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Third-order Hall effect in the surface states of a topological insulator
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Time reversal and inversion symmetric materials fail to yield linear and nonlinear responses since they
possess net zero Berry curvature. However, higher-order Hall response can be generated in these systems
upon constraining the crystalline symmetries. Motivated by the recently discovered third-order Hall (TOH)
response mediated by Berry connection polarizability, namely, the variation of the Berry connection with
respect to an applied electric field, here, we investigate the existence of such a Hall effect in the surface states
of hexagonal warped topological insulators (e.g., Bi,Te;) under the application of only electric field. Using
the semiclassical Boltzmann formalism, we investigate the effect of tilt and hexagonal warping on the Berry
connection polarizability tensor and, consequently, the TOH effect, provided the Dirac cone remains gapless.
We find that the magnitude of the response increases significantly with increasing tilt strength and warping, and
therefore, they can provide the tunability of this effect. In addition, we also explore the effect of chemical doping
on the TOH response in this system. Interestingly, we show, based on the symmetry analysis, that the TOH can
be the leading-order response in this system, which can directly be verified in experiments.
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I. INTRODUCTION

In recent times topological transport has attracted immense
interest since its technological applications are versatile for
engineering magnetic and electrical devices [1-5]. Such topo-
logical response in the linear regime manifests in various
forms, namely, the quantum Hall effect (QHE) [6], quantum
spin Hall effect (QSHE) [7], quantum anomalous Hall effect
(QAHE) [8,9], anomalous Nernst effect [10], and so on. The
emergence of different kinds of responses strongly depends
on the interplay of the topology and symmetry of the sys-
tem. For instance, generating the QHE requires applying an
external magnetic field, whereas, QSHE takes place in the
absence of magnetic field, demanding that the system has
time reversal symmetry (TRS). On the other hand, QAHE
originates from the intrinsic magnetic moment present in the
system which also breaks TRS. In essence, it is the geomet-
ric nature of the wave functions, also called Berry curvature
(BC) [11,12], which is at the root of all such topological
responses. While the normal Hall-like response originates in
magnetic systems, it was shown recently that nonmagnetic
systems without inversion symmetry (IS) and in the presence
or absence of mirror symmetry can give rise to a higher-order
Hall response, namely, the second-order nonlinear Hall effect
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(NLHE) [13-20]. These responses are caused by either the BC
itself or its first moment, i.e., the BC dipole of all the occupied
states. Importantly, the nonlinear response is a Fermi surface
dependent quantity coupled to the BC.

It is well known that in systems in which both IS and
TRS are present, the BC is identically zero in magnitude.
Interestingly, it was proposed very recently that such systems
can, in principle, give rise to third-order Hall (TOH)-like
response. This response originates from the variation of the
field-induced Berry connection A" with respect to an applied
electric field E. Even though the Berry connection itself is
not a gauge-invariant quantity, G, (k) = %;:k), termed the
Berry connection polarizability (BCP), is a gauge-invariant
quantity, where a and b represent Cartesian coordinates
[21-23]. Polarizability in electrodynamics indicates an affin-
ity of matter to gain an electric dipole moment in the presence
of an applied electric field. One can similarly argue that Bloch
electrons acquire positional shift due to the external electric
field yielding a third-order Hall effect (TOHE) [24].

Generically, there are a plethora of noncentrosymmetric
Dirac and Weyl materials which have been proposed to re-
alize a NLHE [25-42]. Most of these systems possess a
large BC centered around the Dirac or Weyl nodes. Apart
from searching for the NLHE in TRS-preserving but IS-
breaking materials, a large class of materials which have
both TRS and IS exists. For those systems, it is naturally of
interest to understand higher-order Hall responses, namely,
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the TOHE. Recently, experimental works reported 7;-MoTe,
and few-layer WTe, flakes possess such a third-order re-
sponse [43,44]. An in-plane circular photogalvanic effect in
1T’-MoTe,, caused by a third-order nonlinear optical effect,
was experimentally observed recently [45].

