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Nonlocal correlations play an essential role in correlated electron systems, especially in the vicinity of phase
transitions and crossovers, where two-particle correlation functions display a distinct momentum dependence.
In nonequilibrium settings, the effect of nonlocal correlations on dynamical phase transitions, prethermalization
phenomena, and trapping in metastable states is not well understood. In this paper, we introduce a dynamical
mean field theory (DMFT) extension to the nonequilibrium two-particle self-consistent (TPSC) approach, which
allows to perform nonequilibrium simulations capturing short- and long-ranged nonlocal correlations in the
weak-, intermediate-, and strong-correlation regimes. The method self-consistently computes local spin and
charge vertices, from which a momentum-dependent self-energy is constructed. Replacing the local part of
the self-energy by the DMFT result within this self-consistent scheme provides an improved description of
local correlation effects. We explain the details of the formalism and the implementation, and demonstrate the
versatility of DMFT+TPSC with interaction quenches and dimensional crossovers in the Hubbard model.
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I. INTRODUCTION

Correlated electron materials are often characterized by
competing or correlated degrees of freedom whose inter-
play can give rise to remarkable physical properties and
symmetry-broken states. This competition involves spin, or-
bital, charge, and lattice degrees of freedom which may be
active at comparable energy scales [1]. One way to disentan-
gle competing or cooperative effects is via fine-tuned laser
pulse excitation of correlated systems, which can reveal char-
acteristic timescales, coupling constants, and collective modes
[2], and, in some cases, hidden nonthermal states [3]. Up
to hundreds of femtoseconds after an impulsive excitation,
the order parameter involved in a dynamical phase transition
exhibits distinctly nonthermal scaling relations and fluctua-
tions [4–6] and the electronic band structure can be strongly
modified [7–9]. These effects are expected to be particu-
larly prominent in low-dimensional systems, where nonlocal
correlations govern the physics close to phase instabilities
and crossovers [10–14]. To capture the effect of nonlocal
correlations, single- and two-particle correlation functions
need to be calculated consistently, and this is challenging
for several reasons. There is a lack of out-of-equilibrium
methods that incorporate both local and nonlocal correlations
and which provide access to the strongly correlated regime.
Dynamical mean field theory (DMFT) only captures local
correlations [15], the nonlocal components of GW+DMFT
only charge fluctuations [16–18], the phenomenological time-
dependent Ginzburg-Landau (tdGL) only considers low-order
microscopic electronic fluctuations [19], and time-dependent
density functional theory cannot properly describe strong
correlation effects and does not capture the scattering
processes which are relevant for thermalization at long
times [20].

The development of reliable, yet computationally efficient
numerical methods is crucial if we want to simulate

nonthermal phenomena, including symmetry-broken
states, up to experimentally relevant times of the order
of picoseconds. Such methods would allow one to accurately
study the destruction of thermal states and formation of
nonthermal phases triggered by impulsive excitations
[21–23] and possibly shed light on the mechanisms
which underlie photoinduced metastable states, such as
the superconductinglike states observed in K3C60 [24] and
κ-organic compounds [25]. They would also allow one
to address fundamental questions such as the effect of
long- and short-range correlations in the formation and
(de)stabilization of prethermal and hidden states [26–29],
and they would enable the study of the role of order
parameter fluctuations in nonthermal phase transitions beyond
tdGL.

The challenge is to devise nonequilibrium numerical many-
body methods for treating nonlocal correlations that are, on
the one hand, computationally tractable and, on the other
hand, accurate enough to capture the relevant physics. A
promising method, which has recently been extended to the
nonequilibrium domain [30], is the so-called two-particle
self-consistent approach (TPSC) [31,32]. TPSC correctly re-
produces the pseudogap in models for cuprates [33] and
the growth of antiferromagnetic (AFM) correlations as the
renormalized classical regime—where the AFM correlation
length exceeds the de Broglie wave length—is approached
[31]. It can also deal with superconducting phases [34,35],
two-particle vertex corrections [36], and multiorbital systems
[32,37]. TPSC has been used in conjunction with density
functional theory (DFT) in equilibrium to calculate the renor-
malization of the bands of iron pnictides and chalcogenides
[8]. The main drawback of TPSC is that is does not fully
capture strong local correlations, so the method does not
give access to the renormalized classical regime or Mott
physics. To better account for strong local correlations while
at the same time keeping track of the nonlocal correlations, a
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combination of DMFT and nonequilibrium TPSC is proposed
in this paper. This method resembles in spirit the recently
developed equilibrium approaches of Refs. [38,39], and is
applied to the single-band Hubbard model in the context of
hopping and interaction quenches. We will, in particular, study
the time-dependent spin and charge correlation functions and
the pseudogap phase in the weak-to-intermediate coupling
regime.

