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Initial characterizations of the fermion sign problem focused on its evolution with spatial lattice size L and
inverse temperature β, emphasizing the implications of the exponential nature of the decay of the average sign
〈S〉 for the complexity of its solution and associated limitations of quantum Monte Carlo studies of strongly
correlated materials. Early interest was also on the evolution of 〈S〉 with density ρ, either because commensurate
filling is often associated with special symmetries for which the sign problem is absent, or because particular
fillings are often primary targets, e.g., those densities, which maximize superconducting transition temperature
(the top of the “dome” of cuprate systems). Here we describe an analysis of the sign problem, which demonstrates
that the spin-resolved sign 〈Sσ 〉 already possesses signatures of universal behavior traditionally associated with
order parameters, even in the absence of symmetry protection that makes 〈S〉 = 1. When appropriately scaled,
〈Sσ 〉 exhibits universal crossings and data collapse. Moreover, we show these behaviors occur in the vicinity of
quantum critical points of three well-understood models, exhibiting either second-order or Kosterlitz-Thouless
phase transitions. Our results pave the way for using the average sign as a minimal correlator that can potentially
describe quantum criticality in a variety of fermionic many-body problems.
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I. INTRODUCTION

The sign problem is the fundamental obstacle that prevents
accurate computations in a variety of problems of quantum
correlated matter. In evading the “exponential wall” that pre-
cludes the application of unbiased methods, such as exact
diagonalization [1,2] and matrix-product-states-based algo-
rithms [3], for large systems or arbitrary dimensions, quantum
Monte Carlo techniques [4,5] have in principle the potential to
solve fundamental questions, including understanding d-wave
pairing mechanisms of repulsive fermions, for example [6,7].
Yet, the fact that the importance sampling of quantum config-
urations is not constrained to render positive weights severely
limits its applicability in the most salient class of quantum
problems of interest.

Since generic solutions are not always available, a common
approach relies on restricting computations to regimes where
the sign problem is still well behaved, allowing the extraction
of statistically convergent quantities. Recent developments
based on finding a local basis that mitigates it [8–10], or fine-
tuned Hubbard-Stratonovich transformations to delay its onset
[11], have been very useful but do not provide an overarching
circumvention scheme. Although solutions to this conjectured
NP-hard problem [12] are unlikely to be discovered anytime
soon, a precise investigation of the onset of the sign prob-
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lem, and its relation to the physics of the underlying studied
Hamiltonian, is much less explored and potentially of great
impact. Further investigations have advanced the idea that this
connection does exist, and in different models, the appearance
of the sign problem seems coupled to the manifestation of
quantum critical behavior [13,14].

When several nonhybridizing fermionic (spin) species are
present, the sign problem involves the product of contributions
from each component. Previous studies have focused on this
product, both because it is required to weigh physical observ-
ables and also because, in several important cases, the product
is better behaved than its constituents. Furthermore, existing
research has generally concentrated on the “scaling behavior”
in the sense of large space-time systems, i.e., how the sign
evolves as the inverse temperature β → ∞ and spatial size
L → ∞.

In this paper, we introduce two aspects of the study of
the sign problem and show that they constitute a powerful
approach to using quantum simulations to explore many-body
physics. First, we analyze the “spin-resolved sign” and argue
that the usual approach of examining the average product of
the sign of the individual weights can actually obscure phys-
ical content inherent when spin-resolution is used. Second,
we examine the behavior of the sign near phase transitions,
both those which occur as quantum critical points, through
the variation of a parameter in the Hamiltonian and thermal
phase transitions, which occur as temperature T is lowered.

Taken together, we demonstrate that the spin-resolved sign
can be used to locate phase transitions and determine critical
exponents. Furthermore, it has the potential to do so even
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more accurately than traditional observables A such as spin,
charge, and pairing correlations. The reason is that these latter
quantities require a precise measurement of ratios 〈AS〉/〈S〉
of quantities with increasing fluctuations originating both
inherently in the physics (response functions are themselves
measurements of fluctuations) and in the vanishing of the
sign. The (spin-resolved) sign, by itself, is thus a less noisy
“observable” if it can be shown, as we do here, that it holds
information about criticality.

In what follows, we first investigate three fermionic models
showing numerically that a scaling analysis of the average
weights aids in the characterization of either known quantum
or thermal phase transitions. We then provide a demonstration
of why this happens, i.e., we provide a theoretical justification
for our observation that the average weights display indicators
of criticality. We also further include information in support
of the dynamic critical exponent used in finite-temperature
calculations to promote scaling.

II. THE SU(2) HONEYCOMB HUBBARD MODEL

We initially investigate the spinful Hubbard model on a
honeycomb lattice with N = 2L2 sites,

Ĥ = −t
∑
〈i j〉 σ

ĉ†
iσ ĉ jσ + U

∑
i

n̂i↑n̂i↓ − μ
∑
i,σ

n̂iσ , (1)

where ĉ†
iσ (ĉiσ ) creates (annihilates) a fermion at site i with

spin σ , and n̂iσ is the number density operator. With an
increasing magnitude of the ratio of the amplitude of the
interaction to the hopping scale, U/t , the ground-state at half-
filling (chemical potential μ = U/2) exhibits a continuous
phase transition from a Dirac semimetal to a Mott insulator
featuring antiferromagnetic order. This transition, described
by an effective quantum field-theory model (Gross-Neveu)
[15], belongs to the chiral Heisenberg universality class, and
has been characterized in numerics in a variety of fermionic
lattice models [16–21].

High precision computation of the critical interaction in
(1) yields Uc/t = 3.78 − 3.87, with critical exponent in the
range ν = 0.84 − 1.02 [16–19] associated to the divergence
of the correlation length in the vicinity of the critical point ξ ∝
|U − Uc|−ν . These values are obtained via the scaling of phys-
ical observables: the staggered magnetization order parameter
[16,17,19], single particle gap [17], and quasiparticle weight
[19,21]. Here, instead, we propose an analysis based on the
average sign. Although a nonphysical observable, tied to the
computational method used, the average sign is, however,
required to compute any physical observable in a quantum
Monte Carlo (QMC) simulation. Our results thus suggest that
the sign problem is inextricably linked to the determination
of the physics of the model. In the following two sections,
we explore generic aspects of the sign problem and how they
apply to this particular Hamiltonian. Subsequently, we build
on this knowledge to understand quantum and thermal phase
transitions in other fermionic models.

