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Obstructed atomic insulators and superfluids of fermions coupled to Z2 gauge fields
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Studying spin- 1
2 fermions coupled to Z2 gauge fields on the square lattice, we show how a spatial modulation

of the fermion hopping amplitude allows for the realization of various obstructed atomic insulators that host
higher-order band topology. Including the effect of quantum dynamics of the gauge fields within a simplified
model, we find a rich phase diagram of this system with a number of superfluid phases (which host distinct
types of topological defects) arising from the attractive interactions meditated by the gauge fields. The evolution
of the superfluid obtained by the destabilization of the obstructed atomic insulators from the Bardeen-Cooper-
Schrieffer (BCS) type to a Bose-Einstein condensate (BEC) of tightly bound pairs occurs via the realization of
these different superfluid phases separated by first-order transitions.
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I. INTRODUCTION

The discovery of strong topological phases of noninter-
acting fermions [1–10] marks an important milestone, even
offering new technological advances [11,12]. Recent theoret-
ical work has revealed that a more general characterization of
topology can be realized in terms of obstructed atomic limits
[13–17], leading to the notion of higher-order topological
insulating (HOTI) phases [18]. HOTIs have been realized in
a number of systems [19–23].

An important concurrent direction is the investigation of
the consequences of these ideas in the presence of strong
interactions and correlations. Many approaches to strongly
correlated systems/frustrated magnetism [24–34] lead to
problems of matter coupled to dynamical gauge fields [35],
and are encouraged by the possibilities of their realization in
experiments [36–38].

Recent studies of gauge fields coupled to charged fermions
have led to the identification of novel phases and phase
transitions, e.g., the orthogonal metallic phase in an exactly
solvable model [39]. Using a numerical quantum Monte Carlo
(QMC) formulation for Z2 lattice gauge coupled fermions,
Ref. [40] showed that π flux phase [41] with emergent Dirac
fermions is spontaneously generated upon the increase of the
fermion hopping amplitude. Tuning the quantum dynamics of
the gauge fields, a continuous transition from the deconfined
Dirac phase to confined BEC with the simultaneous onset of
confinement of the gauge fields and symmetry breaking is
found. Studies on closely related models [42–46] show several
exotic phases and phase transitions.

The developments noted above motivate broader questions.
Can systems with matter coupled to gauge fields be designed
to realize interesting fermionic phases with different patterns
of short-range entanglement? For example, can they produce
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obstructed atomic insulators (OAIs) discussed above? What is
the fate of such phases when the dynamics of the gauge fields
are included? We address these questions in the paper.

The model we study in this paper has spatially varying
hoppings of spin- 1

2 fermions coupled to the gauge fields.
Using a pattern of hoppings shown in Fig. 1, we obtain a
variety of phases, in the absence of quantum dynamics of
the gauge fields, including a metal, Dirac semimetal, trivial
band insulators, and OAIs when the strengths of the fermion
hopping and the modulation of the hopping pattern are tuned.
Several variants of OAIs are realized in the same system. We
explore the effects of quantum dynamics of the gauge fields
in a simplified model following Ref. [44], which captures
the deconfined phase of the gauge fields and results in a
local attractive interaction between the fermions. We show
that turning on the interaction induced by the gauge fields
destabilizes these phases resulting in a rich phase diagram
that includes a variety of superfluid/density-ordered phases,
magnetically ordered phases, and valance bond solid phases
with gapped (massive) fermions. An interesting finding is
that the crossover from the BCS-type superfluid phases (for
attractive interactions) obtained from the nontrivial phases
cross over to the BEC phase of tightly bound pairs, through a
set of distinct superfluid phases, which are separated by first-
order transitions in stark contrast to an insulator with a local
attractive interaction which has a smooth crossover [47,48].
We also study the nature of the phase transitions between
these phases using field theoretic techniques uncovering the
difference between topologically trivial mass and that which
produces an OAI phase.

