec. V A and the SM [55],

and the contribution of the trivial zero eigenvalue is removed.

g(2) g(2)
ph

τ ⊗ τ ′ ρ � X � X

(1a, ĀgĀg) ⊗ (1a, ĀgĀg), (1a, ĀuĀu) ⊗ (1a, ĀuĀu) 1a, Ag �+
1 X +

1

5⊕
i=1

�+
1

5⊕
i=1

X +
1

(1b, ĀgĀg) ⊗ (1b, ĀgĀg), (1b, ĀuĀu) ⊗ (1b, ĀuĀu) 1b, Ag �+
1 X −

1

5⊕
i=1

�+
1

5⊕
i=1

X −
1

(1a, ĀgĀg) ⊗ (1a, ĀuĀu) 1a, Au �−
1 X −

1

3⊕
i=1

�+
1

2⊕
i=1

�−
1

3⊕
i=1

X +
1

2⊕
i=1

X −
1

(1b, ĀgĀg) ⊗ (1b, ĀuĀu) 1b, Au �−
1 X +

1

3⊕
i=1

�+
1

2⊕
i=1

�−
1

3⊕
i=1

X −
1

2⊕
i=1

X +
1

realistic Hamiltonians, our conclusions obtained in the ideal-
ized scenario of Sec. V A no longer hold exactly. However,
our numerical calculations show that as long as the ground
state is a gapped state adiabatically connected to an MAL and
dominated by two-body correlations, the spectrum of g(2) still
conveys information on the properties of the ground state.
This indicates that the spectrum of g(2) is a powerful tool
that can be useful beyond the perturbative regime of small
interaction strength.

Away from the ideal limit, the interaction driven bands pre-
dicted in the flattened Hamiltonian limit show a momentum
dependence, while still retaining their symmetry properties
and a gap separation from the bands characterized by larger
eigenvalues. The lowest bands in the spectrum of [g(2)]−1

may not necessarily lie below the bound (24), but still retain
a gap separation from the remaining bands. Conversely, the
presence of these bands in the spectrum of [g(2)]−1 hints at a
ground state that is either closely approximated by an MAL
state or adiabatically connected to an MAL state and still
dominated by two-body correlations, rather than correlations
involving a higher number of particles.

In our numerical calculations, we find that this signature
of MAL ground state is robust at large values of the interac-
tion strength, as long as the many-body Hamiltonian remains
fully gapped and the ground state is dominated by two-body
correlations rather than higher-order correlations. Therefore
we speak of MAL phases to indicate a phase of a system
where the ground state can be adiabatically connected to an
MAL but not to any AL, without any gap closings or the
breaking of symmetries of the system. On the other hand, we
say a system is in an AL phase, when its ground state can
be adiabatically connected to an AL, without gap closings or
symmetry breaking.

In this section, we will present a series of numerical
calculations for different model Hamiltonians where the con-
siderations of Sec. V still hold for a range of parameters.
These examples showcase how the classification of the in-
teraction driven band representations of g(2) can be used to
infer properties of certain interacting ground states, beyond
the limit of flattened Hamiltonian or MAL state.

We will first discuss the Hubbard square (Sec. VI A), which
realizes a 0D MAL state in the limit of vanishing interactions.
We then study two examples where the Hubbard square is
used as a building block to construct first a 1D lattice, the
Hubbard diamond chain (Sec. VI B), and then a 2D checker-
board lattice (Sec. VI C). As a last model, we present another
example of 0D Hubbard cluster, the Hubbard star of David
(Sec. VI D), which may find application in the context of the
layered material 1T − TaS2 [85]. The four schematics of the
models considered throughout this section are shown in Fig. 5.