III. THE SIGN PROBLEM

We start by recalling a known scaling form of the average
sign in QMC calculations. It originates from considering the

definition in terms of the weights W of the configurations {x}
sampled in D spatial and one imaginary-time dimension as
[12,22],

〈S〉 =
∑

{x} W ({x})∑
{x} |W ({x})| = ZW

Z|W |
. (2)

Here, W ({x}) = det M↑({x}) · det M↓({x}) is a product of
weights of individual fermionic flavors in the case of Eq. (1)
for determinant QMC calculations (see Appendix A for
specific definitions in the various models we study and
Appendix B for an analysis of the matrices Mσ ); ZW is
the partition function of the original problem in its formu-
lation in D + 1 dimensions [23,24], whereas Z|W | instead
uses the positive-definite absolute value of the weight to
proceed with the importance sampling in the simulations.
Written in terms of the corresponding free energy densi-
ties, f = [−1/(βN )] logZ , the average sign thus reduces
to 〈S〉 = exp[−βN ( fW − f|W |)]. Given that

∑
{x} W ({x}) �∑

{x} |W ({x})| and that the free energy is extensive, it fol-
lows that fW � f|W |, and thus the average sign exponentially
decreases in terms of both real-space and imaginary-time di-
mensions [22,25], if not protected by some symmetry of the
problem [26,27].

An example of this protection is the case of Eq. (1) at
half-filling. Via a ↓-spin particle-hole transformation, ci↓ =
(−1)ic†

i↓, where (−1)i = +1(−1) on the A(B) sublattice of
the bipartite honeycomb geometry (or any other bipartite
lattice), the weight simplifies to const.×[det M↑({x})]2 for
whichever configuration {x}, when using a spin-decomposed
Hubbard-Stratonovich transformation [24,28]. In general,
however, symmetries that preclude the onset of the sign prob-
lem are not available for most models of interest.

IV. THE SPIN-RESOLVED SIGN

Although the “total” sign problem has been investigated
in detail [22,25], the properties of the sign of individual de-
terminants that compose the weight in models with a larger
number of local degrees of freedom were much less explored.
Moreover, past research focused on the behavior as β → ∞
and not near the critical point. By systematically computing
the average sign of the determinant of a single spin species,
〈Sσ 〉 ≡ ∑

{x} sgn(det Mσ {x})|W ({x})|/∑
{x} |W ({x})|, for the

problem in Eq. (1), we have earlier demonstrated [13] (see
corresponding Supplemental Material [36]) a behavior rem-
iniscent of an order parameter undergoing a typical phase
transition: It displays its maximum value 〈Sσ 〉 = 1 in the
quantum disordered phase while 〈Sσ 〉 → 0 in the ordered re-
gion (U > Uc) at sufficiently low temperatures [see Fig. 2(c),
for example]. The latter occurs in spite of the fact that 〈S〉 is
pinned at one since we take μ = U/2, dictating thus that in
the ordered regime the most likely configurations {x} display
random signs of det Mσ ({x}).

This behavior, including a crossing of the curves for dif-
ferent system sizes at U 
 Uc, is suggestive that a scaling
function g, for the spin-resolved sign exists, similar in mo-
tivation to those used for traditional, physical observables to
characterize quantum criticality,

〈Sσ 〉(u, L, Lτ ) = g(uL1/ν, Lτ /Lz ), (3)
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FIG. 1. Dependence of the average spin resolved sign on the
space-imaginary time dimensions. 〈Sσ 〉 vs Lτ (left) and L (right)
for the SU(2) honeycomb Hubbard model, before (U/t = 3.6, top)
and after (U/t = 5.0, bottom) the putative transition Uc. For U < Uc

(U > Uc), the average spin resolved sign grows (reduces) with in-
creasing lattice size at low temperatures. Here and elsewhere, error
bars denote the standard error of the mean of independent realiza-
tions. The imaginary-time discretization is �τ ≡ β/Lτ = 1/10.

where L is the linear system size, Lτ = β/�τ is the num-
ber of imaginary-time slices of the inverse temperature in
writing down the path integral Z , u = (U − Uc)/Uc is the
reduced coupling, and z is the dynamic critical exponent.
The second argument comes from the fact that the D + 1
lattice is anisotropic in its dimensions (and eventual effective
couplings) [29–31]. The previous empirical observation deter-
mined that for u > 0, g(x, y) → 0 when both x, y diverge.

To better understand the limits of 〈Sσ 〉, we display in
Fig. 1 its dependence on both Lτ and L. We notice that the
previous expectation that the average total sign exponentially
decreases with the system size is also valid for 〈Sσ 〉, but
provided that U � Uc and temperatures are sufficiently low
(Lτ � L). If in the quantum disordered phase, however, the
spin-resolved sign increases with growing N . As we will see,
this contrasting behavior is fundamental for the identification
of the critical interactions using the average sign of individual
determinants.

At first sight, owing to the known Lorentz invariance that
emerges at the critical point [32,33], the dynamic critical
exponent is surmised as z = 1. Yet, we do not take this as a
starting point, relaxing this assumption to show that a smaller
value in 〈Sσ 〉 actually gives an optimal scaling. Motivation
for z �= 1 is provided in Sec. VII C. We thus try to scale
〈Sσ 〉 in the vicinity of the critical point with a functional
form Lτ /Lz, as displayed in Figs. 2(a) and 2(b), a procedure,
which has been argued to improve the scaling of related
quantum models [30,31]. By defining a cost function C(z) =∑

j (|y j+1 − y j |)/(max{y j} − min{y j}) − 1 [34,35], where y j

are the values of 〈Sσ 〉(Lτ , L), ordered according to their Lτ /Lz

ratio, the dynamic critical exponent z∗ that minimizes C can be
extracted, see insets in Figs. 2(a) and 2(b). A compilation of
the z∗(U ) values is given in the inset of Fig. 2(c), accompanied
by a range of recently known predictions of Uc [18,19]. It is
clear that close to the critical point, the scaling with the second
argument of the function g should be taken with z 
 1/2,

for the current range of imaginary-time slices Lτ (or inverse
temperatures β with t�τ = 0.1) used.

Hence, we use this current estimation to proceed with
scaling in order to simultaneously obtain the critical exponent
ν and the critical interaction Uc. With the Lτ /Lz ratio fixed, a
clear crossing of the average sign of individual weights when
increasing the lattice size can be seen [Fig. 2(c)], accurately
determining the critical interaction. By using the functional
form of Eq. (3), we obtain the collapse of the average spin-
resolved sign [Fig. 2(d)], yielding a critical exponent ν 
 0.84
and Uc/t 
 3.77. This estimation, obtained by minimizing the
error of a high-order polynomial fit to the data in the space of
parameters (U, ν), is shown in Fig. 2(e) (see the Supplemental
Material, SM [36] for a different method of scaling analysis).
One can contrast these results with recent estimations using
the same model, as in Ref. [18] with Uc/t = 3.80(1) and ν =
0.84(4), while in Ref. [19], Uc/t = 3.85(1) and ν = 1.02(1),
both using a zero-temperature version of the QMC method
employed here [4,37]. While larger system sizes and other
finite corrections may improve our results, they are already in
quite remarkable agreement with the best estimations to date.

