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Electronic structure of biased alternating-twist multilayer graphene
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We theoretically study the energy and optical absorption spectra of alternating-twist multilayer graphene
(ATMG) under a perpendicular electric field. We obtain analytically the low-energy effective Hamiltonian of
ATMG up to pentalayer in the presence of the interlayer bias by means of first-order degenerate-state perturbation
theory, and present general rules for constructing the effective Hamiltonian for an arbitrary number of layers.
Our analytical results agree to an excellent degree of accuracy with the numerical calculations for twist angles
θ � 2.2◦ that are larger than the typical range of magic angles. We also calculate the optical conductivity of
ATMG and determine its characteristic optical spectrum, which is tunable by the interlayer bias. When the
interlayer potential difference is applied between consecutive layers of ATMG, the Dirac cones at the two moiré
Brillouin zone corners K̄ and K̄ ′ acquire different Fermi velocities, generally smaller than that of monolayer
graphene, and the cones split proportionally in energy resulting in a steplike feature in the optical conductivity.
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I. INTRODUCTION

Twisted graphene systems have attracted widespread
attention after the discovery of superconductivity and corre-
lated insulating states [1–4] in magic-angle twisted bilayer
graphene (TBG). By twisting two graphene layers, a new
long-period structure, called a moiré superlattice, emerges
due to spatially varying interlayer coupling, generating a
unique band structure and associated electronic properties
which strongly depend on the twist angle. Especially at the
so-called magic angles, the Fermi velocity vanishes and nearly
flat bands are formed [5–8], providing an ideal platform to
study correlated electron phenomena where electron-electron
interactions are dominant over the kinetic energy.

Studies beyond TBG have been extended to systems like
twisted double-bilayer graphene [9–14] and twisted triple-
bilayer graphene [15], and even to other two-dimensional
moiré material systems [16–22], that revealed interesting
interaction-driven phenomena such as correlated insulat-
ing [11–14,18] and topological [9] phases that are in situ
tunable.

Among them, the alternating-twist multilayer graphene
(ATMG) has been studied intensively both theoretically
[23–31] and experimentally [32–38] whose larger magic angle
gives them an advantage over TBG. In particular, ATMG has
attracted much attention due to its robust superconductivity
observed from bilayer to pentalayer samples [2–4,32–37],
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while reports of superconductivity in other two-dimensional
moiré systems are regarded as ambiguous [13,14,19–22,39].

In this paper, we theoretically analyze the effect in the
electronic structure of a perpendicular electric field on ATMG.
Using first-order degenerate-state perturbation theory treating
the interlayer potential as a perturbation, we analytically in-
vestigate the low-energy effective Hamiltonian and its energy
spectrum that becomes more accurate as the twist angle is in-
creased. Then, we calculate the optical conductivity of biased
ATMG that reveals a steplike feature arising from the split-
ting of Dirac nodes and their Fermi velocity renormalization
introduced by the applied electric field.

The paper is organized as follows. In Sec. II, we introduce
a model of ATMG in the presence of the interlayer potential
difference between consecutive layers and derive the corre-
sponding low-energy effective Hamiltonian analytically up to
pentalayer. We also present general rules for constructing the
effective Hamiltonian of biased ATMG with an arbitrary num-
ber of layers. In Sec. III, we calculate the longitudinal optical
conductivity of biased ATMG, and explain their characteristic
optical absorption spectrum. Finally, in Sec. IV, we discuss
the interlayer coupling strength range for which our model is
valid and summarize our main results.

II. ELECTRONIC STRUCTURE

A. Model

We consider a model of vertically stacked N graphene
layers with the �th layer alternatingly twisted by an angle
θ� = (−1)�θ/2, as shown in Fig. 1. For a perpendicular elec-
tric field, we assume that the interlayer potential difference
U is the same between the two adjacent layers. Following

2469-9950/2023/107(24)/245139(10) 245139-1 ©2023 American Physical Society

https://orcid.org/0009-0001-2368-0729
https://orcid.org/0000-0002-5781-6102
https://orcid.org/0000-0002-1756-0536
https://orcid.org/0000-0003-2523-0905
https://orcid.org/0000-0001-5043-2432
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.245139&domain=pdf&date_stamp=2023-06-27
https://doi.org/10.1103/PhysRevB.107.245139


SHIN, JANG, SHIN, JUNG, AND MIN PHYSICAL REVIEW B 107, 245139 (2023)

FIG. 1. Schematic illustration of the biased alternating-twist
multilayer graphene with N = 3 layers.