For each model presented in the following sections, we use
symmetry groups that contain a minimal set of symmetries
that allow to distinguish the various phases appearing in the

(a) (b)

(c) (d)

1 2

4 3

t1t2
t1

t3 1
24

31a
2m2i1b

t
t1

t3

1 2
4 31a

1b2c

4d

*

FIG. 5. Schematics of the models considered. Schematics of
(a) the Hubbard square (Sec. VI A), (b) the Hubbard diamond chain
(Sec. VI B), (c) the checkerboard lattice of Hubbard squares (Sec.
VI C), and (d) the star of David cluster (Sec. VI D). In (b) and
(c) some Wyckoff positions are explicitly marked for the two lattices,
and the unit cell is highlighted by the yellow rectangle. The tunneling
amplitudes discussed in the various models are highlighted in each
schematic.
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phase diagrams, rather than the full symmetry groups. This
choice is motivated by the aim of keeping the notation simple,
since considering the full symmetry group would lead to a
more complicated analysis while the results would remain
substantially unchanged.

There are several numerical techniques, which enable one
to calculate the two-particle Green’s function g(2), such as
exact diagonalization (ED) and QMC. In this section we
will focus on systems amenable to these two techniques. In
principle, these numerical techniques are also useful in the
computation of n-particle Green’s functions with generic n. A
more detailed discussion on the numerical calculations whose
results are shown in the following sections is presented in the
SM [55].

Importantly, the QMC results presented in Sec. VI C ex-
emplify how different SPT phases can be distinguished by
means of g(2) for system sizes beyond the reach of methods
such as ED and DMRG. While ED and DMRG provide access
to the full many-body ground state, in our formulation the
knowledge of the ground state is not required, nor the calcu-
lation of correlation functions involving an extensive number
of electronic operators. This has to be contrasted with con-
ventional techniques developed to diagnose SPT phases, such
as the evaluation of string-order parameters [70] and partial
symmetry operations applied to subsystems of size compa-
rable with the total size of the system [66,67,69]. Both of
these approaches to obtain SPT invariants involve an extensive
number of fermionic and swap operators, respectively, which
can be obtained efficiently when the ground state is known and
in 1D systems [70], but become computationally inaccessible
in more than 1D and as the size grows. In addition, canonical
pgSPT and cSPT invariants are quantized [66,67,69], and
therefore it is reasonable to expect that their value heavily
suffers from finite-size effects. Our method is still applicable
for modest system sizes, as it only requires the presence of a
gap in the many-body and in the g(2) spectrum, while it does
not rely on a quantized response.

A. Hubbard square

As a 0D numerical example, we compute the g(2) spectrum
in ED for the Hubbard square, a four-site interacting fermionic
model studied in Refs. [53,86–88]. A spinful electron is
placed at each site of the square [89], and the Hamiltonian
is defined as

ĤHS = − t1

4∑
i=1

∑
σ

(ĉ†
i,σ ĉi+1,σ + H.c.)

+ t2

4∑
i=1

∑
σ

ĉ†
iσ ĉi+2,σ +U

4∑
i=1

(
n̂i,↑ − 1

2

)(
n̂i,↓ − 1

2

)
,

(44)

with ĉ†
iσ (ĉiσ ) creating an electron at site i = 1, . . . , 4, with the

spin σ ∈ ↑,↓ labeling the two single-particle states of each
orbital. It is convenient to transform the single-particle states
in eigenstates of the fourfold rotation operation (C4),

ĉ†
�,σ = 1

2

4∑
j=1

ei� j ĉ†
j,σ , ĉ�,σ = 1

2

4∑
j=1

e−i� j ĉ j,σ , (45)

with eigenvalues � ∈ {0, π
2 , π,−π

2 }. The Hamiltonian be-
comes

ĤHS =
∑
�,σ

(
ε(�) − μ − U

2

)
ĉ†
�,σ ĉ�,σ

+ U

N

∑
�,�′,�′′

ĉ†
�,↑ĉ†

�′,↓ĉ�′′+�,↓ĉ−�′′+�′,↑, (46)

with ε(�) = −2t1cos(�) + t2cos(2�), and N = 4 the number
of sites. The C4 symmetric electronic single-particle states
transform as

C4ĉ†
�,σC−1

4 =
∑
σ ′

ei(�+ π
4 σ

(3)
σσ ′ )ĉ†

�,σ ′ . (47)

The minimal symmetry group to distinguish the phases of the
Hubbard square is the double group CD

4 (see Table S3 within
the SM [55]), and the eight ĉ†

k,σ
operators transform as a set

of double-valued physical representations of CD
4 (see the SM

[55]). Focusing on the case of half-filling, the Hubbard square
is characterized by two distinct phases: trivial (t2 > t1) and
nontrivial (t2 < t1).