Motivated by the above experiments, in this work, we seek
to answer the following question: How does TOHE (i.e., xE?)
show up on the surface states of a strong three-dimensional
(3D) topological insulator (TT)? Using the framework of semi-
classical Boltzmann transport theory, we first consider the
general expression of the TOH current, mediated by BCP,
which is linearly proportional to the relaxation time t. Our
study indicates that the TOH response can appear as the
leading-order response in a TRS-invariant system contain-
ing a nontilted Dirac cone; this can directly be verified in
experiments. The magnitude of the response is enhanced sig-
nificantly by increasing the hexagonal warping strength which
is inherently present in the surface states of 3D TIs. This
originates from the fact that a BCP tensor acquires higher
values with increasing warping. The TOHE becomes more
pronounced with band tilt that breaks C; symmetry; however,
the BCP tensor is insensitive to tilt. Moreover, we also explore
the effect of chemical doping on the TOH response and dis-
cuss in detail how to separate the TOH response from linear
and second-order effects in experiments using the symmetry
arguments.

The rest of this paper is organized as follows. In Sec. II,
we present the detailed formalism of semiclassical Boltzmann
transport theory for the TOHE. Following this, in Sec. III we
elucidate the TOHE in the surface states of a 3D TI in both
the absence and presence of hexagonal warping. Finally, in
Sec. IV we conclude by summarizing our results and dis-
cussing possible future directions.

II. SEMICLASSICAL FORMALISM OF TOHE

In this section, we present the general expression for BCP-
induced TOH conductivity in the absence of external magnetic
field within the framework of the Boltzmann transport formal-
ism with the relaxation time approximation [21,24,46]. We
start with the Boltzmann transport equation in its phenomeno-
logical form [47,48],

a :
<§ +r- Vr +k- Vk)fk,r,t = ICOll{fk,l',t}v (1)

where the right side, I.on{fr.r.}, is known as the collision
integral incorporating the effects of electron correlations and
impurity scattering. The nonequilibrium electron distribution
function is denoted by fx r,. Now under the relaxation time
approximation the steady-state Boltzmann equation reads
(l:Vr"i_ka)fk:M’ (2)
(k)
where 7(k) is the scattering time. For simplicity, we ignore
the momentum dependence of 7 (k) in all the calculations and
assume it is a constant [49,50]. The equilibrium distribution
function fy(k) in the absence of applied electric field E is
given by the Fermi-Dirac distribution function,

Jotk) = 3

1 + ePleto—pl”

where 8 = 1/(kgT) and €, and p are the energy dispersion
and chemical potential, respectively.

To study the BC-induced linear Hall effect, a first-order
correction of the band energy due to the orbital magnetic
moment is sufficient. This is because the orbital magnetic
moment couples to the applied magnetic field B, giving rise
to an anomalous velocity component for the electrons [12].
Conversely, systems preserving TRS can yield a second-order
Hall effect with the application of a strong enough electric
field. This occurs by virtue of the dipole moment of the BC,
which in this case generates the anomalous velocity compo-
nent [13]. However, in the case of the TOHE, one needs a
second-order semiclassical theory for Bloch electrons under
uniform electromagnetic fields in terms of the physical posi-
tion and crystal momentum, which are fully gauge invariant.
This theory includes a first- (second-) order field correction
to the BC (band energy) and modifies the relation between
the physical position and crystal momentum with regard to
the canonical ones [46]. To be precise, being perturbed by
an electric field E with H;, = eE - (r —r.), the wave packet
acquires a positional shift with respect to its center . in terms
of the second-order correction in the electric field [46].

Now including nth-order field corrections of the BC €
and band energy €, the semiclassical equations of motion in
the absence of magnetic field can be written as

1

P = Engk—kx Qx, Bk = eE, 4)

with e < 0. Here, & and € are given by

eak - Zeg)k’

where eé(?,){ and Agg)(k) are the unperturbed band energy and
interband Berry connection or non-Abelian Berry connec-
tion matrix, respectively, where A(O)(k) can be expressed as
AD ) = W9 iv4u), with |u(°>> being the cell-periodic
part of the Bloch eigenstate in the unperturbed case and «
and § being band indices. In this work, we restrict ourselves
ton = 1 and n = 2 for the BC and band energy, respectively.