V. THE SU(2) IONIC HUBBARD MODEL

The preceding discussion provided quantitative evidence
that the average sign of a single determinant contains precise
information about the quantum criticality in a well-studied
model; it remains an open question whether this is general.
Here we provide compelling further validation by looking at
one of the simplest models that bypass the symmetry that
prevents the onset of the sign problem, the ionic Hubbard
model on the square lattice [38–44]. That is, in a model that
in the standard fermionic basis suffers from the sign problem
even at half-filling. Here ĤIonic = Ĥ + �

∑
iσ (−1)in̂i,σ , adds

a staggered on-site potential proportional to � to the Hamil-
tonian (1), which we investigate again at the average density
of one electron per site.

The qualitative physics of this model at finite � is gen-
erally agreed to display a competition of band insulating
(� � U ), Mott insulating (U � �), and metallic behavior
when both interactions and staggered potential magnitudes are
comparable [41,42]. A recent investigation [13] has indicated
that this correlated metal phase can be qualitatively tracked by
the regime where the average sign of the QMC weights van-
ishes. We now employ our sign scaling method to understand
the critical behavior at the transition from the band-insulator
to the metallic phase, the quantitative details of which are still
under debate in the community.

We fix the staggered potential at �/t = 0.5, while increas-
ing the interactions U to overcome the externally imposed
(i.e., by the one-body potential in Ĥ ) charge density wave
induced by �. As before, we estimate the value of the dynamic
critical exponent in the vicinity of the transition, Uc(� =
0.5)/t 
 2.0 [41,42] in Figs. 3(a) and 3(b) by scaling the
〈Sσ 〉 with Lτ /Lz, resulting in z 
 0.5. Using thus a roughly
fixed ratio Lτ /L0.5, we provide the scaling of the spin-resolved
sign in Figs. 3(c) and 3(d). Here fluctuations are small, and
the scaling renders an accurate determination of the criti-
cal interactions driving the band-insulator-to-metal transition
Uc/t 
 2.05 with related critical exponent ν = 0.97.

245144-3



R. MONDAINI, S. TARAT, AND R. T. SCALETTAR PHYSICAL REVIEW B 107, 245144 (2023)

FIG. 2. Scaling analysis of the spin-resolved sign in the honeycomb SU(2) Hubbard model. Scaling in the vicinity of the best-known
estimations of the critical point Uc/t [(a) U/t = 3.6 and (b) U/t = 3.85] using a rescaled x axis Lτ /Lz. The insets display a cost function that
determines the collapse quality of 〈Sσ 〉(Lτ , L) at different values of the dynamic critical exponents z (see text). A compilation is given in the
inset of (c) at a range of U/t values; estimations for the critical interactions from Refs. [18,19] are marked by the shaded region. (c) 〈Sσ 〉 vs
U/t and different lattice sizes at half-filling; the number of imaginary time-slices used roughly preserves the ratio Lτ /Lz fixed, Lτ = 240, 220,
196, 170 for L = 18, 15, 12, 9, respectively; that is, we use z 
 0.5. (d) Scaling using a functional form g[uL1/ν] whose critical exponent ν,
as obtained by minimizing the error χ 2/d.o.f of a high-order polynomial fitting in the space of parameters (Uc, ν ). (e) The contour plot of
χ 2/d.o.f, where the minimum is at Uc/t = 3.765 and ν = 0.84 as shown by the star symbol. Recent estimations using physical quantities for
the same model [18,19] are annotated by the cross markers. Here, t �τ = 0.1 is used.

The one-dimensional version of this model has been exten-
sively studied via numerics [45–47], and a field-theory close
to the quantum critical points exists [38]. The transition where
the band-insulating phase ends, with its externally imposed
charge density wave giving way to a dimerized bond-ordered
wave insulator, belongs to the 2D Ising universality class in

that case. Here in the two-dimensional model, QMC results
point out to a band insulator to correlated metallic transition
[41,42], whose universality class is unknown and where field
theories describing it are currently not available, precluding a
direct comparison of the calculated exponent ν, obtained from
the scaling of 〈Sσ 〉, with existing knowledge.
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FIG. 3. Scaling analysis of the spin-resolved sign in the square lattice SU(2) ionic Hubbard. [(a),(b)] Similar to Figs. 2(a) and 2(b) but
for the SU(2) ionic Hubbard model on the square lattice, for values of U/t = 2 (a) and 2.1 (b). (c) 〈Sσ 〉 vs U/t and different lattice sizes
at half-filling; the number of imaginary time slices is chosen such that Lτ /L0.5 
 50. (d) Scaling of the data in (c) using a functional form
g[uL1/ν], whose critical exponent ν = 0.97 and critical interaction Uc/t = 2.058 are extracted from an analysis (e) as done in Fig. 2(e). All
results are obtained at �/t = 0.5; other values lead to similar results but with different Uc/t critical values. Here, we use t �τ = 0.1.
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FIG. 4. KT-scaling analysis of the SU(2) square lattice attractive Hubbard model. The color plot of the s-wave pair structure factor Ps

(a) and the spin-resolved sign 〈Sσ 〉 (b) in the T vs μ plane on a L = 16 lattice; (c) and (d) display the same if using the extracted average
density 〈n̂〉 instead, with black markers depicting the outputs on the regular grid in μ. (e) and (f) show a cut along the μ/t = −0.75 line for Ps

and 〈Sσ 〉 and different lattice sizes. (g) and (h) use a KT-scaling form to collapse the curves with (i) and (j) displaying the corresponding cost
function C of the scaling in the (Tc, b) parameter space. The KT scaling is performed such that L/ξBKT for T > Tc and −L/ξBKT if T < Tc. All
data are extracted at U/t = −4 and t�τ = 1/16.