In the limit of U/t1 → 0, the ground state of the trivial
phase is a gapped state of the single Slater determinant form

|T〉 = ĉ†
π
2 ,↑ĉ†

π
2 ,↓ĉ†

− π
2 ,↑ĉ†

− π
2 ,↓ |0〉 . (48)

This wave function transforms under the trivial representation
of the point group (A), meaning C4 |GS〉 = + |GS〉. In the
limit U/t2 → ∞ the wave function takes an alternative form
with the same C4 eigenvalue,

|T′〉 = Ô†
13Ô†

24|0〉, (49)

where Ô†
i j ≡ [c†

i,↑c†
j,↓ + c†

j,↑c†
i,↓]/

√
2. The states |T〉 and |T′〉

can be continuously connected as they are characterized by
the same C4 symmetry eigenvalues.

For the nontrivial phase, in the limit of U/t1 → 0, the
square has the unique ground state

|NT〉 = 1√
2

ĉ†
0,↑ĉ†

0,↓(ĉ†
π
2 ,↑ĉ†

π
2 ,↓ + ĉ†

− π
2 ,↑ĉ†

− π
2 ,↓) |0〉 , (50)

and in the limit U/t1 → ∞

|NT′〉 = 1√
3

[Ô†
12Ô†

34 − Ô†
14Ô†

23] |0〉 , (51)

where both states have C4 |GS〉 = − |GS〉, and transform in
the B representation of the point group (see the SM [55]).
The state in Eq. (50) realizes an example of MAL, with a
C4 eigenvalue that is nontrivial, in the sense that it cannot
be reproduced by any TRS AL. For this state, there is a
single MAL cluster operator that leads to a contribution in the
interaction driven spectrum of g(2), the one enclosed in paren-
thesis in Eq. (50). Once more, the states |NT〉 and |NT′〉 can
be continuously connected as they have the same eigenvalue
under C4 operation.

Figure 6 shows the ED inverse g(2) spectra obtained in
the two phases, trivial [Fig. 6(a)] and nontrivial [Fig. 6(b)],
for a range of interaction strength U/t1. From the spectra
of g(2), we find that in each of the two phases there is a
single eigenvalue below the two-particle gap �g(2) , for U/t1
not too large, whose symmetry eigenvalue under the action of
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(a) (b)

FIG. 6. Hubbard square. Inverse eigenvalues of the two-particle
Green’s function for (a) the trivial phase (t2 > t1) and (b) the non-
trivial phase (t2 < t1) of the Hubbard square (44). The boundary
of the region shaded in yellow marks the two-particle gap �g(2) at
each value of the Hubbard interaction strength U . The eigenvalues
of g(2) are colored according to the legend in (a), with the color
code distinguishing the CD

4 representation in which their eigenstates
transform, either A, B or the corepresentation 1E 2E , see Table S3
within the SM [55]. Solid (dashed) lines indicate singly (doubly)
degenerate eigenvalues. The state in (b) below �g(2) transforming in
the B irrep of C4 indicates the nontrivial MAL character of the ground
state. All quantities are expressed in units of t1.

C4 rotation reflects the symmetry of the ground state. As U
becomes increasingly larger, the relevant correlation function
describing the Hubbard square state becomes the four-particle
correlation function. Hence, additional eigenvalues begin to
appear in the lower part of the inverted spectrum of g(2).

Larger “Hubbard molecules” can exhibit even more com-
plex phase diagrams of band insulating and fragile Mott
insulating phases [90]. In Sec. VI D, we present an example
of larger cluster, the Hubbard star of David, where we observe
a rich phase diagram that includes an MAL phase.