Assuming minimal coupling and using standard perturba-
tion theory, the first-order O(E) correction of the Bloch wave
function can be written as

0 ugk)lH/‘u(0)> ¢E - A(O)’u(0)>

|utsy))
u) = (0 _ O =2~ o ©

s €ok ~ S5k s#2a  Cok T Ssk

Qoo = Vi x Y AR, (5)

where r =id; has been applied. However, the first-
order correction to the band energy vanishes, i.e., eél) =
W HLuS) = 0 as @D r|u)) = r. [46]. Importantly, the
first-order Berry connection, measuring a shift in its center of
mass position wave packet, incorporates O(E ), written as

S#Dt 0) 4(0)
atBa Sab

(1 _
AaJl =2Re Z 0) (0)
5 Cak T S5k

= Ga,ahEh~ (7)

Here, A{}), gives the positional shift of the band «, and G, is
known as the BCP tensor and is a purely geometric quantity.
Note that the center of mass position is given by r. , = o, +
AD + A, where 1o, is a constant, A? ~ O(E?) is gauge
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dependent, and A" ~ O(E') involves gauge-independent
Berry connection polarizability. It is important to note that
the zeroth-order energy can be effectively considered to be
€® = ¢, + E - r, such that the total perturbative Hamiltonian
Hy =E -r=E -(r—r.)+E -r.. However, this additional
term is k independent, acting like a potential energy, leading
to an overall shift of the energy. On the other hand, in the
second-order semiclassical theory, r. and the momentum k
are viewed as independent variables. Therefore, it is clear

ag—;(m = "ﬂ implying that the additional term will not play
any role 1n our calculation [51]. Now, the second-order O(E?)
correction to band energy becomes

)H/ 0) 2E G E
(2) Z | uék(o}) - 6(0)>| _ € azab b. 8)
S#a ot k 8,k

Note that €{") and AL (¢ and A\") are gauge-dependent
(gauge-independent) quantities.

Considering uniform electric field (i.e., 7- V,.f(k) = 0),
the semiclassical Boltzmann equation in Eq. (2) reads

Y(fo = fo)- ©)
|

k-Vifi=1"

One can consider the following ansatz to be the solution of the
above Boltzmann equation:

fe =Y _(TE - V)" fo(é). (10)

m=0

Here, we expand the solution in terms of the external electric
field, which is considered to be small in the semiclassical
regime. The ansatz chosen in E(% (10) reduces to the equi-
librium distribution function fy(e, ) for m = 0. Note that the
ansatz is usually chosen with the band velocity and energy
derivative of the equilibrium Fermi function d f; /aek In the

present method of representation, the velocity oy = }1%} is
replaced by the momentum derivative Vy, while the Fermi-
distribution function contains the modified energy fo(é) such
that the effect of the electric field is not double counted. As
already discussed, modified ener(%;/ contains the electric-field-
induced correction terms €, = € + e,il) + ek ).
Plugging the expression of r and fi given in Egs. (4) and
(10), respectively, into the expression of current density j =
e [[dk]ifi and simplifying further, one can obtain the third-
order current (i.e., E?), which can be written as (considering

e=h=1)[21]

s = — / [dKI(E x 20)[e® 1] + 7 / kO (E - Ve f0)] + 7 / [dk® (E - Vi) folk)

—1 / [dk1(E x Q)(E - Vi) folk) — 72 / [dk1(E x Q")(E - Vi)* fok) + ©° f [dk]ve(E - Vi) fotk),  (11)