VI. THE ATTRACTIVE HUBBARD MODEL

We now generalize these two results for quantum critical
behavior in the ground state to finite-temperature transitions.
A well-studied example is the onset of superconductivity in
the two-dimensional negative-U SU(2) Hubbard model: for
chemical potentials μ �= |U |/2, there is a Kosterlitz-Thouless
(KT) transition at temperature Tc �= 0 [48–51] to a super-
conducting phase. As a direct consequence of the often-used
(charge-decomposed) Hubbard-Stratonovich transformation
[28], the weight matrices Mσ are identical, resulting in the
complete absence of sign problem since the remaining single-
particle part of the Hamiltonian is equal for both spin species.
That the total sign is always positive does not preclude that
the average sign of individual weights converge to zero; this
can be seen in Fig. 4(c), which shows this quantity in the
T vs μ parameter space on an L = 16 square lattice. The
regime 〈Sσ 〉 → 0 is directly related to the one where the s-
wave equal-time pair structure factor Ps = (1/L2)

∑
i, j〈�̂i�̂

†
j〉

(�̂i ≡ ĉi↑ĉ j↓) is also large [Fig. 4(a)].
To make this comparison quantitative, Figs. 4(e) and 4(f)

display a finite-size analysis at a fixed μ/t = −0.75, which
gives densities close to 〈n̂〉 = 0.5 at low temperatures [36,48].
The onset of the regime at which there is significant size
dependence is largely coincident for both quantities when
sweeping down the temperature. Given that the pairing cor-
relations below Tc have an algebraic decay, C(r) ∼ r−η(T )

with η(0) = 0 and η(Tc) = 0.25, one obtains that the two-
dimensional pair structure factor in a finite system of linear
size L scales as Ps(L) = L2−η(T ) f (L/ξBKT), with ξBKT ∝
exp[b/

√|T − Tc|] [49,50], where b is a nonuniversal constant.
Figure 4(g) gives this scaling using a temperature-adjusted

η(T ) [36,48]. The best parameters b and Tc are extracted via
the cost function CPs , as before, and are shown in Fig. 4(i).
Based on this, we similarly show a scaling analysis of the
average sign of individual weights 〈Sσ 〉 to a KT form, see

Fig. 4(h), with corresponding cost function C〈Sσ 〉 displayed
in Fig. 4(j). Both quantities scale remarkably precisely; the
minor discrepancy in Tc [T Ps

c = 0.15(2) and T 〈Sσ 〉
c = 0.18(3)]

can be accounted by the relatively wide temperature region in
which C is small. For both quantities, we take the smallest b
given the constraint of best collapse in a smooth curve. Lastly,
we note that allowing for the possibility that the nonuniver-
sal parameter b takes different values below and above the
transition when lowering the temperature (requiring thus a
multidimensional minimization procedure), may improve the
convergence of the estimations of Tc [35].

VII. DISCUSSION AND OUTLOOK

We have shown that the spin-resolved sign of auxiliary-
field QMC simulations can be used as a quantitative marker
of quantum critical behavior. The total sign also exhibits a
similar role, as suggested by the ionic Hubbard model results
(see SM [36]), but the former has the benefit of being useful
when symmetries prevent the occurrence of an overall sign
problem. Our paper lays the foundation for similar investi-
gations of other models, especially ones that give rise to a
(spin-resolved) phase problem. This can arise either from the
presence of imaginary terms in the Hamiltonian, as in the
Kane-Mele Hubbard model [52,53], or from the particular
decoupling scheme used. That is precisely the case of SU(2)
symmetric Hubbard-Stratonovich transformations [54], but
investigations in Appendix D show that the averaged spin-
resolved phase similarly tracks the onset of the ordered regime
when approaching the thermodynamic limit for the SU(2)
honeycomb Hubbard model.

Furthermore, other Hamiltonians, such as the spinless
fermion Hubbard model in either the honeycomb [55] or
square-lattice with a π flux, which in the Majorana basis evade
the sign problem [56,57], can be studied by examining the av-
erage sign of the Pfaffian of a single weight in that basis [58],

245144-5



R. MONDAINI, S. TARAT, AND R. T. SCALETTAR PHYSICAL REVIEW B 107, 245144 (2023)

similar to what we have done here [59]. In our results, the
investigation of these three important models emphasizes that
the sign of the determinants, interpreted as a minimal cor-
relation function, is sufficient to assess critical properties,
circumventing what is usually employed to determine scaling
properties of physically motivated quantities.

While our investigation leads to the conclusion that the
average (spin-resolved) sign displays scaling properties asso-
ciated with critical behavior, it is less clear to understand why
this happens. The goal of the next subsection is to prove this.
The remaining subsections tackle the explanation of criticality
of the 〈Sσ 〉, the value we used of the dynamic critical exponent
and lastly we follow with an outlook for future studies.

A. Demonstration of nonanalyticity of 〈S〉
We provide here a formal proof of the nonanalyticity of

〈S〉, which provides a rigorous theoretical framework for
our numerical results. Consider the rewriting of the partition
function Z associated with a statistical mechanics problem
with degrees of freedom {x} and weight W ({x}), via sampling
instead with a modified weight W ′({x}),

Z =
∫

D{x}W ({x}) =
∫

D{x} W ({x})

W ′({x})
W ′({x})

=
∫

D{x} W ({x})
W ′({x}) W ′({x})∫

D{x}W ′({x})

∫
D{x}W ′({x})

=
〈

W ({x})

W ′({x})

〉′
Z ′. (4)

Here Z ′ is the partition function associated with the weight

W ′ and the prime on 〈 W ({x})
W ′({x}) 〉

′
implies a weighting with W ′.

If there is a thermal or quantum phase transition occurring
at a critical point associated with the original weight W , then
from Eq. (4) it is clear that the associated nonanalyticity in
Z (and in the corresponding free energy density) implies that

either Z ′ or 〈 W ({x})
W ′({x}) 〉

′
is nonanalytic at the same critical value.

Under the assumption that Z ′ does not have the same critical
point (an unlikely coincidence) the nonanalyticity must reside

in 〈 W ({x})
W ′({x}) 〉

′
.

Let us now apply this general reasoning to the sign prob-

lem. There W ′ = |W | and 〈 W ({x})
W ′({x}) 〉

′
is the average sign 〈S〉.

Our conclusion is that a critical point in the underlying model
implies critical behavior in this average sign. We note that
Eq. (4) is nothing more than a rewriting of the well-known
observation that the average sign is the exponential of the
difference between the free energies F and F ′ associated with
the weights W and W ′. However, this rewriting more clearly
exposes the behavior of the average sign at a critical point.

Despite the simplicity of the argument, there are three
important points to clarify. The first is that the particular value
of the average sign is not universal. This is, of course, well
known. In the auxiliary field quantum Monte Carlo method,
〈S〉 depends on the particular Hubbard-Stratonovich transfor-
mation employed. What is universal, however, is that 〈S〉 is
nonanalytic at the critical point of the model defined by W
(again, under the assumption of the absence of an “acciden-
tal” situation in which W ′ shares the precise same critical
value) [60].