Leconte et al. [31], the Hamiltonian of ATMG in the presence
of an interlayer potential difference can be expressed as

H =

⎛
⎜⎜⎜⎝

H (1)
k T (r) 0 · · ·

T †(r) H (2)
k T †(r) · · ·

0 T (r) H (3)
k · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎠ + V, (1)

where the diagonal blocks H (�)
k = h̄v0(k · σθ�

) with σθ�
=

e
i
2 θ�σzσe− i

2 θ�σz contain the Dirac cones of twisted graphene
layers, T (r) is the interlayer tunneling matrix, and V =
diag(V (1)I2,V (2)I2, . . . ,V (N )I2) is a diagonal matrix that cap-
tures the interlayer potential differences. The Fermi velocity
of the monolayer graphene is set as v0 = √

3a|t |/2h̄ � 106

m/s with the lattice constant a = 2.46 Å and the nearest-
neighbor intralayer hopping parameter t = −3.1 eV.

In our model, the electric potential sequence V (�) is defined
to satisfy both V (�+1) − V (�) = U and V (1) = −V (N ), and the
interlayer tunneling at the twisted interface takes the form

T (r) =
∑

j=0,±
eiq j ·rT j, (2)

where q0, q± are given by q0 = 2kD sin(θ/2)(0,−1), q± =
2kD sin(θ/2)(±√

3/2, 1/2) with the Dirac momentum for
monolayer graphene kD = 4π/3a. Our model also considers
the corrugated lattice structure due to the effect of out-of-
plane relaxation, leading to the larger interlayer spacing in
AA-stacking region than the AB/BA-stacking region [40,41],
thus resulting in unequal intrasubblattice and intersublattice
hopping terms w and w′, respectively. Following the conven-
tion of an initial AA stacking configuration [42], the interlayer
tunneling matrices are given by

T 0 =
(

w′ w

w w′

)
, T ± =

(
w′ we∓i2π/3

we±i2π/3 w′

)
, (3)

where w′ = 0.0939 eV and w = 0.12 eV [10]. For the full
numerical calculations, we include the lattice corrugation
(w �= w′), whereas we assume the rigid model of equal
hopping terms (w = w′ = 0.12 eV) for simplicity when we
study the Hamiltonian analytically. We choose representative
twisted angles 3◦–5◦ for the numerical calculations above the

typical magic angle values that lie between 1◦–2◦. For these
large angles the interlayer coupling substantially reduces the
Fermi velocity of the dispersive Dirac cones near the two
moiré Brillouin zone (mBZ) corners K̄ and K̄ ′ but have not
completely flattened them.

In the absence of the interlayer potential difference, the
effective Hamiltonian of the ATMG at K̄ and K̄ ′ can be de-
scribed as a set of TBG models at different angles with an
additional decoupled monolayer graphene model at K̄ (or at
K̄ ′ depending on the continuum model we start with) for an
odd number of layers [23]. The electronic structure of ATMG
has a close analogy with Bernal-stacked multilayer graphene
where the effective Hamiltonian is described by a set of bi-
layer graphene models with different effective masses with
an additional decoupled monolayer graphene model for an
odd number of layers [43,44]. This analogy between Bernal-
stacked multilayer graphene and ATMG can be expanded to
their wave functions.

We now construct the wave function of ATMG at K̄ or K̄ ′
using the first shell model, in which the momentum-space lat-
tice is truncated at the nearest-neighbor shell of the moiré re-
ciprocal lattice G vectors, assuming the rigid model (w = w′).
For the bilayer case (N = 2), the zero-energy eigenstates near
K̄ and K̄ ′ consist of four two-component spinors as follows:

ψTBG
λ,K̄ (or K̄ ′ ) = 1√

1 + 6α2

(
aλ

bλ

)
or

(
bλ

aλ

)
, (4)

where α = w/[2v0kD sin(θ/2)] is a dimensionless parameter.
Following Bistritzer and MacDonald [7], we define aλ as a
normalized eigenstate of k̂ · σθ�

corresponding to the eigen-
value λ = ±1, and bλ = (bq0,λ

, bq+,λ, bq−,λ)T determined by
the equation bq j ,λ

= −h−1
j T †

j aλ with h j = h̄v0(k + q j ) · σθ�
.