where [dk] is the notation for d?k/(2m)?, with d being the

dimension of the system; f;(k) = aJ;"E(k) and v,({’) 36" Ctis

clear from the above expression that all the terms contam the
energy derivative of the Fermi-Dirac distribution function, and
therefore, the Hall effect associated with this current is caused
purely by the Fermi surface. Here, the first term is independent
of the relaxation time, and this is caused by the combination of
anomalous velocity, induced by the BC, and the second-order
field correction of the band energy. The first term hence yields
a purely intrinsic TOHE. On the other hand, the second and
third terms in Eq. (11) are linearly proportional to T, appearing
due to the second-order energy correction in the distribution
function and the velocity, respectively. The fourth and fifth
terms arise mainly due to the anomalous velocity produced by
the field-induced BC. The last term, which is proportional to
73, is purely semiclassical and emerges due to band velocity.
Since in the present work we are interested in the contri-
bution of the TOHE originating from the BCP, we will drop
the semiclassical term from now on. However, we point out
that one can separate this term from the others by looking
at the t scaling in experiment [33]. It is expected that the
third-order current will have a very small signal compared to
the first-order current in experiment. Therefore, in this work,
we consider the TRS-invariant system so that BC-mediated
linear anomalous Hall effect vanishes, which otherwise be-
comes dominant for TRS-broken systems. It is important to
note that the purely intrinsic first term ocz® and anomalous
velocity related fourth term oct? in Eq. (11) vanish in the TRS-

(

invariant system. Therefore, the third-order current expression
has terms only proportional to T for a TRS-invariant system.
It is also important to note that another contribution propor-
tional to 72 in the nonlinear planar Hall effect can appear in
TRS-broken systems arising from the combination of unper-
turbed BC and band energy [52-54]. In addition to the purely
intrinsic term in Eq. (11), the second-order field-dependent
BC arising from the second-order field-induced positional
shift can generate an additional contribution to the TOH for
a TRS-broken system [51]. However, the second-order field-
induced Berry connection contributes only to the TOH for a
TRS-broken system, in contrast to the TRS-invariant system,
in which the first-order field-induced Berry connection con-
tributes to the TOH.

It is instructive to rewrite the third-order current given by
Eqg. (11) in component form as

J3.a = Xabed EpEcEq, (12)

where the third-order conductivity tensor s is a fourth-
rank tensor which can generate both the longitudinal and
transverse third-order current responses. Now, from Eq. (11),
the third-order conductivity tensor x,pc.s for a TRS-invariant
system can be written in terms of the BCP tensor as [21]

o) =t / [dk1[8.05Gea — 3adaGre + 904 Gacl folk)

T
-1 f k0@ v G £ (K), (13)
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where we use 9;0; = 9;0;, Gij = —Gji, vify (k) = 9 fo(k), and
f[dk]aiijalfo(k) = —f[dk]a,'alijfo(k). ‘We now wish to
separate the conductivity tensor into the components that
contribute to the power and dissipationless Hall components.
Considering the fact that the current and electric fields trans-
form as vectors under coordinate chan %es we now decompose
the xab) 4 tensor into symmetric ( XabL o 5) and antlsymmetrlc

( chij f) parts with respect to the first two indices as Xabc =

((313)5 T ((313)/3 4 [21]. Note that x((:g)f , represents the dissipa-
tionless TOH conductivity tensor. In connection to Eq. (12),
the BCP-induced third-order response is not constrained by
TRS and IS. However, crystalline symmetries are very im-
portant for observing the TOHE. The TOHE vanishes when
the two-dimensional (2D) system possesses Csz,, Coy, D3,
D3y, Dsg, and Dg symmetries, while C; and Cg symmetries
force the TOH current to be isotropic. Importantly, the mir-
ror symmetry along j, M;, constrains Xi(ij) = Xiii j =0, with
i # j. Interestingly, the spin susceptibility of the BCP leads
to a nonlinear planar Hall effect, allowed by C,, C,,, and D,
(n =2, 3, 4, 6) symmetries, for the TRS-broken case [55].

It is important to note that the BC-induced first-order,
second-order, and TOH responses can appear simultaneously
in experiment for a system with both the TRS and IS broken.
However, one can easily separate them from each other via
frequency lock-in (ac) measurements, specifically, by measur-
ing second-harmonic and third-harmonic Hall resistance [43].
In dc measurements, they can also be distinguished based
on the above symmetry analysis. It has been shown that in
a TRS-invariant 2D system, the presence of single mirror
symmetry forces the Berry curvature dipole (BCD)-induced
second-order Hall conductivity to be orthogonal to the mirror
plane. On the other hand, the TOH conductivity vanishes in
the direction orthogonal to the mirror plane. Therefore, this
fact can isolate second-order Hall and TOH responses in a
TRS-invariant but IS-broken system in which the linear Hall
response already vanishes due to the presence of TRS.