The second observation is that while a critical point implies
a nonanalyticity of 〈S〉, the converse is not necessarily true.
That is, a sign problem does not imply the existence of a
critical point [see, e.g., Ref. [61] for the uniform electron gas].
This also is known to be the case: The single-site Hubbard
model has a sign problem with an anomalous Hubbard-
Stratonovich transformation [62], even though it manifestly
has a completely well-behaved partition function. This does
not reduce the potential utility of 〈S〉 in locating a critical
point. An analogy is useful. A single (Ising) spin in an external
magnetic field B has a nonzero magnetization m. But that
a nonzero m can occur in a trivial situation certainly does
not imply that a (spontaneous) nonzero m is uninformative
concerning the occurrence of a magnetic phase transition. So
too, here, the fact that 1 − 〈S〉 can become nonzero in trivial
situations does not make it unable to discern phase transitions.

The third remark concerns the nonanalyticity of Z , which
is only observed in the thermodynamic limit: As for physical
observables, the partition function is always analytic in finite
systems [63]. For example, in the “textbook” problem of the
magnetic phase transition of the two-dimensional Ising model,
while large lattice sizes exhibit a peaked behavior of either the
specific heat or the magnetic susceptibility close to the critical
temperature below which order ensues, proper nonanalytic
behavior is only seen in approaching the thermodynamic limit,
where such peaks approach divergent behavior. However, this
does not prevent one from obtaining critical exponents by
carefully scaling the results for the existing system sizes.
The same rationale is valid mutatis mutandis to the partition
function Z: Only in the N → ∞ limit does it show nonan-
alyticity at the critical point. In models where one remaps
the weights, as in the cases affected by the sign problem, it
is then immediate to realize that while the nonanalyticity is
imprinted in 〈S〉 in the thermodynamic limit, scaling of this
quantity in finite-system sizes allows the extraction of the
critical exponent, as we perform here.

In summary, the fact that the partition function (or the free
energy) exhibits singular behavior thus implies that almost
any observable will inherit the singularity as well. In the
case of the sign, in particular, we have a formal proof of
inheritance, as exposed in Eq. (4).

B. Spin-resolved sign criticality

A similar rationale can be derived in the case of the
spin-resolved sign. For example, in a bipartite lattice at half-
filling [the first model we investigate, the SU(2) honeycomb
Hubbard model], it is then easy to show that weights as-
sociated with each fermionic flavor are related: Wσ ({x}) =
C{x}Wσ ({x}), where C is a {x}-dependent positive constant
(= eλ

∑
iτ xiτ , with cosh λ = e|U |�τ/2) [24,64]. Therefore, the

average sign of either of the weights reads

〈Sσ 〉 =
∑

{x} sgn(Wσ ({x}))C{x}[Wσ ({x})]2∑
{x} C{x}[Wσ ({x})]2

≡
∑

{x} sgn(
√

ρ(x))ρ(x)∑
{x} ρ(x)

≡
∑

{x} ρ ′(x)∑
{x} ρ(x)

≡ Z ′

Z . (5)
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FIG. 5. Scaling analysis of the spin-resolved sign and the cor-
responding difference of free energies for the SU(2) honeycomb
Hubbard model [(a), (b)] and the square lattice SU(2) ionic Hubbard
model [(c), (d)]. Parameters used are indicated, with imaginary-time
discretization t�τ = 0.1.

Thus provided that a potential nonanalyticity in the modi-
fied partition function Z ′ does not coincide with the one for
the original problem Z , similarly to Eq. (4), this dictates that
〈Sσ 〉 should exhibit nonanalytic behavior when Z does. An
interesting observation concerns the cases where a symmetry
relates the spin-resolved signs in such a way that the total
sign remains at unity. In that case, the nonanalyticity must
originate in the spin resolution. This emphasizes that even
in “protected” cases, an analysis of the (spin-resolved) sign
could still provide insight into critical behavior.

From Eq. (5) the logic follows the same as the one with
a standard sign problem: One can define this ratio as the
ratio of exponentials of corresponding free energy densities
of probability distributions ρ and ρ ′,

〈Sσ 〉 = e−βV ( fρ′ − fρ ). (6)

For the case of the quantum phase transitions we have investi-
gated, we demonstrated numerically that this quantity satisfies
the scaling ansatz in the vicinity of the quantum critical point,
i.e., 〈Sσ 〉 = g(uL1/ν, Lτ /Lz ). Consequently, the difference in
free energy densities reads

� f ≡ fρ ′ − fρ = − 1

Lτ�τ · LD
log[g(uL1/ν, Lτ /Lz )]. (7)

From Fig. 2(d), we notice that g(uL1/ν, Lτ /Lz ) goes from 1
to 0 when u 
 0, consequently � f shows a departure from
zero at this same point. That is, the difference in free energy
densities, initially zero in the noninteracting regime and in
the weakly correlated one, turns finite when approaching the
Mott phase as if the free energy densities of the models with
probability distributions ρ ′ and ρ undergo a “transition” to
distinct values. Finally, as we fix the ratio Lτ /Lz = a,

� f = − 1

a�τ · LD+z
log[g(uL1/ν, a)]. (8)

Figures 5(a) and 5(b) summarize this reasoning for the SU(2)
honeycomb Hubbard model, showing the scaling of the dif-
ference of free energy densities, where we emphasize that
�F ≡ � f · LD+z is a function of the interaction strength [65].
Similar logic applies to the ionic Hubbard model [Figs. 5(c)
and 5(d)], in spite of the partial weights no longer being triv-
ially related. That is, within the band-insulating regime, the
difference in free energy �F of the two distributions is zero,
deviating from each other once the correlated metal phase at
U = Uc is approached. This confirms the critical behavior we
numerically observe for these models derives from the nonan-
alyticity of the partition function in the critical point [Eq. (4)]
that becomes imprinted in the average (spin-resolved) sign.

C. Dynamic critical exponent

One of the aspects of the scaling analysis of 〈Sσ 〉 that
defies current expectations relates to the value of the dy-
namical critical exponent z we have used. In particular, for
the SU(2) honeycomb Hubbard model, field-theory predic-
tions assert z = 1 [32,33], and numerical simulations using
projective quantum Monte Carlo methods that directly tackle
the T = 0 limit often use this as a starting point [16,17,19].
Our simulations, on the other hand, employ the corresponding
finite-temperature version of this algorithm [23,24], such that
the ground-state physics is only obtained asymptotically when
β → ∞ or when the typical correlation lengths ξ are suffi-
ciently large such that they are comparable to the linear system
size L [24]. Verification of the latter is possible by examining
the β dependence of the antiferromagnetic structure factor

SAF = 1

2L2

∑
i, j

(−1)δ〈(n̂i,↑ − n̂i,↓)(n̂ j,↑ − n̂ j,↓)〉 (9)

with δ = 0 (δ = 1) if sites i and j are in the same (different)
sublattice.