II. MODEL

We work on a square lattice with a four-site basis con-
sisting of sites A1, A2, B1, B2 as shown in Fig. 1. At each
site of the lattice, fermions are created by the operator c†

Iaσ

where I is the unit cell index, a ∈ {A1, A2, B1, B2}, and σ

is a two-component spin (flavor) index. Along each link of
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FIG. 1. Fermions coupled to gauge fields on a square lattice; unit
cell is shaded. The hoppings are spatially varying with the pattern
shown: red links are t1 = t (1 + r) and black links are t2 = t (1 − r).
Blue crosses show the gauge qubits.

this lattice, there is a gauge qubit whose Pauli-Z operator is
denoted by ZIa,α , where α ∈ {x, y} indicates the direction of
the link emanating from the site Ia. The fermions couple to
the gauge fields via their hopping amplitudes tIa,α and the
system’s Hamiltonian is

H′ = −
∑

Ia,α,σ

(tI,a,αc†
(Ia+α)σ (ZIaα )qσ cIaσ + H.c.)

−μ
∑

Ia

nIa − K
∑

p

Bp − K ′ ∑
Ia,α

XIa,α, (1)

where (Ia + α) is the site reached by traveling along the α

link emanating from Ia; tIa,α is the hopping amplitude; qσ

is a Z2 valued charge (i.e., 0 or 1) of the fermion with spin
σ ∈ {↑,↓}; μ is the chemical potential; nIa = ∑

σ c†
Iaσ cIaσ ; p

is a plaquette; Bp = ∏
(Ia,α)/p ZIa,α is the plaquette magnetic

term where the product is over all links that touch the pla-
quette p; K is the inverse magnetic permeability; XIa,α is the
Pauli X operator on the link (Ia, α); and K ′ is the dielectric
constant. The key aspect of this model is the spatially varying
hoppings where tIa,α takes on the value t1 for links inside the
unit cell (Fig. 1) and t2 for links that cross from one unit cell
to another. We parametrize t1,2 = t (1 ± r), where t is a scale
of the kinetic energy and r a dimensionless parameter, and
assume periodic boundary conditions.

The model in Eq. (1) has a global U(1) phase symmetry
that corresponds to the conservation of the total number of
particles. If the Z2 charges of the fermions are independent
of spin, i.e., qσ = q, then the system has a global SU(2)
symmetry that acts on the spin labels, as assumed here. It
has time reversal symmetry �, with �2 = −1. Further, there
is a local “gauge symmetry,” in that the unitary operators
GIa = AIa(−1)qnIa transform H′ back to itself, with AIa =∏

(Ia,α)/Ia XIa,α, where the product is over all the links that
start or terminate at Ia. The physical Hilbert space of the
theory is that subspace where each GIa acts as an identity, i.e.,

the Gauss law condition GIa = 1,∀Ia. Physically, this entails
the absence of any external charges.

If the fermions are not Z2 charged (i.e., q = 0), the ground
state is a direct product of the Fermi-sea determined by μ

and that of the Z2 gauge theory. The Z2 gauge theory is in
a deconfined phase [49] for K ′/K � 0.22, and in a confined
phase for larger values of K ′/K . In the remainder of the paper,
we focus on q = 1 and half-filling of fermions.

III. GROUND STATE PHASE DIAGRAM

A. K ′ = 0

Although K ′ = 0 suppresses the dynamics of the gauge
fields, it reveals the physics that emerges from the competition
between the kinetic energy of the fermions and the plaquette
magnetic energy. Noting that Bp,∀p are conserved quanti-
ties when K ′ = 0, we can write down the ground state wave
function of the system for a particular set of values of Bp.
If zIa,α ∈ ±1 (eigenvalue of ZIa,α) describes the gauge fields
that realize [50] the given Bps, the ground state |ψGS{zIa,α}〉 =
(
∏

Ia
(1+GIa )√

2
)[(

∏
Iaα |zIa,α〉) ⊗ |FS{zIa,α}〉], where |FS{zIa,α}〉

is the Fermi sea, is attained by those Bp that minimize the
energy.