Based on the above symmetry analysis, we now make
remarks on real systems in which the BCP-induced TOH
response will be the dominant one. Unlike the first- and
second-order Hall effects, the third-order response is not
restricted by TRS and IS. The TOHE appears to be the lead-
ing one in nonmagnetic centrosymmetric materials in which
both first- and second-order responses are forced to vanish.
Apart from nonmagnetic centrosymmetric systems, it is also
possible to have the TOHE be the leading one in noncen-
trosymmetric systems. For example, in two dimensions, the
BCD-induced second-order response can be suppressed due to
the presence of a twofold (screw) rotation along the z axis, and
therefore, the third-order response will be the dominant one
in this case. Materials having Cs, point group symmetries can
also show the TOHE as the dominant one despite the absence
of an inversion center.

III. RESULTS

In this section, we investigate the BCP-induced Hall con-
ductivity in a two-dimensional surface Hamiltonian of a 3D
topological system, specifically, in the surface states of a 3D
strong TI.

We consider the two-dimensional surface Hamiltonian of a
TRS-invariant strong TI (e.g., BioTe3) hosting a unique Fermi
surface that encloses an odd number of Dirac cones in the
surface Brillouin zone. In this system, the linear k-dependent
spin-orbit coupling leads to the band inversion at the I point
in the Brillouin zone. In addition, it contains a hexagonal
warping term (ock®) which can be understood to be a coun-
terpart of cubic Dresselhaus spin-orbit coupling.

The reasons for choosing this system to study the TOHE
are the following: (i) The linear anomalous Hall effect
vanishes due to the presence of TR symmetry, (ii) the BCD-
induced second-order Hall response is zero in the absence of
a tilt parameter due to crystalline symmetry, (iii) this system
allows us to investigate the nontrivial effects of hexagonal
warping on the TOHE, and (iv) our predicted results for the
TOHE can directly be checked in experiments.

Considering the threefold rotation C; around the z axis and
mirror symmetry M,: x — —x, the low-energy model around
the gapless I' point is given by

H™W (k) = Ey(k) + vik,oy — vykyo, + %(ki +k)o,, (14)
where Ey(k) = Zm* causes the particle-hole asymmetry, which
for simplicity is ignored here. Here, v, and v, are the Dirac
velocities along the x and y directions, respectively, which we
consider to be k independent without loss of generality; ko =
ky & ik,, and A is the strength of hexagonal warping.

Now the energy dispersion of the above Hamiltonian be-
comes

E*(k) = +/v2k2 + 22k° cos ¢, (15)
where ¢ = arctan( *) and + (—) represents the conduction
(valence) band. The band dispersion has sixfold symmetry
under ¢ — ¢ + . In the absence of warping, it is clear
from Eq. (15) that the Fermi surface, obtained from fj(k),
is circular. After turning on the hexagonal warping term, the
Fermi surface remains circular for small warping strength.
With increasing warping strength, the shape of the Fermi
surface becomes noncircular with relatively sharp tips ex-
tending along a high-symmetry direction and curves inward
in between, leading to a snowflakelike structure [56]. Note
that the surface states depicted by the Hamiltonian given in
Eq. (14) preserve TR symmetry.

Interestingly, the in-plane surface magnetic field, realized
by in-plane magnetization doping or the proximity effect of
ferromagnetic insulators with in-plane magnetization, does
not gap out the surface Dirac cones. However, the position
of the Dirac points in the Brillouin zone changes under such
in-plane magnetic field, causing the anisotropic spin tex-
ture [57,58]. Such anisotropy can be effectively considered
through a tilt term under certain conditions. In addition, the
electric field can also lead to surface inversion symmetry as
well as particle-hole symmetry breaking, which can be mod-
eled by the additional tilt term where the effect of the in-plane
magnetic field can also be absorbed [59]. The arbitrary termi-
nation of the TI can also lead to the breaking of particle-hole
symmetry in the surface states [57,58].