A saturation of SAF with increasing β indicates that ξ
L
[66], and is readily obtained deep in the ordered phase.
Close to Uc, however, the observation of such a saturation
demands (numerically) prohibitive values of Lτ , as indicated
in Fig. 6. As a result, the currently employed values of the
imaginary-time slices in the scaling analysis of 〈Sσ 〉 [marked
by the arrows in Fig. 6] inevitably lead to the conclusion that
finite-temperature effects are at play here, and the observed
scaling relates to a low-but-finite temperature crossover that
emanates from the quantum phase transition. Consequently,
the dynamical critical exponent need not be pinned at z = 1,
and the value we use, obtained after scaling of Lτ /Lz for
the current range of imaginary-time slices employed, endows
the ability to study the quantum criticality. In other words,
the fact that we adjust the dynamical critical exponent for the
current range of temperatures is what allows one to obtain
numerically accurate values of the pair (Uc, ν).

While this may come as a surprise, it becomes more clear
after performing a scaling of a physical quantity, in particular
the one which dictates the onset of magnetic ordering at the
quantum critical point, the antiferromagnetic structure factor,
as shown in Appendix C. There one finds that a z < 1 (in
practice z 
 0.5) gives the best data collapse, and that the
same combination of (Uc, ν), which scales the spin-resolved
sign is seen to similarly scale SAF.
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FIG. 6. Dependence of the antiferromagnetic structure factor on
the inverse temperature β (number of imaginary-time slices Lτ , fix-
ing t�τ = 0.1) for the SU(2) honeycomb Hubbard model in the
vicinity of the quantum critical point: (a) U/t = 3.60, (b) U/t =
3.77, and (c) U/t = 3.85. The vertical arrows mark the value of
Lτ used in the scaling analysis of 〈Sσ 〉, color matching with the
corresponding linear system size L.

D. Outlook

In summary, our determination of the quantum criticality
via the scaling of the sign in many models is within the
range of existing investigations. Because the literature shows
considerable variation in the quantitative location of the dif-
ferent QCP’s [18,19,41,42,49,50], the results here offer an
alternative, and potentially more accurate, route of resolving a
challenging problem in correlated electron models. A similar
investigation can be carried out with methods that directly
tackle the ground-state limit, and we defer this analysis to
a future study. Turning to the thermal transitions, a final,
more speculative, line of inquiry is to investigate the potential
existence of a Kosterlitz-Thouless transition in the repulsive
Hubbard model (and its variants) away from half-filling via
the analysis of the average sign when entering the 〈S〉 → 0
phase in this Hamiltonian [13]. A preliminary study is given
in the SM [36], affirmatively indicating this connection.
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APPENDIX A: METHODS

In all calculations, we make use of the finite-temperature
determinant quantum Monte Carlo method [23,24]. Via a

sequence of Trotterization, Hubbard-Stratonovich decoupling
of quartic terms by means of the introduction of an auxiliary
field [28], and final fermionic integration, the partition func-
tion is written in terms of the determinants of N×N matrices
Mσ [where N is the number of sites in Eq. (1)] for each
spin-component σ . These are the weights W ({x}) referred to
in the main text. Instead of summing over all configurations
of the field {x} → {xiτ }, importance sampling is performed
while observing the statistical convergence of both physi-
cal observables (when possible) and the average sign of the
weights. The only approximation used is the imaginary-time
discretization �τ , which we take as 1/10 for the quantum
transitions or 1/16 for the thermal ones. Statistical sampling
varies among the different models, but in all cases an average
of the results are taken for each individual set of parameters
over dozens of independent samplings (typically from 20 to
48), with thousands of Monte Carlo sweeps for each run.

In order to decouple the interactions in all SU(2) models we
investigate, we apply either the spin-decomposed Hubbard-
Stratonovich transformation [4,28],

e−�τU (n̂i↑− 1
2 )(n̂i↓− 1

2 ) = 1

2
e−U�τ/4

∑
xi=±1

eλxi (n̂i↑−n̂i↓ ), (A1)

for repulsive interactions (U > 0), or its counterpart (charge
decomposition)

e−�τU (n̂i↑− 1
2 )(n̂i↓− 1

2 ) = 1

2
e−|U |�τ/4

∑
xi=±1

eλxi (n̂i↑+n̂i↓−1), (A2)

in the case that U < 0. In both transformations, cosh λ =
e|U |�τ/2. Finally, the matrices Mσ entering in the weights read

Mσ = 1 + Bσ,Lτ
Bσ,Lτ −1 . . . Bσ,1, (A3)

with Bσ,τ = eK eVσ,τ . Here, K is an imaginary-time inde-
pendent N×N matrix containing all one-body terms in the
Hamiltonian (including hopping and chemical potential),
whose entries are multiplied by −�τ . In turn, Vσ,τ is diagonal
with entries that depend on the Hubbard-Stratonovich trans-
formation used. For the repulsive case, V ii

σ,τ = λσxiτ (σ = ±1
for ↑ and ↓), while V ii

↑,τ = V ii
↓,τ = λxiτ for attractive interac-

tions.

APPENDIX B: EIGENVALUES OF THE Mσ MATRICES

A possibility to infer numerically that the signs of the deter-
minants can track phase transitions is via the analysis of the
spectrum of the Mσ matrices, as defined in Eq. (A3), whose
determinant gives the partial weight of a certain configuration
{x}. Similarly, one can define this matrix in its space-time
formulation [23],

Mσ ({x}) =

⎡
⎢⎢⎢⎢⎣

1 Bσ,Lτ

−Bσ,1 1

−Bσ,2 1
. . .

. . .

−Bσ,Lτ −1 1

⎤
⎥⎥⎥⎥⎦,

by structuring the N×N matrices Bσ,τ , the single-particle
propagators, as defined in the Appendix A. A drawback is that
Mσ ({x}) has now dimensions (NLτ )×(NLτ ), but one of the
benefits of this representation is that the range of eigenvalues
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FIG. 7. The eigenspectrum of the Mσ ({x}) matrix represented in the complex plane for a single Hubbard-Stratonovich configuration {xi,τ }
extracted in the Monte Carlo sampling, for U/t = 2 (a) and U/t = 6 (b). (c) and (d) exhibit a two-dimensional histogram of the eigenspectrum
when combining results of 96 configurations—brighter colors display a larger counting. In (a)–(d), the linear lattice size is L = 9 and Lτ = 200,
such that each configuration leads to 32 400 eigenvalues. (e) shows both the (normalized) number of eigenvalues, which are in the negative
real axis (these dictate whether there is a spin-resolved sign problem or not) and the fraction of the configurations that possess an odd number
of eigenvalues in R−. Empty (full) symbols refer to L = 6 (L = 9); the vertical shaded region gives the confidence interval of the quantum
critical point location. As in the main text, here we use t �τ = 0.1.

is now shrunken while preserving the value of the determi-
nant. Besides that, it is numerically stable since no matrix
multiplications among Bσ ’s are necessary to build it.