B. Hubbard diamond chain

As a 1D example, we consider the Hubbard diamond chain
defined in Ref. [54]. This is constructed by connecting several
Hubbard squares through their corners, see Fig. 5(b). In this
case, the relevant space group is Pmmm (No. 47), and the
lattice sites are placed at the 2m and 2i Wyckoff positions. The
site-symmetry groups of sites in Wyckoff position 2m and 2i
are isomorphic to m2m and 2mm, respectively, and the orbitals
localized at these four sites can be continuously connected
to orbitals placed at the maximal Wyckoff position 1a of the
lattice. Here, we only consider the point group C2v as it is
sufficient in diagnosing the MAL phase (while in Ref. [54]
the analysis is carried out for the full symmetry group D2h).
As for the Hubbard square, each site has spinful electrons.
The Hamiltonian is

Ĥ =U
∑
j,α

n̂ j,α,↑n̂ j,α,↓ +
∑
j,σ

∑
α,β

ĉ†
j,α,σ Tαβ ĉ j,β,σ

−
∑
σ, j

(t3ĉ†
j,1,σ ĉ j+1,3,σ + h.c.) − μ

∑
j,α,σ

n̂ j,α,σ , (52)

with

T = −

⎡
⎢⎢⎣

0 t1 t2 t1
t1 0 t1 t2
t2 t1 0 t1
t1 t2 t1 0

⎤
⎥⎥⎦, (53)

where ĉ†
j,α,σ (ĉ j,α,σ ) creates (annihilates) an electron of spin

σ at site α ∈ {1, 2, 3, 4} of the cell labeled by j = 1, . . . , N ,
with N the number of unit cells. In Eq. (52), t1 and t2 are
hopping amplitudes within a single square, t3 the one between
different squares, and μ is the chemical potential.

The noninteracting model at half-filling has three phases
[54]: If the hopping t2 dominates, then the individual squares
are in the trivial phase of the Hubbard square. This is an
insulating AL state. If the hopping t3 dominates, then the
model can be adiabatically connected to the interacting SSH
chain [82], with the addition of two weakly coupled sites.
This insulating state is an obstructed AL. These two insulating
states will be unaffected by a small U since they are protected
by a gap. In fact, it is known that there is no phase transition
as a function of U for both the SSH chain [75] and the trivial
phase of the Hubbard square [53], it therefore is plausible
that there is no phase transition as a function of U in these
phases of the Hubbard diamond chain. On the other hand, if
t1 dominates, then the individual squares can be described by
the nontrivial phase of the Hubbard square. For U = 0 this
phase is metallic, but for any finite U a gap in the many-body
spectrum opens up, analogously with the case of the isolated
Hubbard square. Therefore, the system realizes an MAL phase
at finite U and dominant t1.

We perform ED and QMC calculations on the system at
t2 = 0, while varying t3/t1 and U/t1. In Fig. 7(a), the phase
diagram of the system as a function of these two parameters is
shown: At U = 0 the system is gapless (therefore we label
it as metal), at large U/t1 and small t3/t1 the ground state
is described by an MAL state, and at small U/t1 and large
t3/t1 the system realizes an antiferromagnetic (AFM) phase.
Figures 7(b)–7(e) show the g(1) and g(2) inverse spectra for
the case of umax = 6, with the unit cell defined as a single
diamond [see Fig. 5(b)]. In the MAL regime, corresponding
to Fig. 7(d), there is a single low-lying band in the inverted
spectra of g(2), whose eigenstates have mirror My eigenvalue
equals to −1 at both momenta q = 0, π . This signals that the
ground state is adiabatically connected to an MAL placed at
the 1a Wyckoff position of the unit cell, transforming in the A2

irrep of the point group CD
2v . On the other hand, in the large t3

regime of Fig. 7(e), there is no band in the spectrum of [g(2)]−1

separated from the continuum.

C. Checkerboard lattice of Hubbard squares

As a 2D example, we consider the model proposed in
Ref. [53]. This consists of a checkerboard lattice where Hub-
bard squares, with on-site interaction U and nearest-neighbor
hopping t1, are coupled to the neighboring unit cell by a
hopping parameter t3, see Fig. 5(c). The Hamiltonian for the
model reads

Ĥ =
∑

r

ĤHS,r −
∑

〈r,i,r′, j〉
r�=r′

∑
σ

t3(ĉ†
r,i,σ ĉr′, j,σ + H.c.), (54)
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(a) (b) (c) (d) (e) (f)