Under such conditions, we can consider a generic sur-
face Hamiltonian in the presence of a tilt term wk,0y. Here,

245141-4



THIRD-ORDER HALL EFFECT IN THE SURFACE STATES ...

PHYSICAL REVIEW B 107, 245141 (2023)

w 1is the tilt strength along the k, direction. In addition,
the C; symmetry breaking can naturally bring perturbation
terms to the Hamiltonian in Eq. (14). Among these the lead-
ing contribution can be effectively described by the above
tilted term. Such a band tilt term was recently shown to
play an important role in studies of transport phenomena
[60-62]. In this work, we discuss its effects on the TOHE.
It is important to note that our analysis is also applicable
for the crystalline topological insulator in which there ex-
ists an effective TRS symmetry by which one tilted Dirac
cone gets mapped to other tilted cones under the TRS
operation.

In order to calculate the third-order conductivity, we first
compute the different components of the BCP tensor. One can
analytically find the following components:

G = 4[k30202 + 4k00232 + 9k022(— 12 + K2)*) [P,

Yy XUy

Gy = 4K2[(k? + 3K2)* 0202 + 02 (02 + 36K2k2A%) ] /.
Gyx = —4[3k}ky (407 + 1)) A% + 6k K vy 22

+ kekyvivy — 9k kviA?] [ dP, (16)

where d = [k}v} 4 kjvy + kZA2 (ki — 3k7)*]"/2. The distribu-
tions of the xx, yy, and xy components are depicted in the
top, middle, and bottom rows of Fig. 1 for warping strength
A = 0.05X%¢, 0.40%¢, and 1.0A¢, respectively. The Fermi sur-
face of the system for warping strength A = 250eV A3 and
band tilt w = 0, 0.2v, is shown in the bottom row of Fig. 1.
It is clear from the insets in Fig. 1 that near the I" point, the
diagonal components of the BCP show a dipolelike structure
[dipole along y (x) for G, (G,y)], whereas the off-diagonal
component (G,,) exhibits a quadrupolelike structure for a
particular strength of A. Interestingly, although the diagonal
components do not change sign, the off-diagonal components
shows a sign change with 7 periodicity. This can be well
understood from the approximated analytical form of the BCP
components for A — 0,
3/2
Gy = 4k vv} [ (kivs + kf,vyz) 2,

y XUy

Gy = 420207 [ (k202 + k20?) 2, (17

x Ux Yy
G.. ~ —4k.k 2.2 kz 2 k2 2\3/2
Xy — X va Uy ( xvx + y Uy) ’

where it is clear that G, — Gy, for k, — —k;, G,, — G,y
for ky — —k,, and Gy, — —Gy, for (ky, ky) — (—ky, ky) or
(kx’ ky) g (k)m _kv)

Now to explore the warping effect on the BCP tensor
we need to look away from the I' point because the warp-
ing term ock® acquires a very small value close to the T
point (note that this effect vanishes at the I point). We find
that the magnitude of the BCP components increases with
increasing A away from the I' point. In particular, G,, cap-
tures the snowflakelike structure, whereas G,, and G,, show
the sharp tips and inward curves caused by the warping ef-
fect. To be precise, G,, and G,, show quadrupolar features
caused by the warping effect (see middle and bottom rows
in Fig. 1). The four legs of the quadrupole acquire the same
sign for G,,, while the sign changes between two consecutive
legs for G,,. The quadrupolar structure can be caused by

FIG. 1. BCP tensors G, (left column), G,, (middle column),
and G,, (right column) for the Dirac cone, derived from Eq. (14),
with warping strength A = 0.05X¢, 0.40A¢, and 1.0, in top, middle,
and bottom rows, respectively. With increasing warping strength,
G, displays a snowflakelike structure, whereas G,, and G,, show
quadrupolar features for k significantly far from the I point. The
four legs of the quadrupole acquire the same sign for G,,, while the
sign changes between two consecutive legs for Gy,. Insets show a
close-up view of BCP components near the I" point, where the diag-
onal components show dipolelike structure, whereas the off-diagonal
component exhibits quadrupolelike structure. The tilt parameter w
does not affect the BCP tensor; it results in a change in the Fermi
surface, as indicated by the black lines in the bottom row for
E; =0.3eV. We consider the following parameters, representing
Bi,Tes: v, = v, = 2.55eV A and Ao = 250V A?, with the band tilt
strengths wgiven in the panels. The color scale used for the insets is
10 times the main plot’s color scale.