Focusing on the SU(2) honeycomb Hubbard model, we
start by analyzing in Fig. 7 the spectrum {εi} of Mσ ({x}) for
values of the interactions far below (U/t = 2) and far above
(U/t = 6) the transition point Uc. Figures 7(a) and 7(b) show
that a structural transition occurs in the eigenvalue spectrum,
here computed for a single typical configuration of the auxil-
iary field {xi,τ }. This observed structural transition is generic,
as shown by the corresponding two-dimensional histograms
in Figs. 7(c) and 7(d), obtained by combining eigenvalues
of four field configurations “visited” over the course of the
Monte Carlo sampling for 24 independently seeded Markov
chains, resulting in 96 configurations in total.

While the quantum phase transition is hinted in the eigen-
values of Mσ ({x}), so far we have not drawn a connection to
the spin-resolved sign problem. Being a real matrix (for this
model with the Hubbard Stratonovich transformation high-
lighted in the Appendix A), its eigenvalues come as either
complex conjugate pairs or real numbers. Since the deter-
minant (product of eigenvalues) does not change sign when
multiplying the conjugate pairs, a sign problem is only a
function of the number of eigenvalues in the negative real
axis nR− . That is, if nR− is odd (even), det Mσ ({x}) < 0 (>0).
Typically, nR− is very small in comparison to the total number
of eigenvalues 2L2Lτ in this Hamiltonian. Yet, it is a clear
function of the interaction strength, growing at large U/t ,
as shown in Fig. 7(e) by nR− , after averaging over different

configurations {x}. Finally, the percentage of those config-
urations that possess an odd number of eigenvalues in the
negative real axis, Podd(nR− ), also grows reaching around
50% within the ordered phase. As a result, the average spin-
resolved sign 〈Sσ 〉 converges to zero.

It is currently unclear to us if a physical meaning can be
attributed to the number of negative eigenvalues of Mσ ({x}),
in terms of the fields {xi,τ }, and the winding of world lines
they are associated with.

APPENDIX C: THE SCALING OF SAF

In the main text, we argue that owing to finite-temperature
effects one needs to adjust the dynamical critical exponent z
from its expected z = 1 value in order to perform a scaling
analysis of the spin-resolved sign 〈Sσ 〉. While the scaling
analysis we perform for 〈Sσ 〉 is quantitatively precise de-
spite its novelty, similar constraints should apply to the case
of the scaling of physical quantities. Following this logic,
we perform the scaling of the antiferromagnetic order pa-
rameter, mAF = limL→∞

√
SAF/N , with N = 2L2 the number

of sites of the SU(2) honeycomb Hubbard model, Eq. (1).
This quantity follows a scaling ansatz of the form mAF =
L−β/νg(uL1/ν, Lτ /Lz ) [17,19], which in turn implies the an-
tiferromagnetic structure factor scales as

SAF

N
= L−2β/νg(uL1/ν, Lτ /Lz ). (C1)
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FIG. 8. The scaling analysis of the antiferromagnetic structure factor. In (a) and (b) the scaled SAF dependence on Lτ /Lz, with z = 0.5 and
1, respectively. Insets give the corresponding cost function dependence on the ratio of exponents β/ν. (c) Color-mesh plot of the cost function
C(z, β/ν ), where the white marker at (z∗, β/ν∗) = (0.54, 0.885) depicts its minimum value. (d) The scaling collapse of SAF with uL1/ν , with
parameters extracted from the analysis of the spin-resolved sign in the main text [Fig. 2]. The imaginary-time discretization used is t�τ = 0.1.

Unlike previous studies that tackle this same transition using
T = 0 quantum Monte Carlo methods [16–19], we make the
Lτ /Lz dependence explicit in order to account for a finite-T
influence on the scaling.

We start by fixing U/t = 3.77, such that the dependence
on the first argument of the scaling function in Eq. (C1) is
negligible, i.e., u 
 0 [67]. Figures 8(a) and 8(b) display the
scaled structure factor vs Lτ /Lz by fixing z = 0.5 and 1.0,
respectively, while adjusting the ratio of exponents β/ν that
gives the best data collapse. The latter is obtained by the
minimization of the cost function C(β/ν), whose definition
is the same as given in the main text, and is displayed as
insets in Figs. 8(a) and 8(b). Notably, the data collapse is
significantly better at z 
 0.5 compared to the one for z = 1,
a first indication that a dynamic critical exponent smaller
than one results in an improved scaling. Compiling the cost
function in a range of (z, β/ν)-values, shown in Fig. 8(c) as
a color-mesh plot, we obtain the minimum cost function at
z∗ = 0.54 and (β/ν)∗ = 0.885. The latter is compatible with
the value β/ν 
 0.9 obtained after the first-order ε expansion
of the Gross-Neveu model [17,33]. Lastly, by fixing this ratio
of exponents (β/ν) while choosing the set of parameters used
to perform the scaling of 〈Sσ 〉 in the main text, (Uc/t, ν, z) =
(3.765, 0.84, 0.5), we report in Fig. 8(e) the dependence of
the scaled structure factor with respect to the first argument
of the scaling function: The exhibited collapse is remarkably
good, thus confirming that the average (spin-resolved) sign
can indeed be used to infer criticality. Our study demonstrates
the feasibility of using finite-temperature quantum Monte
Carlo methods to obtain critical exponents of a transition
pertaining to the Gross-Neveu universality class, and the key

step for its success is the tuning of the dynamic critical
exponent z.

APPENDIX D: OTHER HUBBARD-STRATONOVICH
TRANSFORMATIONS

Our main results indicate that the (spin-resolved) average
sign carries fundamental information about phase transitions
and their universality classes. However, given that the sign
problem is basis dependent, that is, by choosing another
Hubbard-Stratonovich transformation, the average sign of the
quantum Monte Carlo weights can change [62,68], an im-
mediate question that arises is: Can one still infer quantum
critical points using sgn(Wσ ({x}))? To answer it, we report
further numerical tests.

An often used Hubbard-Stratonovich transformation is one
that explicitly conserves the SU(2) symmetry for each config-
uration {xiτ } of the field [52–54],

e−�τU (n̂i↑+n̂i↓−1)2/2

=
∑

xiτ =±1,±2

γ (xiτ )
∏
σ

ei
√

�τU/2η(xiτ )(n̂iσ −1/2) + O(�τ 4).