The paper is structured as follows: In Sec. II A, we present
the Hamiltonian of the model and the methods used to solve it.
More specifically, the nonequilibrium DMFT, nonequilibrium
TPSC, and nonequilibrium DMFT+TPSC are presented in
Secs. II B–II D, respectively. The results are shown and dis-
cussed in Sec. III. We give our conclusions in Sec. IV.

II. MODEL AND METHODS

A. Hubbard model

We consider a single-band Hubbard model with time-
dependent hopping parameters:

Ĥ(t ) = −
∑
i j,σ

thop
i j (t )(ĉ†

i,σ ĉ j,σ + H.c.) + U
∑

i

n̂i,↑n̂i,↓

− μ
∑

i

(n̂i,↑ + n̂i,↓). (1)

Here, thop
i j denotes the hopping amplitudes between sites j and

i, σ ∈ {↑,↓} the spin, ĉ(†)
i,σ are annihilation (creation) operators

for site i, while n̂iσ = ĉ†
i,σ ĉi,σ is the number operator, U the

local Hubbard repulsion, and μ the chemical potential. We
will consider ramps from a 2D square lattice to a 3D cubic lat-
tice (and vice versa) with in-plane nearest-neighbor hoppings
thop, and use thop as the unit of energy (h̄/thop as the unit of
time). The ramps are implemented for the z-axis hopping, so
the corresponding time-dependent bare electronic dispersion
reads

εk(t ) = −2thop(cos kx + cos ky) − 2thop
z (t ) cos kz, (2)

where −π � kx, ky, kz � π defines the Brillouin zone. This
implies that the bare bandwidth W of the Hubbard model
Eq. (1) changes from 8thop (2D) to 12thop (3D) and vice
versa. Note that we have set the fundamental constants like
h̄, kB, the electric charge e, and the lattice spacings a to
unity.

B. Nonequilibrium DMFT

1. General formalism

Nonequilibrium DMFT is an implementation of the DMFT
equations on the Konstantinov-Perel’ contour C [40]. This
contour consists of a forward real-time branch, a backward
real-time branch, and an imaginary-time branch [15,41]. It
is also sometimes referred to as the Kadanoff-Baym [42] or
Keldysh-Schwinger contour in the literature. In DMFT, the
lattice model is self-consistently mapped onto a single-site
Anderson impurity model, where upon convergence the time-
dependent hybridization function captures the effects of the
lattice environment [43]. The action of the nonequilibrium

Anderson impurity problem is

S[�] = −
∫
C

dz Ĥloc(z)

−
∫
C

dz
∫
C

dz′ ∑
σ

ĉ†
σ (z)�σ (z, z′)ĉσ (z′), (3)

where Ĥloc is the same local term as in the lattice model, ĉ(†)
σ

annihilates (creates) an electron with spin σ on the impurity,
and z ∈ C. The hybridization function is denoted by �σ (z, z′),
and the integrals span over the entire Konstantinov-Perel’
contour C.

With the nonequilibrium action Eq. (3), one can define the
nonequilibrium impurity Green’s function

Gσ
imp(z, z′) = −iTr[TCeiS[�]ĉσ (t )ĉ†

σ (t ′)]/Z[�], (4)

where TC is the time-ordering operator defined on the
Konstantinov-Perel’ contour and Z[�] = Tr[TCeiS[�]] is the
partition function. The operator TC orders strings of operators
along the contour C, which includes the forward branch C1,
the backward branch C2, and the imaginary time branch (C:
C1 ≺ C2 ≺ C3). The impurity Green’s function Gσ

imp will be
computed using the third-order iterated perturbation theory
(IPT) method, adapted to the nonequilibrium formalism (see
Sec. II B 3). When compared to second-order IPT, the addi-
tional third-order diagrams to the impurity solver allow to
push U/W to larger values and to dope away from half filling
[44].