In a similar way to Bernal-stacked multilayer graphene, the
eigenfunctions of ATMG have the form of the solution of a
one-dimensional chain problem, thus, we can construct the
eigenfunctions of ATMG in the following manner [23]:

	
(�)
r,λ =

√
2τ

N + 1
sin(�θr ) ψTBG

r,λ , (5)

where τ = 2 − δr,n+1, θr = rπ/(N + 1) with r = 1, 2, . . . , n
for even N = 2n or for odd N = 2n + 1 with additional r =
(n + 1)th mode near K̄ , and ψTBG

r,λ can be obtained from
ψTBG

λ in Eq. (4) by letting α → trα and bλ → trbλ with tr =
2 cos θr . Here, 	r,λ = (	 (1)

r,λ , 	
(2)
r,λ , . . . , 	

(N )
r,λ )T is a normal-

ized eigenstate of the effective Hamiltonian Heff = h̄vr (k · σ )
of ATMG with |	r,λ|2 = 1, where vr is a Fermi velocity of the
Dirac cone 	r,λ given by

vr

v0
= 1 − 3t2

r α2

1 + 6t2
r α2

. (6)

Inserting r = n + 1 in Eq. (6), one finds that the (n + 1)th
mode for the odd number of layers corresponds to an eigen-
state of the decoupled monolayer Hamiltonian.

In the presence of the interlayer potential difference U ,
we obtain analytically the low-energy effective Hamiltonian
using first-order degenerate-state perturbation theory based on
the minimal size Hamiltonian including only the first shell of
the moiré G vectors. Due to the electric field, the Dirac cones
near K̄ or K̄ ′ are hybridized and split from one another, so the
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FIG. 2. Band structure of N = 3 ATMG at θ = 3◦ for (a) U = 0
and (b) U = 0.1 eV. The left and right insets to (a) and (b) represent
the schematic band structure near K̄ and K̄ ′. (c) C(α) and (d) v∗/v0 as
a function of twist angle θ for the full numerical calculations (solid
line) and the analytical result from the rigid (ω = ω′) first shell model
(dashed line).

effective Hamiltonian of each Dirac node would be altered in
the following form:

Heff = (α,U ) + h̄v∗(k · σ), (7)

where (α,U ) and v∗ are the energy shift and modified
Fermi velocity of the effective Hamiltonian, respectively. The
energy shift due to the interlayer potential U can be ex-
pressed as (α,U ) = C(α)U , and the Fermi velocity v∗ can
be expressed as a linear combination of vr . In the following
Secs. II B and II C, we illustrate the effective Hamiltonian of
N = 3 and 4 ATMG as examples. We leave the discussions of
the analytical results for the N = 5 case to Appendix A.

B. N = 3

Here we derive the effective Hamiltonian of alternating
twist trilayer graphene (AT3G) at the K̄ and K̄ ′ points of the
mBZ. There are two Dirac cones centered at K̄ with v0 and
v1 Fermi velocities, as shown in Fig. 2(a), thus the size of the
perturbation matrix VK̄ would be 2×2. Note that v0 represents
the Fermi velocity of monolayer graphene. Using Eq. (4), we
obtain the following normalized wave functions 	r,λ near K̄
in our first shell model:

	1,λ = 1√
2 + 24α2

⎛
⎝ aλ

2bλ

aλ

⎞
⎠, 	2,λ = 1√

2

⎛
⎝ aλ

0
−aλ

⎞
⎠. (8)

At K̄ in AT3G, the perturbation V̂ in the first shell model is
given by V̂ = diag(−UI2, 06,UI2). Then, in the basis of the
wave functions in Eq. (8), we obtain the perturbation matrix
VK̄ using V11 = V22 = 0 and V12 = V21 = −U/

√
1 + 12α2. By

diagonalizing VK̄ , we obtain the effective Hamiltonian of bi-

FIG. 3. Similar to (a)–(c) in Fig. 2, but for N = 4 ATMG. If
U < 0, the energy shifts are reversed. In (d), we show the two Fermi
velocities v∗

± as given in Eq. (16) of the positively and negatively
shifted Dirac cones illustrated in the inset to (b).

ased AT3G near K̄ as

H (±)
eff,K̄

= ± C(α)U + h̄v∗(k · σ ), (9)

where C(α) = 1/
√

1 + 12α2 and v∗ = (v0 + v1)/2. Compar-
ing the left inset of Figs. 2(a) and 2(b), we can deduce that
the two Dirac bands near K̄ are hybridized equally and split
by 2C(α)U acquiring the average Fermi velocity v∗ from the
unbiased values.

On the other hand, near K̄ ′, only one Dirac cone with v1

exists, whose wave function is

	1,λ = 1√
1 + 12α2

⎛
⎝bλ

aλ

bλ

⎞
⎠. (10)

Then, the perturbation matrix VK̄ ′ vanishes and the Dirac cone
at K̄ ′ remains unaltered to leading order in U , resulting in the
effective Hamiltonian

Heff,K̄ ′ = h̄v1(k · σ). (11)

In Figs. 2(c) and 2(d), we illustrate the result of the leading-
order energy splitting coefficient C(α) and the modified Fermi
velocity v∗ obtained from the analytic model and numerical
method as a function of twist angle.