kyky-product terms in G, and G,,. This nature is substantially
different from the BC, which always shows a snowflakelike
structure with any finite warping strength. It is important to
note that the tilt parameter does not affect the BCP tensor.
and it causes only the anisotropic shifting of the Fermi surface
along the tilt direction. This is also depicted in the bottom row
of Fig. 1. Notice that the behavior of the BCP tensor close
to the I' point remains insensitive to the warping strength,
as shown in the insets in Fig. 1. This observation can be
analytically understood from the expression of the BCP ten-
sor derived above. We want to mention that the variation in
the BCP magnitude and the anisotropy in the Fermi surface
can either simultaneously or separately impact the net TOH
responses.

With the BCP tensor in hand, we will now calculate the
TOH conductivity using Eq. (12). We would like to point
out that since the system is invariant under mirror symme-
try M., the tensor components involving an odd number of
x and y (€.8., Xxxry> Xyxwx) vanish. To explore the angular
dependence of the TOHE, we consider the applied electric
field E = E(cos 9, sin 8, 0), making an angle 6 with the x axis
(that is, perpendicular to the mirror line in the current study).
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Since we are interested in the TOH response, the transverse
third-order conductivity can be written as

o) =JE/E?, (18)

where ji' = j; - (2 x E) is the current flowing perpendicular
to the applied electric field. Now using the above equation,
the explicit expression of x1'(6) can be obtained as

X3 ©) = Bxa1 — x11)sin 6 cos® 6
— (312 — x22) sin* 6 cos 6, (19)

where X11 = Xxxxxs  X22 = Xyyyy> X12 = %(Xxxyy + Xxyxy +
Xxyyx)’ and X1 = %(nyxx + Kyxyx + nyxy)- It is now clear
from the expression that the TOH current vanishes along (with
6 = m /2) and perpendicular (with 6 = 0) to the mirror line.

In the absence of tilting, the C3 symmetry is preserved,
and the Fermi surface is circular when vy = v,. Therefore,
x31(9) vanishes due to the symmetry constraint. Now to get
the finite contribution of the TOHE, one needs to break the
C; symmetry. This can be achieved by introducing the tilt
parameter w where the Dirac cone remains gapless. Alter-
natively, one can consider anisotropic Dirac velocities, i.e.,
v, # vy, preserving TRS, to break C; symmetry. Note that
the hexagonal warping term does not break C3 symmetry. The
variation of x}! as a function of 6 for different tilt strengths is
shown in the top panel of Fig. 2. It is important to note that
the BCP is singular at k = 0 for the gapless surface states of
TIs, which is very similar to that of the Berry curvature and
Berry curvature dipole when two bands approach each other
(around the degenerate points). However, one can consider an
infinitesimal constant in the gap in the numerical calculations
to avoid the singularity. We find that although the qualitative
changes remain the same, the magnitude of the conductivity
increases with increasing tilt strength. This happens because
the stronger band tilt provides a more anisotropically warped
Fermi surface, which straightforwardly modifies the net con-
tribution of the current [see Egs. (10)—(12)]. Next, we show
the variation of x11(9) in the middle panel of Fig. 2 for differ-
ent warping strengths A with chemical potential © = 0.25 eV
and w = 0.2. Clearly, the magnitude of the TOH conductivity
increases with an increase of the warping strength, which can
be visualized from the evaluation of the BCP tensor with
warping. Finally, we investigate the effect of doping on x1(9).
We find that the peak positions of x(0) shift toward a lower
angle, whereas the dip positions shift toward a higher angle.
Moreover, the response becomes very strong for u > 0.2eV
as the warping effect of the surface Dirac cone is apparent
only above some chemical potential threshold [56].