2. Paramagnetic self-consistency

In nonequilibrium DMFT, the lattice self-energy is as-
sumed to be local and identified with the impurity self-energy,
�σ

i j (z, z′) = �σ
imp(z, z′)δi j , which is an approximation in sys-

tems with finite coordination number [43,45]. Moreover, to
attain the self-consistency condition, the impurity Green’s
function Gσ

imp(z, z′) must be identical to the local lattice
Green’s function Gσ

loc(z, z′). This self-consistency condition
determines the hybridization function �σ (z, z′) appearing in
the impurity action Eq. (3), which plays the role of a dynami-
cal mean field.

In impurity solvers based on weak-coupling perturbation
theory, it is more convenient to work with the so-called Weiss
Green’s function Gσ

0 , which is related to the hybridization
function via the Dyson equation

[i∂z + μ]Gσ
0 (z, z′) − �σ (z, z̄)G0

σ (z̄, z′) = δC (z, z′), (5)

and which contains the same information. Here, δC (z, z′) rep-
resents the delta function on the Konstantinov-Perel’ contour.
The convolution along the contour C will sometimes be de-
noted by the operator ∗. Contour-time arguments z featuring
an overbar are integrated over C.

The impurity Dyson equation for the interacting problem
connects the impurity Green’s function Gσ

imp, the impurity self-
energy �σ

imp, and the Weiss Green’s function G0
σ as follows:

Gσ
imp(z, z′) = Gσ

0 (z, z′) + Gσ
0 (z, z̄)�σ

imp(z̄, z̄′)Gσ
imp(z̄′, z′). (6)

As pointed out, for example, in Ref. [14], the formulation of
the impurity solver in terms of the Weiss Green’s functions,
�imp = �imp[G0], violates the energy conservation principle
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(in the absence of an external field) because the self-energy
is not expressed in terms of the interacting Green’s functions.
However, it turns out that combining DMFT with TPSC im-
proves the energy conservation such that one can perform
meaningful simulations up to longer times. Hence, it is not
necessary to resort to an impurity solver which expresses
the self-energy in terms of the interacting impurity Green’s
function, �imp = �imp[Gimp], which can lead to poor results
already for the short-time dynamics [46] and which does not
correctly reproduce the energy scale ω ∼ W of the onset of
the asymptotic behavior (high-frequency and atomic limits)
of the Hubbard model self-energy [31] (see Sec. II B 3).

The lattice Green’s function Gσ
k is related to the impurity

self-energy via the lattice Dyson equation,

[i∂z + μ − ε(k) − �δ,σ
imp(z)]Gσ

k (z, z′)

− �σ
imp(z, z̄)Gσ

k (z̄, z′) = δC (z, z′), (7)

where ε(k) is the bare electronic dispersion written in Eq. (2),
μ is the impurity chemical potential, and �δ

imp represents the
time-local impurity self-energy diagrams, denoted by �H in
Sec. II B 3.

Owing to the DMFT self-consistency condition, the impu-
rity Dyson equation (6) can be rewritten as a Volterra integral
equation where the impurity Green’s function Gσ

imp is replaced
by the k-averaged lattice Green’s function Gσ

loc,

Gσ
0 (z, z̄)[δC (z̄, z′) + F σ (z̄, z′)] = Gσ

loc(z, z′), (8)

where F σ (z, z′) ≡ �σ
imp(z, z̄′)Gσ

loc(z̄′, z′). Equations (7) and
(8), along with the diagrammatic expression for the impurity
self-energy, form a closed set of equations determining Gσ

0
[44,46]. The weak-coupling impurity self-energy �σ

imp enters
Eq. (7) and the impurity Dyson equation (6), and the DMFT
equations are iterated until Gσ

0 has converged. To solve the
Dyson equations (6) and (7) and the Volterra integral equa-
tion (8), we use the NESSi package [47]. For the paramagnetic
solutions considered in this paper, all quantities are indepen-
dent of the spin projection, i.e., we have that �σ

imp = �−σ
imp and

the same holds for Gσ
imp and �σ .