C. N = 4

In the following, we derive the effective Hamiltonian of
alternating-twist tetralayer graphene (AT4G) at K̄ and K̄ ′. At
K̄ , there are two Dirac cones with the velocities v1 and v2 as
shown in Fig. 3(a), and the corresponding wave functions are
given by

	r,λ = 2√
5
(
1 + 6t2

r α2
)
⎛
⎜⎜⎝

sin θr · aλ

sin 2θr · trbλ

sin 3θr · aλ

sin 4θr · trbλ

⎞
⎟⎟⎠ (12)

with r = 1, 2. The perturbation V̂ at K̄ in this case is given
by V̂ = diag(− 3U

2 I2,−U
2 I6,

U
2 I2,

3U
2 I6). Since there are two
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Dirac cones at K̄ , the size of the perturbation matrix VK̄ would
be 2×2, and its elements Vrr′ are expressed as

Vrr′ = 4U

N + 1

1 − 6trtr′α2√(
1 + 6t2

r α2
)(

1 + 6t2
r′α2

)

×
N/2∑
l=0

(
2� − N − 1

2

)
sin (2� + 1)θr sin (2� + 1)θr′

= 2U

5

1 − 6trtr′α2√(
1 + 6t2

r α2
)(

1 + 6t2
r′α2

) (−3 sin θr sin θr′

+ sin 3θr sin 3θr′ + 5 sin 5θr sin 5θr′ ). (13)

By diagonalizing the matrix VK̄ , we obtain the effective
Hamiltonian of biased AT4G near K̄ as

Heff,K̄ = C±(α)U + h̄v∗
±(k · σ ), (14)

where C±(α) and v∗
± corresponding to upward and downward

shifted Dirac cones are given by

C±(α) = 1

2(1 + 18α2 + 36α4)
[−(1 + 12α2 − 36α4)

±
√

(1 + 12α2)(1 + 18α2 + 45α4 + 108α6)] (15)

and

v∗
± = A2

±v1 + B2v2

A2± + B2
. (16)

Here, A± and B are unnormalized mixing coefficients of the
two Dirac cones given, respectively, by

A± = 1 + 15α2 − 36α4

±
√

5(1 + 12α2)(1 + 18α2 + 45α4 + 108α6), (17a)

B = −2(1 + 6α2)
√

1 + 18α2 + 36α4. (17b)

From the above result, we find that the two Dirac cones
with the velocities v1 and v2 are hybridized with the ratio of
A± and B, and shifted by C±(α)U , as schematically illustrated
in Fig. 3(b).

On the other hand, near K̄ ′, the wave functions for two
Dirac cones with the velocity vr (r = 1, 2) are given by

	r,λ = 2√
5
(
1 + 6t2

r α2
)
⎛
⎜⎜⎝

sin θr · trbλ

sin 2θr · aλ

sin 3θr · trbλ

sin 4θr · aλ

⎞
⎟⎟⎠. (18)

Since sin �θr = (−1)r sin (N + 1 − �)θr , the wave function at
K̄ ′ can be obtained by reversing the components of the wave
function at K̄ . Therefore, the effective Hamiltonian of biased
AT4G near K̄ ′ can be obtained by reversing the sign of the
interlayer potential difference U in Eq. (14) as

Heff,K̄ ′ = − C±(α)U + h̄v∗
±(k · σ ), (19)

where C±(α) and v∗
± are the same as those at K̄ . In detail,

our model Hamiltonian [Eq. (1)] for N = 4 has a combined

TABLE I. Summary of the effective Hamiltonian of ATMG for
odd numbers of layers N = 3, 5, 7.

symmetry expressed as

(�̂T̂ )H (k)(�̂T̂ )−1 = −H (−k), (20)

where

�̂ =

⎛
⎜⎜⎝

0 0 0 σx

0 0 −σx 0
0 σx 0 0

−σx 0 0 0

⎞
⎟⎟⎠. (21)

We note that �̂ changes only the valley index (K ↔ K ′) keep-
ing the same mBZ corner points (K̄ → K̄ , K̄ ′ → K̄ ′) [45],
whereas the time-reversal operator T̂ changes both the valley
index (K ↔ K ′) and the mBZ corner points (K̄ ↔ K̄ ′). This
combined symmetry is preserved even in the presence of an
interlayer potential difference, thus the effective Hamiltoni-
ans between K̄ and K̄ ′, which are respectively described in
Eqs. (14) and (19), are also related as Eq. (20).