To determine optimal Bps, we search among those that are
translationally invariant with the unit cell shown in Fig. 1.
The ground state phase diagram (with eight distinct phases)
is shown in Fig. 2. For small |r| � 0.1, we obtain a metal M0

with zero flux per plaquette. There is a first-order transition
at a critical t/K to a gapped phase AI2 for r > 0 and OAI2

for r < 0. In the AI2 phase (r > 0), all the plaquettes in the
unit cell except the one that is enclosed by links with the
black t2 hopping obtain a π flux, while the OAI2 gapped phase
has π flux in all plaquettes except that bounded by the red t1
hoppings. At an even higher value of t/K , we see that gapped
phases AI1 (r > 0) and OAI1 (r < 0) are obtained where a
uniform π flux is realized. For larger values of |r|, |r| � 0.17
an additional gapped phase (there is also an intervening metal-
lic phase M3 that appears), AI3 (r > 0) and OAI3 (r < 0),
appears between the metal M0 and the AI2/OAI2 phases. For
r = 0, we find that the metal M0 undergoes a transition to a
gapped phase (AI2 or OAI2 depending on r → ±0) at t/K =
6.72 and remains in this phase until t/K = 6.92, at which
there is a first-order transition to a gapless Dirac semimetal
with a uniform π flux. This is consistent with Ref. [40],
which, however, did not report the intervening gapped phase
separating the metal and the Dirac semimetal. We note that
the Dirac semimetal at r = 0 has a diminished unit cell which
encloses π (mod 2π ) Z2 flux, whereas unitcell of OAI1 or AI1

(r �= 0) has 0(mod 2π ) Z2 flux. Thus, the Dirac semimetal
and OAI1 are distinct projective representations of the square
lattice translation symmetry, and the band gap of OAI1 must
vanish as r → 0. In contrast, the diminishing of the unit cell
does not occur for OAI2 when r → 0, indicating that it can
remain gapped.

Properties of gapped phases

Are the gapped phases similar or distinct? To address
this, we first observe that all of the phases (Fig. 2) have a
fourfold rotational symmetry C4. Next, we resolve the space
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FIG. 2. Ground state phase diagram of Eq. (1) with K ′ = 0. Key:
M–metals, AI–atomic insulators, OAI–obstructed atomic insulators.
Flux patterns realized in each phase are indicated by the dark arrows.

of occupied fermionic states at high symmetry points � =
(0, 0), M = (π, π ), and X = (π, 0) in the Brillouin zone of
the larger unit cell into one-dimensional irreps of C4 rota-
tions (Table I and [51], Sec. S1). In the AI phases (r > 0),
the representations realized at the � and M points are the
same—such insulators have been termed as atomic insulators
[52,53] and hence the title AI for these phases. On the other
hand, remarkably, we see that the OAI insulators (r < 0) have
different representations at the different high-symmetry points
and are obstructed atomic insulators [52,53], hence titled OAI.
OAIs are characterized by corner modes (with energies in the
gap) in systems with open boundary conditions and have a
filling anomaly [52], which we have verified. ([51], S2)

A further natural question pertains to the distinction be-
tween different OAI phases. Interestingly, we find that all
these are the same phase in that they carry the same classifi-
cation data. In fact, we have found a way to connect the single
particle hamiltonians of OAI2 and OAI3 through an adiabatic
path (breaking time-reversal symmetry and not invoking the
gauge fields) that retains the gap throughout, demonstrating

TABLE I. Number of irreps of C4 rotations labeled by λp = ei 2π
n p

at high symmetry points in the Brillouin zone. n = 4 for � and M,
and n = 2 for X .

Phase HSP #λ0 #λ1 #λ2 #λ3

� 2 4 6 4
OAI1/2/3 M 4 4 4 4

X 8 8 – –

� 4 4 4 4
AI1/2/3 M 4 4 4 4

X 8 8 – –

that the phase OAI2 and OAI3 are topologically indistinct.
Note, however, that the flux patterns are distinct in these two
phases, yet both of them realize the same fermionic band
topology.