3. Impurity solver

Since we work in the weak coupling regime (U � W/2),
we use a weak-coupling impurity solver based on an expan-
sion of the self-energy up to third order in the interaction U
[44]. This approach is a generalization of the second-order
IPT for the Anderson impurity model [48,49]. In the bare
IPT formalism, the self-energy �imp[G0] is approximated as
a functional of the Weiss Green’s function defined in Eq. (5).
Alternatively, one can define a bold IPT, where Gσ

0 in the self-
energy diagrams is replaced by the dressed impurity Green’s
function Gσ

imp obtained from Eq. (6). This replacement has a
detrimental effect on the short-time dynamics, but it yields
(within DMFT) a conserving approximation, which means
that the total energy after a perturbation is conserved under
the time evolution [46]. In this paper, we will use the bare IPT
formalism within the nonequilibrium DMFT+TPSC scheme
introduced in Sec. II D, since it turns out that this scheme
conserves the energy to a very good approximation in the
considered parameter range.

FIG. 1. Second-order Hartree self-energy diagram. The
fermionic propagators represent the Weiss Green’s functions G0.

By making use of Hedin’s equations [50], one can generate
systematically, order by order, the Feynman diagrams that
characterize single- and two-particle correlation functions.
This, however, becomes impractical for high expansion orders
in the interaction U , since one would have to deal with a large
set of diagrams. We thus only consider diagrams up to third
order. In the case of the Hubbard model, the Fock interaction
term vanishes and this leads (in addition to the first-order
Hartree diagram) to two self-energy diagrams of order O(U 2)
and eight diagrams of order O(U 3). These leading diagrams
are derived in detail in Appendix A. In this section, we present
the formulas for the different contributions and their diagram-
matic representations. Note that at half filling, we choose
μ = U/2, so the Hartree terms vanish in the paramagnetic
state. However, the Hartree diagrams and those containing
Hartree insertions do not vanish if the system is doped away
from half filling [44].

(a) Second-order IPT. To second order, the Hartree contri-
bution �

(2)
H reads

�
(2)
H,σ (z, z′) = (−i)2U (z)G−σ

0 (z, z̄)U (z̄)Gσ
0 (z̄, z̄+)

× G−σ
0 (z̄, z+)δC (z, z′). (9)

The diagram representing Eq. (9) is shown in Fig. 1 and is
a combination of two Hartree diagrams. The term �

(2)
H,σ is

necessary to spontaneously break the SU(2) spin symmetry
within DMFT, since it confers different effective chemical
potentials to the different spin projections [51].

The remaining second-order diagram comprises one
particle-hole bubble diagram, as depicted in Fig. 2, and reads

�(2)
σ (z, z′) = U (z)Gσ

0 (z, z′)U (z′)G−σ
0 (z′, z+)G−σ

0 (z, z′+).

(10)

The self-energy Eq. (10), expressed as a functional of the
Weiss Green’s function, �(2)[G0], captures the Mott transition
and crossover because Eq. (10) correctly reproduces the large-
U limit of the Hubbard model Eq. (1) [52], which coincides
with the high-frequency limit at half filling. On the other hand,
the self-energy expressed in terms of the boldified Green’s

FIG. 2. Second-order self-energy diagram.
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FIG. 3. Third-order diagrams �3a
H (top left corner), �3b

H (top right
corner), and �3c

H (bottom).

function, �(2)[Gimp], does not allow to describe the Mott tran-
sition. This is due to the fact that, even though the perturbation
theory expressed in terms of the interacting Green’s functions
leads to the correct asymptotics at half filling, it does not set
in at ω ∼ W , but rather at ω 
 U , which is too high and
contradicts the Pauli exclusion principle [31]. To carry out the
perturbation theory using the dressed Green’s functions, one
would need to consider the frequency-dependent G-skeletonic
two-particle vertex corrections to get physically sound re-
sults. In the weak-coupling regime U � W/2, however, both
schemes lead to similar results for short times [14].