FIG. 7. Hubbard diamond chain. (a) Phase diagram of the diamond chain model in the (U/t1, t3/t1) plane. In the upper part, the system is in
an MAL phase, while in the lower it is in an AFM phase. The phase transition is marked using three approaches: (i) �AFM, by the vanishing gap
between the ground state and the S = 1, k = π excited state computed within L → ∞ extrapolation of the QMC data; (ii) χAFM, inflection point
in susceptibility towards the respective Néel order computed within QMC on L = 10 unit cells; and (iii) g(2), by the vanishing gap between the
lowest-lying band and the rest of the inverted spectrum of g(2), computed within QMC on the L = 8 chain (see the SM [55]). The two crosses
mark the points in the phase diagram corresponding to the plots (b)–(e). [(b),(c)] Inverted band structure of g(1) of the diamond chain obtained
using QMC simulations, computed at U/t1 = 2 and t3/t1 = 0.1, 1.0, for (b) and (c) respectively. The spectrum is doubly degenerate at each
value of q due to the spin degree of freedom. [(d),(e)] Inverted band structure of g(2), for U/t1 = 2, umax = 6, L = 8 and t3/t1 = 0.1, 1.0, for
(c) and (d), respectively. The dashed line indicates the two-particle gap �g(2) estimated from the spectral gap of [g(1)]−1, meaning �g(2) ≈ 2�1.

(f) Spectral gap �2 between the lowest-lying and the remaining eigenvalues of [g(2)]−1, as a function of 1/umax, computed at fixed U/t1 = 2,
and t3/t1 = 0.0, 0.1, 0.5, and 1.0.

with r, r′ labeling different unit cells, i, j ∈ {1, · · · , 4} in-
dicating the sites within each unit cell, and HHS,r is the
Hamiltonian in Eq. (44) for the square in the unit cell labeled
by r. Here, we neglect the diagonal hopping t2 in Eq. (44) as
our focus is on the nontrivial phase of the Hubbard square.

In the limit t1 � t3 and U → 0, the ground state is de-
scribed by a product of MAL operators, each transforming
in the B representation of the point group CD

4 and placed at
the Wyckoff position 1a of the lattice. In the opposite regime
of dominating t3 (t1 � t3 and U → 0) the ground state is
also described by a product of MAL operators transforming
in the B representation of CD

4 , which are, however, placed at
the 1b Wyckoff position of the lattice. Therefore, at finite U ,
the two regimes of dominating t1 or dominating t3 realize two
distinct MAL phases. For the intermediate region t1 ≈ t3, the
ground state is an AFM at finite U and is gapless (metal) at
U = 0. The two MAL phases can be distinguished by the band

representations that the distinct MALs induce in the spectrum
of g(2). Figures 8(b)–8(d) show the inverted spectrum of g(2)

in the three phases. For the two MAL phases, the irreps of the
lowest-lying bands at maximal momenta in the Brillouin zone
are marked, and they correspond to the band representation
induced by an MAL cluster transforming in the B represen-
tation of CD

4 placed respectively at the 1a and 1b Wyckoff
position. In the SM [55], we explicitly derive the full band
representation induced by MAL operators placed at the 1a
Wyckoff position. The case in which the orbitals are placed
at the 1b Wyckoff position follows analogously.

D. Hubbard star of David

As a last example of application of our method, we con-
sider a single cluster of atomic sites forming a star of David
shape. This model is motivated by the monolayer material

(a) (b) (c) (d) (e)