B. K ′ �= 0

Next, we investigate the fate of these phases when the
dynamics of the gauge fields are turned on, i.e., K ′ �= 0. In
this case, the phase diagram has to be obtained with the
recourse to quantum Monte Carlo simulations as in [40,43].
Here we adopt a simpler approach following Ref. [44],
which suggested coupling the fermions to the toric code [54].
This entails replacing the dielectric term −K ′ ∑

Ia,α XIa,α by
−h

∑
Ia AIa. If this is achieved by a perturbation expansion

of the Z2 gauge theory (in the absence of the fermions), then
h ∼ (K ′)4/K3, taking the gauge theory to the toric code limit,
which is valid for |K ′/K|  1. This is the deconfined phase of
the gauge theory. In this paper, we treat h as an independent
parameter that can take any real value, i.e., we couple the
fermions to a toric code. The key physical consequence of this
formulation is that the gauge theory in the toric code limit is
always in the deconfined phase. Although this approach can-
not shed light on the confinement transition and its effect on
the fermions, as shown below, it does display much interesting
physics.

Within this simpler approach, the Gauss law constraint
can be “solved” as AIa = (−1)nIa = 4(nIa,↑ − 1

2 )(nIa,↓ − 1
2 )

leading to the hamiltonian

H = −
∑

Ia,α,σ

(tIa,αc†
(Ia+α)σ (ZIaα )qσ cIaσ + H.c.)

−μ
∑
I,a

nIa − K
∑

p

Bp − 4h
∑

Ia

(
nIa,↑ − 1

2

)

×
(

nIa,↓ − 1

2

)
, (2)

which is the Hubbard model [55] coupled to gauge fields.
As we will see below, the presence of this coupling to the
gauge fields produces interesting physics not present in the
usual Hubbard model. At half-filling, μ = 0, and there is
an enlarged global symmetry SUph(2) × SUsp(2) ∼ SO(4)
which includes particle-hole (ph) transformations and spin
(sp) rotations [56]. We use a version of the hamiltonian that
makes this symmetry manifest, see [51] (Sec. S3),

1. h > 0

The physics of the resulting attractive Hubbard model is
well captured by a mean-field analysis, taking care to note
the mentioned SUph(2) × SUsp(2) symmetry. For h > 0, the
broken SUph(2) symmetry is described by a three component
order parameter ([51], Sec. S3) with magnitude 	 that al-
lows a transformation between the superconducting (SC) and
(π, π ) density wave phase, referred to as “SCD superfluid.”
When h  t , the metallic phase M0 undergoes a BCS insta-
bility for any value of h > 0 to an SCD phase with large pairs
	  1/2. For larger values of h, these pairs evolve into tightly
bound bosons, and the superfluid for h � t is a condensate of
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FIG. 3. Mean-field phase diagram of Eq. (2). The color shows the magnitude of the SCD order parameter 	. Solid black lines indicate
first-order transitions. The dashed red line in panel (a) is a continuous transition of the Gross-Neveu type. Dashed magenta lines in panels
(b) and (c) denote a continuous transitions of O(3)-φ4 universality. In (b), the bullet point in light green marked T is the triple point with the
coexistence of SCD0, SCD2, and SCD3. On the line marked A-B, the evolution of superfluid from the BCS state to the BEC occurs via a
sequence of first order transitions.

such bosons (	 ≈ 1
2 ). This is obtained for t/K � 6.72, r = 0

as is shown in Fig. 3(a), where the superfluid phase is la-
beled SCD0 to denote the parent M0 unpaired phase. For
6.72 � t/K � 6.92, the gapped OAI2/AI2 phase is stable for
h  t , but undergoes a first-order transition to the SCD0

superfluid for larger values of h. For 6.72 < t/K < 10.0, the
Dirac metal (DM) obtained at h = 0 is stable for finite h, and
upon an increase of h, undergoes a first-order transition to the
SCD0 phase. For t/K > 10.0, the DM phase itself undergoes
a continuous transition (more on this below) to an SCD phase
denoted by SCD1 to indicate the uniform π -flux background
of the parent normalstate. Interestingly, for larger values of h,
the SCD1 yields to the lower energy SCD0 phase (which is a
BEC of fermionpairs for large h) via a first-order transition.