(b) Third-order solver. We next describe the third-order
self-energy diagrams. There are three diagrams contributing
to the time-local component of the self-energy. The first one is
obtained by attaching a Hartree diagram to the top propagator
of the second-order diagram Eq. (9). This produces the dia-
gram shown in the top left corner of Fig. 3, which corresponds
to the expression

�3a
H,σ (z, z′) = (−i)3U (z)G−σ

0 (z, z̄)U (z̄)Gσ
0 (z̄, z̄′)U (z̄′)

× G−σ
0 (z̄′, z̄′+)Gσ

0 (z̄′, z̄+)G−σ
0 (z̄, z+)δC (z, z′).

(11)

The second time-local third-order self-energy diagram stems
from two Hartree self-energy corrections to the first-order
Hartree term. This gives the diagram shown in the top right
corner of Fig. 3, namely,

�3b
H,σ (z, z′) = (−i)3U (z)G−σ

0 (z, z̄)U (z̄)Gσ
0 (z̄, z̄+)G−σ

0 (z̄, z̄′)

× U (z̄′)Gσ
0 (z̄′, z̄′+)G−σ

0 (z̄′, z+)δC (z, z′). (12)

The third diagram comes from the insertion of the bare
second-order self-energy diagram Eq. (10) into the first-order
Hartree propagator, giving the bottom diagram of Fig. 3:

�3c
H,σ (z, z′) = −iU (z)G−σ

0 (z, z̄)U (z̄)Gσ
0 (z̄, z̄′)U (z̄′)

× G−σ
0 (z̄′, z̄+)G−σ

0 (z̄, z̄′)Gσ
0 (z̄′, z+)δC (z, z′).

(13)

FIG. 4. Third-order diagrams �3a (left) and �3b (right).

The set of diagrams corresponding to Eqs. (11)–(13) represent
a third-order shift of the chemical potential.

Another category of diagrams originates from the consid-
eration of the second-order self-energy diagram Eq. (10) in
the vertex function � ≡ − δ�

δG discussed in details in Sec. II C.
This gives three distinct vertex terms out of which two lead
to a nonzero contribution [53]. The first of those diagrams
reads

�3a
σ (z, z′) = iU (z)U (z′)G−σ

0 (z, z′)Gσ
0 (z, z̄)Gσ

0 (z̄, z′)U (z̄)

× G−σ
0 (z′, z̄)G−σ

0 (z̄, z+), (14)

and the second diagram of this category reads

�3b
σ (z, z′) = iU (z)U (z′)G−σ

0 (z′, z+)G−σ
0 (z, z̄+)Gσ

0 (z, z̄)

× U (z̄)Gσ
0 (z̄, z′)G−σ

0 (z̄, z′+). (15)

The diagram representing Eq. (14) is shown on the left of
Fig. 4 and the one representing Eq. (15) is shown on the right
of Fig. 4.

The next (and last) series of third-order Feynman dia-
grams come from the insertion of Hartree-type self-energy
corrections into the Green’s functions of the second-order
self-energy Eq. (10). The first such diagram (top left of Fig. 5)
reads

�3c
σ (z, z′) = −iU (z)U (z′)Gσ

0 (z, z′)G−σ
0 (z′, z+)G−σ

0 (z, z̄)

× U (z̄)Gσ
0 (z̄, z̄+)G−σ

0 (z̄, z′). (16)

As the second diagram (top right of Fig. 5), we obtain

�3d
σ (z, z′) = −iU (z)U (z′)Gσ

0 (z, z′)G−σ
0 (z′, z̄)U (z̄)Gσ

0 (z̄, z̄+)

× G−σ
0 (z̄, z+)G−σ

0 (z, z′), (17)

and the third diagram (bottom of Fig. 5) is

�3e
σ (z, z′) = −iU (z)U (z′)Gσ

0 (z, z̄)U (z̄)G−σ
0 (z̄, z̄+)Gσ

0 (z̄, z′)

× G−σ
0 (z′, z+)G−σ

0 (z, z′+). (18)

FIG. 5. Third-order diagrams �3d (top left corner), �3c (top right
corner) and �3e (bottom).
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As shown in Ref. [44], the addition of the third-order self-
energy diagrams allows one to access higher values of U/W
(compared to second-order IPT) and to dope the systems with
electrons or holes away from half filling. The inclusion of
these extra self-energy diagrams, however, does not improve
the IPT impurity solver in the strong-coupling regime (U >

W ), which is why we restrict the current study to the weak-
to-intermediate correlation regime. Moreover, the fact that
the TPSC self-energy introduced below and the second-order
IPT self-energy Eq. (10) share the same asymptotics when
U → 0 makes it natural to combine these two diagrammatic
approaches [54].