FIG. 8. Checkerboard lattice of Hubbard squares. (a) Phase diagram as a function of ϕ/(π/2) and U/t (t1 = t cos ϕ, t3 = t sin ϕ). The
phase boundaries are evaluated using (i) �AFM, the vanishing gap between the ground state and the S = 1 and k = (π, π ) excited state,
extrapolated for L → ∞ from the QMC data; (ii) χAFM, the inflection point in susceptibility towards the Néel order, obtained within QMC
on the L = 5 lattice (corresponding to L × L unit cells); and (iii) g(2), the gap closing in the inverse spectra of g(2), obtained in QMC for a
system with L = 3 (see the SM [55]). The three crosses mark the points in the phase diagram corresponding to the (b)–(d) plots. [(b)–(d)]
Inverted spectrum of g(2) in the three regimes (b) t1 � t3 (ϕ = 0.08), (c) t1 ≈ t3 (ϕ = 0.74), and (d) t1 � t3 (ϕ = 1.49), for U/t = 2 and
ϕ = arctan(t1/t3). The spectra in (b)–(d) are evaluated with QMC, for a system of size L = 4. (e) Convergence of the spectral gap in the
inverted spectrum of g(2) as a function of inverse cluster size 1/umax, for systems with L = 4 and ϕ = 0.00, 0.17, 1.41, 1.57.
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(a) (b) (c) (d)

FIG. 9. Star of David. (a) Single-particle spectrum of the star of David at U/t = 0, μ∗/t = 1.5. Each eigenvalue is doubly degenerate due
to the spin degree of freedom. The two levels closest to zero energy correspond to the s and f states. Their wave function weights are shown in
the insets. (b) Phase diagram obtained within ED of the star of David as a function of μ∗/t and U/t in the Hilbert space of N = 12 electrons, at
fixed t ′/t = 1 and t ′′/t = 0.4. Phases are labeled by 2S+1R, where R indicates the C6 representation in which the ground state transforms and S
its total spin. (The representation labeled by A corresponds to A1 for C6v , while A′ corresponds to A2.) The pink asterisk marks the parameters of
(a). (c) Low-energy spectrum at N = 12 as a function of U , plotted with respect to the lowest energy eigenvalue (i. e., the ground-state energy).
(d) Inverted g(2) spectrum obtained in ED with a cutoff of mmax = 300 in each symmetry sector as a function of U (see the SM [55]). The
lowest eigenvalues are colored according to the physical representation of C6 in which their eigenstates transform. The continuous (dashed)
lines mark the N − 2 (N + 2) many-body gap, �N±2 = Emin,N±2 − EGS,N with N = 12. The gray (black) lines refer to excitations with Sz = ±1
(Sz = 0). In (c)–(d), the parameters are μ∗/t = 1.5, t ′/t = 1, and t ′′/t = 0.4, corresponding to the dashed line in (b). The legend in (c) applies
to both (c) and (d). In (d), only the lowest eigenvalues are filled with color, for visibility.

T − TaS2, a cluster Mott insulator where the originally trian-
gular lattice of each layer undergoes a charge density wave
instability that leads to the formation of a star of David pattern
[91,92]. While detailed theoretical models have been devel-
oped to discuss this system [85], here we present a simplified
single-orbital model to analyze an individual cluster.

We consider the star of David cluster shown in Fig. 5(d),
with a single trivial spinful orbital placed at each one of the
thirteen sites. To distinguish between AL and MAL phases,
a possible minimal symmetry group is the double group of
C6 (see Table S11 within the SM [55]). We consider a tight
binding model with nearest-neighbor hoppings and on-site
Hubbard interaction. In addition, we introduce a local chem-
ical potential μ∗ acting on the central site only, which is
distinguished by an asterisk in Fig. 5(d). The model Hamil-
tonian for this star of David cluster reads

Ĥ =
13∑

i=1

∑
σ

t (ĉ†
i,σ ĉi+1,σ + H.c.)

+
6∑

i=1

∑
σ

[t ′(ĉ†
2i,σ ĉ1,σ + H.c.) + t ′′(ĉ†

2i,σ ĉ2i+2,σ + H.c.)]

+ U
13∑

i=1

n̂i,↑n̂i,↓ + μ

13∑
i=1

∑
σ

n̂i,σ + μ∗
∑

σ

n̂1,σ , (55)

where we identified the sites 14 ≡ 2, the parameters t , t ′, and
t ′′ describe the hopping amplitudes, U the strength of the
Hubbard interaction, μ the global chemical potential, and μ∗
is the local chemical potential.

We focus on the case of electron filling N = 12, which
allows for a TRS ground state, and we fix t ′/t = 1, t ′′/t = 0.4.
The regime of twelve electrons per star of David cluster may
be reached experimentally upon sample doping. The phase
diagram evaluated in ED as a function of U and μ∗ is shown
in Fig. 9(b).