It is interesting to note that for the C;-broken, TRS-
preserved case with an anisotropic nontilted 2D Dirac
cone (i.e., vy # v,), the BCD-induced and disorder-mediated
second-order Hall conductivity vanishes. This is because such
responses are proportional to the tilt factor w associated
with the identity term [13,15]. By contrast, the BCP-induced
TOHE survives. Noticeably, the TOHE is not directly related
to the tilt factor as the BCP tensor is insensitive to w. There-
fore, the TOH response could be the leading-order response
for TI systems consisting of a nontilted anisotropic Dirac cone
on the surface states because of the presence of TRS.

—A=0.4), — A =12},

FIG. 2. TOH conductivity (scaled with tv,v,) for the surface
states of 3D TI as a function of the angle 6 between the applied
electric field and x axis. The angular variation of TOH conductivity
with tilt strength w (top) for fixed © = 0.25 eV and Ay = 250 eV A3,
warping strength A (middle) for fixed u© = 0.25 eV and /v, = 0.2,
and chemical potential u (bottom) for fixed Ay = 250 eV A3 and
/v, = 0.2 are shown. The TOH conductivity scaled with Tv,v, is
measured in units of eV,

IV. DISCUSSION AND CONCLUSIONS

In summary, within the framework of the quasiclassical
Boltzmann theory, we considered the general expression of
the TOH current. We showed that in a TRS-invariant system,
the TOH current, appearing due to the BCP tensor, is propor-
tional to relaxation time 7. Using the symmetry arguments,
we established that such a BCP-induced TOH response can
become the leading-order response in the surface states of 3D
TIs in the absence of tilting of the Dirac cone. This provides a
direct check for the TOHE in experiments.

We explored the effect of warping strength, chemical dop-
ing, and tilt on the TOH response in this system. We found
that the magnitude of the TOH conductivity can be enhanced
significantly by increasing the hexagonal warping strength A
which is inherently present in the surface states of 3D TIs
such as Bi,Tes (see Fig. 2). This is related to the fact that the
magnitudes of the BCP tensor components, shown in Fig. 1,
increase with increasing A away from the I point. Our study
also revealed that the tilt strength has no effect on the BCP ten-
sor, unlike the warping parameter; however, the tilt parameter
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can also tune the TOHE by enhancing the anisotropy of the
Fermi surface. As the BCP is very dependent on the warping
strength, the effective TOHE was also shown to exhibit more
significant signals at the higher chemical potential where the
warping becomes evident for the surface states.

We here comment on the possible experimental predictions
as far as the values of the TOHE are concerned. For a 20 quin-
tuple layer (QL) thick (# ~ 20nm) TI material (e.g., BiyTes)
fabricated in the conventional Hall bar geometry with size
I x w = 100 x 20 um? [52,63], considering resistivity p =
700 uS2 cm and scattering time T = 5.86 x 10™'%s, a current
drive with a magnitude of Iy = 0.6 mA can provide an electric
field E = 105 Vcm™!. When the field angle @ is around 6 ~
/6 (see the top panel of Fig. 2), the induced TOH voltage
Uy o xf'E3 at n = 0.25eV can be estimated to be Uy ~
14.02 uV when a weak band tilt w/v, = 0.05 is present. A
moderate band tilt w /v, = 0.20 can even lead to a TOH volt-
age on the order of Uy ~ 0.129 mV. Similar estimations can
also be made for TI surface Dirac states when they are non-
tilted but have slightly anisotropic Fermi velocities (vy # v)).

Moreover, we also discussed in detail how to separate
the third-order Hall response from linear and second-order
effects in experiments. Since the list of topological materials
possessing warping and tilt at the same time is diverse, our
work opens an avenue for searching for the TOHE in various

topological systems. It is important to note that the effective
mass of the material can reduce the warping effect; fortu-
nately, as demonstrated in experiments, the warping effect
is, indeed, present for the surface states in TIs. Specifically,
effect of the suppression coming from the effective mass on
the warping effect (as well as the band tilt) is found to be
much lower in Bi, Tes than in other TIs [62,64—66]. Therefore,
the BCP-driven nonlinear transport discussed in our work is
expected to be experimentally viable for Bi, Tes.
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