D. Arbitrary N

As the layer number N is increased, the size of the pertur-
bation matrix is also proportionally increased and it becomes
progressively cumbersome to obtain analytically the effective
Hamiltonian of ATMG for a large number of layers in the
presence of an applied field even if we use the first shell
model. Instead, here want to provide the general behavior
patterns of the effective Hamiltonian of biased ATMG for
arbitrary N . Tables I and II show the summary of the effec-
tive Hamiltonian for N = 2–8 ATMG in the presence of the
interlayer potential difference.

First, for ATMG with an odd number of layers, there
are (N − 1)/2 TBG Dirac cones labeled by vr [r=1, 2, . . . ,
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TABLE II. Summary of the effective Hamiltonian of ATMG for
even numbers of layers N = 2, 4, 6, 8. Here, we assume U > 0. For
U < 0, the energy shifts are reversed.

(N − 1)/2] near the two mBZ corners K̄ and K̄ ′, and one
decomposed monolayer Dirac cone with v0 at K̄ . Regardless
of the layer number N and mBZ symmetry points, the form of
the perturbation matrix V is solely determined by the number
of Dirac cones at K̄ or K̄ ′, even though its elements depend on
N . One can thus find the same form of the effective Hamilto-
nian when the number of Dirac cones is the same, as seen in
Table I. In detail, if there are m Dirac cones at K̄ or K̄ ′, we have
m/2 pairs of Dirac cones shifted by ±i (i = 1, 2, . . . , m/2)
for even m, whereas we have (m − 1)/2 pairs of Dirac cones
plus one Dirac cone without energy shift for odd m. Each pair
of Dirac cones has the same effective Fermi velocity.

For ATMG with an even number of layers, there are N/2
TBG Dirac cones labeled by vr (r = 1, 2, . . . , N/2) near K̄
and K̄ ′ when U = 0. If an external field is applied (U �= 0), the
Dirac cones are split with different energy shift  and Fermi
velocity v∗. As already mentioned in Sec. II C, the effect of an
applied electric field at K̄ ′ (K̄) can be effectively described by
flipping its direction (ẑ → −ẑ) at K̄ (K̄ ′). Moreover, we can
generalize Eq. (20) by expanding �̂ symmetry in Eq. (21) by
conveniently alternating σx and −σx. Similarly to the N = 4
case, the combined �̂T̂ symmetry is still preserved for ATMG

FIG. 4. Schematic picture of the energy shifts of Dirac cones at
K̄ and K̄ ′ in biased ATMG in the asymptotic limit (α → 0).

with an even number of layers in the presence of an inter-
layer potential difference, relating the effective Hamiltonians
between K̄ and K̄ ′ with flipped energy shifts, as seen in
Table II.

Lastly, let us consider the effective Hamiltonian of biased
ATMG in the asymptotic limit (α → 0) where the twist angle
θ becomes much larger than the first magic angle of ATMG.
For the first shell model, |bλ| becomes proportional to α, so
only monolayer terms aλ of 	r,λ survive in this limit. Thus,
the energy splitting coefficient C(α) of ATMG with arbitrary
N at K̄ (K̄ ′) can be obtained as odd (even) layer components
of V̂ , as schematically shown in Fig. 4.

On the other hand, the modified Fermi velocity v∗ con-
verges to v0 as α → 0 since all eigenstates of biased ATMG
in this limit have just a single-monolayer term, giving the
monolayer graphene Dirac cone with the velocity v0. There-
fore, the effective Hamiltonian would be described by a set
of monolayer graphene Hamiltonian with the energy shift de-
scribed by C(α → 0)U , which can be obtained by the pattern
presented in Fig. 4. Figure 5 shows the band structure of
N = 5–8 ATMG in the presence of the interlayer potential
difference U = 0.1 eV at θ = 5◦ along with the analytical
result obtained in the asymptotic limit, which agrees closely
with the full numerical result except for small deviations in
the Fermi velocity of the Dirac cones.

III. OPTICAL CONDUCTIVITY

The Kubo formula for the optical conductivity in the non-
interacting and clean limit is given by [46]

σi j (ω) = − ie2

h̄

∑
s,s′

∫
d2k

(2π )2

fs,k − fs′,k

εs,k − εs′,k

× Mss′
i (k)Ms′s

j (k)

h̄ω + εs,k − εs′,k + i0+ , (22)
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FIG. 5. Band structure of N = 5–8 ATMG at θ = 5◦ with U =
0.1 eV. Solid and dashed lines represent the numerical calculations
and the analytical result obtained in the α → 0 limit, respectively.

where i, j = x, y, fs,k = 1/[1 + e(εs,k−μ)/kBT ] is the Fermi dis-
tribution function for the band index s and wave vector k, μ is
the chemical potential, and Mss′

i (k) = 〈s, k|h̄v̂i|s′, k〉 with the
velocity operator v̂i obtained from the relation v̂i = 1

h̄
∂Ĥ
∂ki

.
In the following, we consider the real part of the longitu-

dinal optical conductivity for μ = 0 at zero temperature with
a finite broadening term η = 5 meV replacing the 0+ term
in Eq. (22) for numerical calculations. We plot the optical
conductivities of AT3G and AT4G for the continuum model
[Eq. (1)] with and without the interlayer potential difference
U at the twist angle θ = 5◦ in Figs. 6 and 7, respectively.