In the single-particle sector of the Hilbert space there are
thirteen energy levels, each one twofold degenerate due to the
spin degree of freedom. At U = 0, μ∗ = 0, and N = 12, these
energy levels are filled up to some states, which we label by f ,
whose symmetry eigenvalue under sixfold rotation (C6) is −1,
see Fig 9(a). We define the creation operators for these states
as ĉ†

f ,σ , with σ = {↑,↓}. In this limit, the many-body ground
state is a gapped AL, with the first twelve levels completely
filled

|
A〉 = ĉ†
f ,↑ĉ†

f ,↓ |�〉 , (56)

where |�〉 indicates the many-body state where all the single-
particle states with energy below the one of the f states are
completely filled. At the Fermi energy −μ, there are two
pairs of spin-degenerate single-particle states with C6 eigen-
value +1 and −1 respectively. For finite values of μ∗ > 0,
the spin-degenerate single-particle states at the Fermi energy
characterized by C6 eigenvalue +1, which we call s states,
become lower in energy, and eventually reach the f energy
value, for μc

∗/t ∼ 2.5. We indicate creation operators that
create electrons in the s state by ĉ†

s,σ , σ = {↑,↓}. The inset
of Fig. 9(a) shows the single-particle noninteracting spectrum
at the value μ∗/t = 1.5.

As μ∗ and U increase, the relevant low-energy sector of
the Hilbert space at finite but small U involves the states
where all the levels with energy below the one of f are filled,
while the remaining two electrons occupy some of the s and
f states. In the limit U → 0 and μ∗ < μc

∗, the ground state
remains the gapped AL of Eq. (56). For small but finite U , the
ground state is adiabatically connected to the AL in Eq. (56),
and it transforms in the A representation of C6. For larger
values of U , the antiferromagnetic exchange favors the singlet
configuration mixing the s and f states, leading to a level
crossing in the many-body spectrum [see Fig. 9(c)]. After the
crossing, the new many-body ground state is a gapped singly
degenerate state that transforms in the B representation of the
point group, and has total spin zero. This ground state can be
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adiabatically continued to the state

|
B〉 = 1√
2

(ĉ†
f ,↑ĉ†

s,↓ − ĉ†
f ,↓ĉ†

s,↑) |�〉 , (57)

which appears as an excited state in the many-body spectrum
at U → 0. The state in Eq. (57) is an MAL state, and from
this we deduce that the ground state in the B phase can be
adiabatically connected to an MAL state.

We compute the spectrum of g(2) for the star of David clus-
ter in ED and by truncating the Hamiltonian (see the SM [55]
for further details), keeping μ∗/t = 1.5 fixed while varying
U . Figure 9(d) shows the resulting inverted spectrum of g(2).
At values of U lower that the critical interaction strength at
which there is the transition between the A phase and the
B phase, the lowest inverse eigenvalue of g(2) transforms in
the A representation, and lies at the edge of the continuum
of the spectrum. In the B phase, there is a gap separation
between the continuum of the inverse spectrum of g(2) and a
lowest-lying eigenvalue transforming in the B representation.
Therefore, for the star of David cluster one can distinguish
between the AL phase, labeled by A, and the MAL phase,
labeled by B, by looking at the spectrum of g(2).

As seen in the cases of the Hubbard diamond chain (Sec.
VI B) and the checkerboard lattice of Hubbard squares (Sec.
VI C), weakly coupling several clusters that realize an MAL
state results in an MAL phase that extends over the full lattice.
This in principle will also apply to the case of the star of David
clusters, which can then be diagnosed through the spectrum of
g(2) computed for the whole lattice.

VII. CONCLUSIONS

Topological quantum chemistry is a framework for clas-
sifying materials based on the single-particle band structure
developed with noninteracting electrons in mind. In particular,
TQC lists all possible AL states for a given space group
and compares a given first principles band structure to the
respective list. If the band structure can not be constructed
from an AL, it is said to be topological. While it is possible to
apply the tools of TQC to interacting materials by using the
(inverse of the) one-particle Green’s function as an effective
Hamiltonian, such an approach is blind to much of the rich-
ness of interacting states.