2. Instability of OAI phases

Matters put on an exciting hue when r �= 0. For r = −0.12,

as shown in Fig. 3(b), the insulator OAI2 obtained at t/K �
5.5 is stable to paring at small h  t , and upon the increase
of h undergoes a phase transition to the SCD0 phase via a
first-order transition. However, for 10 � t/K � 14, the OAI2

undergoes a superfluid instability of its own and transits to
an SCD2 superfluid via a continuous transition [48]. Interest-
ingly, for larger h, the SCD2 phase transforms to an SCD3, a
superfluid phase whose parent normal state is the OAI3 phase!
The SCD3 phase, again, undergoes a first-order transition
to an SCD0 phase at even larger values of h. An interest-
ing aspect of the phase diagram is the presence of an SCD
triple point (t/K = 9.7, h/K = 12.7) where SCD0, SCD2, and
SCD3 phases coexist. For t/K � 14 [see the horizontal line
marked A-B in 3(b)], the OAI1 phase, stable at small h, under-
goes a continuous phase transition to the SCD1 phase (whose
parent normal state is the OAI1 phase). The phase eventually
evolves to the SCD0 phase, via three first-order transitions,
first from SCD1 to SCD2, the second from SCD2 to SCD3,
and the third from SCD3 to SCD0. There is an even richer
phase diagram [Fig. 3(c)] obtained for r = −0.18, where
three distinct OAIs are realized at h = 0. There are regimes
of t/K where each of these insulators OAIi (i = 1, 2, 3) un-
dergoes a continuous transition to an SCDi phase; all of these
evolve to the SCD0 (BEC of pairs) phase via a sequence of
first-order transitions up on the increase of h. This is the key

new physics that emerges due to the coupling of the fermions
to the gauge fields in that the crossover from the BCS state
obtained by the destabilization of an OAI by the attractive
interactions induced by the guage fields evolves to a BEC state
via a sequence of intermediate superfluid states (SCDi, i > 0),
eventually attaining the SCD0 which is what is realized in the
Hubbard model (without coupling to gauge fields) [47,48].

3. Discussion of SCD phases

The dispersion of the Bogoliubov quasiparticles in the SCD
phases indicate that they are all topologically trivial. They
also have an identical long wave length description in terms
of an O(3) nonlinear-σ model (without any topological; even
number of fermion flavors [57]). The difference between these
phases will be found only in the cores of solitonic fields
of the order parameter like skyrmions [57], which may host
localized fermionic modes.

4. Phase Transitions

Turning to the nature of phase transitions between various
phases, while many are first order, those between OAIi and
SCDi (i = 1, 2, 3) are continuous. The critical theory is de-
scribed by an O(3) symmetric φ4 theory in 2 + 1 dimensions
[58]. The most interesting continuous transition is the one
between the DM to the SCD1 phase. As detailed in [51]
(Sec. S4), this is captured by O(N� ) Gross-Neveu theory
[59–61], where N� = 3 here, with gapless Dirac fermions and
an O(N� ) symmetric four-fermion term with a coupling con-
stant g(∼ h). The physics of the masses that induce the OAI
phase can be studied by including an additional mass term of
the form m · � = ∑

b mb�b (where �b is a set of matrices that
anticommute with the Dirac gamma matrices). Performing a
one-loop renormalization group analysis ([51], Sec. S5), we
obtain the flow equations s∂sg = −εg + 4N�+Nγ −6

π
g2, s∂smb =

mb(1 + N�

π
g) with D = 2 + ε, where D = 3 is the space-time

dimension, Nγ = 8, and s → ∞ is the infrared limit, with two
fixed points. The first one at (g = 0, mb = 0) is the gapless
Dirac theory, stable to small perturbations. The second one
is the Gross-Nevue fixed point at (g = πε