In the absence of the interlayer potential difference, the
longitudinal conductivity converges to Nσ0 for both low- and

FIG. 6. Band structure and the longitudinal conductivity of N =
3 ATMG at θ = 5◦ for (a), (c) U = 0 and (b), (d) U = 0.1 eV. The
insets to (b) show an enlarged view of the band structure near K̄ and
K̄ ′. The arrows in the band structure indicate interband transitions
corresponding to peaks in the conductivity. In (d), a Drude peak
appears at low frequencies due to intraband contributions.

FIG. 7. Same as Fig. 6 for N = 4 ATMG.

high-frequency limits, as shown in Figs. 6(c) and 7(c). Here,
σ0 = gsve2/16h̄ is the optical conductivity of charge-neutral
monolayer graphene with the spin-valley degeneracy factor
gsv = 4. The low-frequency conductivity originates from tran-
sitions within N hybridized Dirac nodes located at K̄ and K̄ ′,
whereas at high frequencies the interlayer coupling becomes
negligible, thus, the conductivity approaches that of N decou-
pled monolayer graphene sheets. At intermediate frequencies,
a dominant peak appears around h̄ω ∼ 0.9 eV for θ = 5◦ aris-
ing from interband transitions between states near the saddle
point M̄, as indicated by the red arrows. The frequency where
the dominant peak appears depends on the twist angle θ but
weakly depends on N or U .

In the presence of the interlayer potential difference, the
conductivity shows a steplike feature at low frequencies, as
shown in Figs. 6(d) and 7(d). For biased AT3G, two Dirac
nodes at K̄ are split by 2, thus, interband transitions are
forbidden in the low-frequency limit, while interband tran-
sitions are allowed in the unaltered Dirac cone at K̄ ′, giving
σ0. For biased AT4G, two Dirac nodes at K̄ and another two
Dirac nodes at K̄ ′ are shifted by ±, thus, interband transi-
tions are forbidden in the low-frequency limit, and the optical
conductivity vanishes. As the frequency increases, the optical
conductivity increases by 2σ0 when h̄ω ∼ 2|| and 2|±| for
biased AT3G and AT4G, respectively, eventually approaching
Nσ0. This feature is very analogous to the optical conductivity
of AA-stacked multilayer graphene, where the optical conduc-
tivity increases in steps of 2σ0 toward Nσ0 when interband
transitions occur within the same Dirac cones [47,48]. Un-
like AA-stacked multilayer graphene, however, the velocity
changes away from K̄ or K̄ ′, so the transition energy deviates
from 2|| and 2|±|, especially at small twist angles. As the
twist angle decreases, interband transitions arising from the M̄
and �̄ points occur at lower energies and eventually mix with
the interband transitions arising from the K̄ and K̄ ′ points,
blurring the steplike features explained above. The evolution
of the optical conductivity with decreasing-twist angle will be
discussed in Appendix C.
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IV. DISCUSSION

The analytical forms of the effective Hamiltonian for bi-
ased ATMG near K̄ or K̄ ′ were obtained using the first shell
model of the moiré G vectors, which is valid within the radius
about kc ∼ U/h̄v0 in the k space beyond which two shifted
Dirac cones by U cross each other. When the twist angle
becomes smaller than the typical values of the first magic
angle θ

(N )
M � θ

(∞)
M ≈ 2.2◦ [23], our first shell model, which

employs the nearest-neighbor truncation, is generally insuffi-
cient for accurately capturing the bands of an enlarged moiré
superlattice of ATMG, resulting in the discrepancy between
analytical and numerical results. Nevertheless, the analytical
results obtained from our perturbation approach agree well
with the full numerical calculations for twist angles θ � 2.2◦
where the interlayer coupling is weaker.