(D1)

It comes at the expense of having a four-valued discrete field
xiτ = ±1,±2, accompanied by a few (real) constants,

γ (±1) = 1 +
√

6/3; η(±1) = ±
√

2(3 −
√

6),

γ (±2) = 1 −
√

6/3; η(±2) = ±
√

2(3 +
√

6). (D2)
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FIG. 9. (a) Dependence of the inverse average spin resolved
phase on the interaction magnitude U/t for the SU(2) honeycomb
Hubbard model. We fix the ratio Lτ /Lz approximately constant, with
z = 0.5. The inset is a zoom-in of the critical region while using
〈eiθσ 〉 instead; the vertical shaded region is the recent estimation in
the literature of the QCP location [18,19]. (b) gives the cost-function
results for the scaling analysis of 1/〈eiθσ 〉, whereas (c) the best
scaling collapse, leading to (Uc/t, ν ) = (2.70, 0.80). The imaginary-
time discretization used is t�τ = 0.05.

In such case, the transformation is not strictly exact but brings
an error proportional to O(�τ 4), negligible in practice in
comparison to the one introduced by the Trotter decompo-
sition of the one and two-body terms in the Hamiltonian,
O(�τ 2).

Given its form, the Monte Carlo weights can become
complex, in principle, but in the SU(2) honeycomb Hubbard
model, owing to its bipartite nature, one can show that the
weights associated with the two-spin components are complex
conjugate pairs at half-filling [52–54]. As a result, no phase
problem emerges. Nonetheless, this does not guarantee that
the average phase of each fermionic flavor 〈eiθσ 〉 needs to
be real and raises the immediate question of whether the
sign still captures information about the onset of an ordered
phase. Numerical simulations we performed, however, point
out affirmatively to both: Im〈eiθσ 〉 → 0 throughout the sam-
pling, and that 〈eiθσ 〉(U = Uc) → 0 when approaching the
thermodynamic limit. The latter is reported in Fig. 9(a) (see
inset), using Lτ /L1/2 = 240

181/2 approximately fixed for different
system sizes.

Unlike in the case of a spin-decomposed Hubbard-
Stratonovich transformation [Eq. (A1)], where a crossing
of 〈Sσ 〉 for different system sizes leads to immediate

identification of Uc, here the nature of the dependence of the
average spin-resolved phase with U makes a scaling process
more challenging. While the trend of 〈eiθσ 〉 with different
system sizes suggests that the average phase converges to-
wards zero when approaching the quantum critical point (or
that 1/〈eiθσ 〉 diverges at U → Uc), a scaling analysis similar
to that performed in the main text results in a significant
underestimation of the critical interaction Uc [Figs. 9(b) and
9(c)]; the critical exponent ν, on the other hand, is close to
most recent predictions [18,19]. We note that our original
arguments regarding the nonanalytic behavior of the spin-
resolved sign should carry over to the spin-resolved phase.
That is, considering that the total weight is decomposed in
W (x) = Wσ (x)Wσ (x),

〈eiθσ 〉|W | =
∑

x eiθσ (x)|Wσ (x)Wσ (x)|∑
x |Wσ (x)Wσ (x)| ×ZW

ZW

= 〈eiθ 〉|W |

∑
x eiθσ (x)|Wσ (x)Wσ (x)|

ZW
; (D3)

and that Wσ (x) = W ∗
σ (x) (i.e., 〈eiθ 〉|W | = 1), the partition func-

tion of the original model reads

ZW = 1

〈eiθσ 〉|W |
· Z ′ where Z ′ ≡

∑
x

eiθσ (x)|Wσ (x)|2. (D4)

As a result, nonanalytic behavior in the thermodynamic limit
that appears in ZW at the critical point is guaranteed to be
reflected in the averaged spin-resolved phase provided the
modified partition function Z ′ is sufficiently analytic in the
vicinity of Uc.

FIG. 10. Dependence of the average spin-resolved phase 〈eiθσ 〉
[(a), (c)] and average spin-resolved sign 〈Sσ 〉 [(b), (d)] on the square
of the imaginary-time discretization for the SU(2) honeycomb Hub-
bard model. We compare two values of the interaction strength,
U/t = 2.7 [(a), (b)] and 3.8 [(c), (d)], and contrast two types of
Hubbard-Stratonovich transformations [Eqs. (A1) and (D1)]. Close
to saturation is observed for 〈Sσ 〉 in approaching �τ → 0, where
statistical errors encompass the small variation observed. Instead, a
substantial dependence is seen in this limit for 〈eiθσ 〉. All data are
extracted at fixed inverse temperatures βt = 20.
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Future investigations with both larger sizes and improved
statistics may settle the possible determination of critical ex-
ponents in this case. Yet, as will become clear in the following
Appendix (Appendix E), an explanation for this mismatch of
the values of Uc possibly stems from the fact that the average
spin-resolved phases 〈eiθσ 〉 suffer from substantially larger
dependence on the value of the imaginary-time discretization,
in comparison to the spin-resolved sign 〈Sσ 〉 studied in the
main text.

APPENDIX E: DEPENDENCE ON THE IMAGINARY-TIME
DISCRETIZATION �τ

Other than statistical accuracy, which can always be sys-
tematically improved, our quantum Monte Carlo simulations
suffer from only one bias: the discrete imaginary-time �τ .
It derives from the single approximation employed in the
method when using a Trotter decomposition to isolate the
quartic terms of the Hamiltonian in writing the partition func-
tion [24,69]. As previously established, in doing so, one ends
up with errors proportional to O(�τ 2). While it is common to
verify the discretization errors on physical quantities, noting

how they converge in the limit �τ → 0 to establish the critical
properties [16,17,19,54], much less scrutiny is put on the
dependence of the average sign/phases of the weights.

To fill this gap, we report in Fig. 10 the dependence of
〈eiθσ 〉 and 〈Sσ 〉 for the SU(2) honeycomb Hubbard model,
using two values of the interactions U/t = 2.7 and 3.8. While
the spin-resolved sign closely follows the linear dependence
with (t�τ )2, the same cannot be said about the spin-resolved
phase. Here, 〈eiθσ 〉 has a substantial variation on the dis-
cretization used in the limit �τ → 0, which significantly
compromises an estimation of the critical properties via the
scaling analysis we propose. This prevents us from obtaining
accurate values of Uc and ν for the Dirac semimetal to antifer-
romagnetic Mott insulator transition in Appendix D for this
model. While the corresponding Hubbard-Stratonovich trans-
formation [Eq. (D)] introduces an extra error proportional
to O(�τ 4), this clearly cannot explain the large dependence
observed. It is currently unclear why such behavior emerges
[physical quantities display the usual linear dependence in
(t�τ 2) at small �τ ], and further investigations with a broader
class of transformations are likely required to understand it.
We leave this for future studies.
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