4N�+Nγ −6 , mb = 0)
obtains the critical interaction strength that destabilizes the
Dirac fermions. We compute the anomalous dimensions η of
mass operators that produce OAI1 phases to compare them
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0.27 r
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FIG. 4. Schematic phase diagram for h < 0 (repulsive case). The
phase boundary between the Néel state and the VBS states obtained
at a large value of h/t � 1 is obtained using a Schwinger boson
mean-field theory where rc = 0.27. The dashed lines are schematic
phase boundaries. The dotted line between the SDW (spin density
wave state) and Néel state represents a crossover. The region denoted
by SDW can contain a rich structure with several phases like SDWi

(i = 1, 2, 3) depending on the value of t/K .

with mass that produces a trivial gapped phase to find that
ηOAI1

= εN�

4N�+Nγ −6 , ηTrivial = − εN�

Nγ −2 . The interesting point
is that these two anomalous dimensions are of opposite sign.

We conclude the discussion of the h > 0 phase diagram by
noting that one obtains very similar physics for r > 0, where
one obtains a similar phase diagram involving SCD phases
obtained by destabilizing AIi (i = 1, 2, 3) to obtain SCD’i

phases.

5. Phase diagram for h < 0

We have also studied the h < 0 phase diagram using avail-
able methods [62–66] where valence bond and Néel ordered
states are realized. The mean field phase diagram for h < 0,
which results in the repulsive Hubbard model, can be ob-
tained by studying the symmetry breaking in the spin sector
(preserving the particle-hole symmetry), which again leads
to an O(3) vector order parameter (identifiable as the Néel
order parameter). This again leads to spin-density wave SDWi

(SDW’i) phases obtained by destabilizing OAIi(AIi ) phases
(i = 1, 2, 3). This mean-field analysis is, however, not re-

liable when |h| � t, where the system is a Mott insulator
with forbidden double occupancy. The effective low-energy
theory of the system becomes a Heisenberg model (irre-
spective of which insulator is the parent state) with HH =
−∑

Ia,I ′a′ JIa,I ′a′SIa · SI ′a′ , where JIa,I ′a′ ∼ t2
1 /h on links inside

the unit cell (Fig. 1) and JIa,I ′a′ ∼ t2
2 /h on links across unit

cells. For r ∼ 1, the ground state for small t/h is a valance
bond solid (VBS) where the spins form resonating singlets on
the links inside the unit cell. For r ∼ −1, we obtain spins res-
onating on plaquettes bounded by dark-colored links in Fig. 1.
The state for r = 0 is a Néel antiferromagnet (AF). We thus
expect a transition from a Néel state to the valance bond state
(cf. [62]) with the increase of |r|. The critical point |rc| = 0.27
can be located using the Schwinger boson mean-field theory
[63–65] as detailed in [51], Sec. 6. The full phase diagram (see
Fig. 4) on the repulsive side involves several SDWi phases,
which are smoothly connected to the Néel phase, the details
are left for future study.

IV. CONCLUDING REMARKS

This paper reveals the remarkable possibilities of realizing
interesting phases in a system where fermions are coupled
to gauge fields with spatially modulated hopping amplitudes.
Our key results include the realization of various OAIs in
these systems along with their instabilities. The study of the
quantum dynamics of the gauge fields leads to another inter-
esting finding, i.e., the nature of the BCS to BEC cross-over in
systems where fermions are coupled to gauge fields is much
richer with many intervening phases. It will be interesting
to explore realization of this model in cold atomic systems
(cf., [38]). Exploration of these ideas in other problems, such
as frustrated magnetism and lattice gauge theory, are also
fruitful directions. For example, if the gauge theory described
in Eq. (1) arose from a partonic construction of a strongly
correlated problem, then the physical fermions would be the
product of the c fermions and an Ising spin [39,67]. In this
scenario, the interesting insulating phases such as OAIi (i =
1, 2, 3) are more appropriately called orthogonal obstructed
atomic insulators, OAI∗i [39].
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