In summary, we have studied the effect of a perpendic-
ular electric field on ATMG, focusing on the effects of an
interlayer potential difference in altering the low-energy band
structure and therefore the optical absorption spectrum, which
can be used as a distinguishing experimental signature. First,
we analytically derived the low-energy effective Hamiltonian
and its energy spectrum near the two moiré Dirac points K̄ and
K̄ ′ up to pentalayer by using first-order degenerate-state per-
turbation theory, treating the asymmetric interlayer potential
difference as a perturbation. Then, we presented general rules
for constructing the effective Hamiltonian of biased ATMG
with an arbitrary number of layers. Lastly, we investigated the
optical absorption spectrum of ATMG with and without an
interlayer potential difference. We found that the longitudinal
conductivity of biased ATMG showed a steplike feature aris-
ing from the splitting of Dirac nodes by the applied electric
field, which is reminiscent of the optical conductivity features
of AA-stacked multilayer graphene.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN FOR N = 5 ATMG

In this Appendix, we derive the effective Hamiltonian of
alternating-twist pentalayer graphene (AT5G) at the two moiré
Dirac points K̄ and K̄ ′. Three Dirac cones labeled by v0, v1,
and v2 exist near K̄ as shown in Fig. 8(a), thus the size of the
perturbation matrix VK̄ is 3×3. Using Eq. (4), we obtain the
following normalized wave functions 	r,λ near K̄ in our first

FIG. 8. Similar to (a)–(c) in Fig. 2, but for N = 5 ATMG. In (d),
we show the modified Fermi velocities v∗

0 and v∗
1 given in Eq. (A4)

at K̄ and v∗ = (v1 + v2)/2 at K̄ ′ as illustrated in the inset to (b).

shell model:

	r,λ = 2√
6
(
1 + 6t2

r α2
)
⎛
⎜⎜⎜⎜⎝

sin θr · aλ

sin 2θr · trbλ

sin 3θr · aλ

sin 4θr · trbλ

sin 5θr · aλ

⎞
⎟⎟⎟⎟⎠, (A1a)

	3,λ = 1√
3

⎛
⎜⎜⎜⎜⎝

aλ

0
−aλ

0
aλ

⎞
⎟⎟⎟⎟⎠ (A1b)

with r = 1, 2. At K̄ in AT5G, the perturbation V̂ is given
by V̂ = diag(−2UI2×2, −UI6×6, 02×2, UI6×6, 2UI2×2).
Following the same procedure described in Secs. II B
and II C, we obtain the perturbation matrix VK̄ with the
elements of V11 = V22 = V33 = V13 = V31 = 0, V12 = V21 =
−2U (1 + 9α2)/

√
3(1 + 6α2)(1 + 12α2), and V23 = V32 =

−4U/
√

6(1 + 6α2) in the basis of the wave functions in
Eq. (A1). Therefore, we obtain the effective Hamiltonian of
biased AT5G near K̄ by diagonalizing VK̄ as

H (0)
eff,K̄

= h̄v∗
0 (k · σ ), (A2a)

H (±1)
eff,K̄

= ±CK̄ (α)U + h̄v∗
1 (k · σ ), (A2b)

where

CK̄ (α) = 2

√
1 + 18α2 + 27α4

(1 + 6α2)(1 + 18α2)
(A3)

and

v∗
0 = A2v0 + B2v1

A2 + B2
, v∗

1 = B2v0 + A2v1

2(A2 + B2)
+ v2

2
. (A4)

Here, A = 1 + 9α2 and B =
√

2(1 + 18α2) are unnormalized
mixing coefficients of the Dirac cones.

On the other hand, near K̄ ′, there are two Dirac cones
with the velocities v1 and v2 as shown in Fig. 8(a), and the
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FIG. 9. Same as Fig. 6 for N = 5 ATMG.

corresponding wave functions are given by

	r,λ = 2√
6
(
1 + 6t2

r α2
)
⎛
⎜⎜⎜⎜⎝

sin θr · trbλ

sin 2θr · aλ

sin 3θr · trbλ

sin 4θr · aλ

sin 5θr · trbλ

⎞
⎟⎟⎟⎟⎠ (A5)

with r = 1, 2. Then, the size of perturbation matrix VK̄ ′

would be 2×2 with the elements of V11 = V22 = 0 and V12 =
V21 = −U (1 + 12α2)/

√
(1 + 6α2)(1 + 18α2). By diagonal-

izing VK̄ ′ , we obtain the effective Hamiltonian of biased AT5G
near K̄ ′ as

H (±)
eff,K̄ ′ = ± CK̄ ′ (α)U + h̄v∗(k · σ), (A6)

where

CK̄ ′ = 1 + 12α2√
(1 + 6α2)(1 + 18α2)

(A7)

and v∗ = (v1 + v2)/2. We here notice that the effective
Hamiltonian of biased AT5G near K̄ ′ has a similar form of one
at biased AT3G near K̄ since the number of Dirac cones are the
same. In both cases, two Dirac cones are shifted by ±C(α)U
and hybridized equally, so that the equal Fermi velocity v∗
is assigned to be an average of unbiased ones. The only
difference between them is the value of off-diagonal matrix
elements, determining the energy shift of Dirac cones.