Electronic interactions are important in many materials
of interest and may drive a system into a state that is not
adiabatically connected to a noninteracting state. It is for this
setting that the framework of iTQC provides new insights
through the symmetry properties of the many-body Green’s
function. Consequently, while TQC naturally works “from
first principles”, in other words the analytic result of clas-
sifying AL-induced band structures is compared to bands
obtained from density functional theory, the starting point of
iTQC is inherently an interacting electron system. A natural
testing ground for iTQC, which we discussed in this paper,
are thus toy models of interacting electrons on a given lattice.
Still, such models can in principle be obtained from first
principles through, e. g., via constrained RPA [93,94] or the
linear response approach [95,96].

The basic building block of iTQC’s trial states is the n-
MAL operator, which creates a cluster of n-electrons with

nontrivial transformation properties under spatial symmetries.
They are 0D-block cSPTs, including classes of cSPTs that are
disconnected from any noninteracting state. Existing frame-
works to identify the nature of entangled and featureless
many-body states typically rely on nonlocal observables like
string-order parameters [70] or entanglement spectra [97]
that are hard to access in traditional condensed matter ex-
periments. A strength of the Green’s function based iTQC
formalism is that it is based on substantially less exotic corre-
lation functions that could be measurable. In ED, there is no
computational gain from using our method. Yet, in QMC and
in quantum simulations the type of correlators we consider are
generically easier to compute than SPT topological invariants.
Therefore for most physically relevant cases, the recipe pro-
posed in the present paper is comparatively computationally
cheaper. Specifically, it is possible to infer information about
the particle-particle Green’s function g(2) by relating it to the
superconducting susceptibility

χαβγ δ (q, τ ) =
∑
k,k′

〈Tτ ĉ†
k−q,α

(τ )ĉ†
−k,β

(τ )ĉk′+q,γ (0)ĉ−k′,δ (0)〉,

(58)

where Tτ is the time-ordering operator [98]. However, in
experiments it may be easier to measure the particle-hole
Green’s function g(2)

ph
. For example, in neutron scattering

one measures the spin-spin correlation function and certain
electromagnetic properties are related to the current-current
correlator, which can be computed from g(2)

ph
[99]. Further-

more, Raman scattering cross sections depend on g(2)
ph

[100]. A

measurement of the anticorrelation of electrons in momentum
space can show the “correlation hole” originating from the
Pauli principle and repulsive Coulomb interactions [101,102].
Alternatively, one can observe the two-photon two-electron
spectra with intense pulses of light [103].

While we have focused in this paper entirely on the case
of n = 1 and n = 2, in other words ALs and 2-MALs, the
generalization to higher n-MALs is in principle straight for-
ward in the iTQC formalism and is a possible extension of our
current paper. To do so, one would consider the correlation
functions 〈Ô†(t ), Ô(0)〉, where Ô† is a n-particle operator,
and there is a single bosonic or fermionic time, for n-even or
n-odd respectively. Still, the computational complexity of the
Green’s functions increases with n and therefore—in the ab-
sence of an efficient numerical scheme to evaluate many-body
Green’s functions—this approach is likely to be useful only
for small n. Focusing on small n is equivalent to a truncation
in the entanglement entropy of the states we study, therefore
it is likely that tensor network states are a natural language
in which to think about this problem. Using tensor networks,
one can obtain the g(2) band structures for a larger class of
model systems, including topological ones, to diagnose their
properties.

In this paper, we focused on the MAL-induced bandstruc-
tures of the two-particle Green’s function; however, fragile
topological phases also have signatures appearing in the
Cooper pair spectrum [104] and should therefore be amenable
to our approach. We leave the full extension of our scheme to
fragile phases to future work.
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Another important future goal is the application of iTQC to
real materials. Given the finite size of the clusters we consider,
any crystal structure that already has a natural substructure
would be well suited for a realization of the topological anal-
ysis we are presenting. A possible candidate is for example
Y-kapellasite [105] whose underlying lattice structure is that
of hexagonal clusters of Cu 3d9 atoms arranged in a triangular
lattice.
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