APPENDIX B: OPTICAL CONDUCTIVITY OF N = 5 ATMG

In this Appendix, we present the real part of the longitu-
dinal conductivity of AT5G with and without the interlayer
potential difference U . Figure 9 illustrates the longitudinal
conductivity of AT5G for U = 0 and 0.1 eV at the twist angle
θ = 5◦, respectively.

In the absence of the interlayer potential difference, the
longitudinal conductivity converges to 5σ0 for both low- and
high-frequency regions, as shown in Fig. 9(c). On the other
hand, in the presence of the interlayer potential difference, the
conductivity shows a steplike feature at low frequencies, as
shown in Fig. 9(d). Specifically, the conductivity starts with σ0

FIG. 10. Band structure of N = 3 ATMG at θ = 2◦ and θ = 3◦

for (a), (c) U = 0 and (b), (d) U = 0.1 eV, respectively, and the
evolution of the longitudinal optical conductivity with decreasing
twist angle for (e) U = 0 and (f) U = 0.1 eV. The arrows in the band
structure indicate interband transitions corresponding to peaks in the
conductivity.

from the unshifted Dirac cone at K̄ then increases toward 5σ0

in steps of 2σ0 when h̄ω ∼ 2|K̄ | and 2|K̄ ′ |, respectively, at
which the forbidden interband transitions due to the splitting
of Dirac nodes by the applied electric field can occur. The con-
ductivity jump at h̄ω ∼ 2|K̄ |, however, is only about 1.5σ0

less than 2σ0, approaching the conductivity value for U = 0
at that frequency. This mismatch is due to the continuous
decrease of the optical conductivity as the frequency increases
because interband transitions are no longer described by those
between the Dirac nodes near K̄ and K̄ ′. When smaller U or
larger θ is used, one may see more clearly the conductivity in-
crease in steps of 2σ0. At intermediate frequencies, a dominant
peak arises from interband transitions near M̄, as indicated by
the red arrows.

APPENDIX C: EVOLUTION OF THE OPTICAL
CONDUCTIVITY WITH DECREASING-TWIST ANGLE

In the following, we consider the evolution of the lon-
gitudinal optical conductivities with decreasing-twist angle
for μ = 0 at zero temperature with a smaller broadening
term η = 3 meV compared to that used in Figs. 6 and 7
to capture the low-frequency behavior more accurately. We
plot the optical conductivities of AT3G and AT4G with and
without the interlayer potential difference U at various twist
angles θ = 2◦–5◦ in Figs. 10 and 11, respectively. Notice
that in this section we only consider interband transitions,
ignoring the Drude peak arising from intraband transitions.

245139-8



ELECTRONIC STRUCTURE OF BIASED … PHYSICAL REVIEW B 107, 245139 (2023)

FIG. 11. Same as Fig. 10 for N = 4 ATMG.

When the interlayer potential difference is absent, the lon-
gitudinal conductivities converge to Nσ0 in the low-frequency
limit but drop more quickly as the twist angle decreases due
to the decrease in the bandwidth, as shown in Figs. 10(e) and
11(e). Furthermore, interband transitions arising from the M̄
and �̄ points [see Figs. 10(a), 10(c), 11(a), and 11(c)], which
were regarded as high-energy transitions in Sec. III, occur at
lower energies, and the corresponding peaks move toward the
low-frequency region as the twist angle decreases.

When the interlayer potential difference is present, the
steplike feature discussed in Sec. III can still be observed due
to the interband transitions within the same Dirac cones, as
shown in Figs. 10(f) and 11(f). However, as the twist angle
decreases, interband transitions arising from the M̄ and �̄

points occur at lower energies and eventually mix with the
interband transitions arising from the K̄ and K̄ ′ points, blur-
ring the steplike features. Furthermore, unlike AA-stacked
multilayer graphene, the velocity changes away from K̄ or
K̄ ′ [see Figs. 10(b), 10(d), 11(b), and 11(d)], and additional
peaks occur due to interband transitions from or to the ring of
the crossed Dirac cones [marked as K ′

1 in Fig. 11(d)] and due
to interband transitions between other Dirac cones [marked as
K2 in Fig. 10(b) or K3 and K4 in Fig. 11(b)], which become
significant for smaller θ or larger U .
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