C. Nonequilibrium TPSC and TPSC+GG

1. General formalism

In this section, we derive in detail the nonequilibrium
TPSC approach and a variant proposed in Ref. [30], namely,
TPSC+GG. In Sec. II C 2, the equations of motion of the
single-band Hubbard model are derived, from which the
longitudinal (Sec. II C 3) and transversal (Sec. II C 4) TPSC
self-energies are computed. Then, the TPSC ansatz is in-
troduced in Sec. II C 5 and the algorithms are discussed in
Sec. II C 6. The formalism and the steps in the derivation
follow Refs. [30–32].

We first briefly introduce the nonequilibrium generat-
ing functional formalism [55]. The nonequilibrium Green’s
function can be used to express arbitrary order correlation
functions between particles on the Konstantinov-Perel’ con-
tour and these can be generated by the functional

Z[φ] = Tr

[
TCe−i

∫
C dz Ĥ(z) e−iĉ†

ᾱ (z̄1 )φᾱβ̄ (z̄1,z̄2 )ĉβ̄ (z̄2 )︸ ︷︷ ︸
≡S[φ]

]
, (19)

where C stands for the Konstantinov-Perel’ contour and Ĥ is
the Hubbard Hamiltonian Eq. (1) whose equations of motion
we want to derive. TC is the time-ordering operator on C and
φ is a source field defined on the contour. The Greek indices
represent arbitrary degrees of freedom, such as lattice site or
spin, and S[φ] is a functional of the source field φ. Just like
for the contour-time arguments, the bar over the indices means
that they are summed over. The trace in Eq. (19) spans over the
eigenstates in Fock space. According to Eq. (19), the contour
Green’s function reads

Gφ

εζ (z1, z2) = − δ lnZ[φ]

δφζε (z2, z1)
= −i〈TC ĉε (z1)ĉ†

ζ (z2)〉φ. (20)

In Eq. (20), the grand-canonical ensemble average is

〈· · · 〉φ = 1

Z[φ]

∑
i

〈�i| e−i
∫
C dz̄Ĥ(z̄)S[φ] · · · |�i〉 , (21)

with the {|�i〉} a set of eigenstates of the Fock space. Using
Eq. (20), we perform a second functional derivative

δGφ

εζ (z1, z2)

δφγ δ (z4, z3)
=Gφ

δγ (z3, z4)Gφ

εζ (z1, z2)

− 〈ĉ†
γ (z4)ĉδ (z3)ĉε (z1)ĉ†

ζ (z2)〉φ, (22)

which, defining the two-particle correlation function χ ≡
−i δG

δφ
(cf. Eq. (12.18) in Ref. [40]), leads to

χ
φ

εζ ;γ δ (z1, z2; z4, z3) = i〈TC ĉ†
γ (z4)ĉδ (z3)ĉε (z1)ĉ†

ζ (z2)〉φ
− iGφ

δγ (z3, z4)Gφ

εζ (z1, z2). (23)

Note that Eq. (22) corresponds to Eq. (15.11) in Ref. [40].
Another important result originates from the closure relation:

δ(Gφ
εᾱ (z1, z̄3)Gφ

ᾱη(z̄3, z2)−1)

δφγ δ (z4, z3)
= 0. (24)

Equation (24) gives

δGφ

εζ (z1, z2)

δφγ δ (z4, z3)
= −Gφ

εᾱ (z1, z̄3)
δGφ

ᾱη̄(z̄3, z̄5)−1

δφγ δ (z4, z3)
Gφ

η̄ζ (z̄5, z2), (25)

and the modified Dyson equation with the source field reads

Gφ
αη(z3, z5)−1 = G0

αη(z3, z5)
−1 − φαη(z3, z5) − �φ

αη(z3, z5).

(26)

Equation (26) appears naturally when deriving the equa-
tions of motion of Eq. (20), as will be shown later. In this
section, Gσ

0 denotes the noninteracting lattice Green’s func-
tion. Note that all the two-time objects introduced hitherto can
be expressed in a 3 × 3 matrix form, as described in Ref. [15].
Inserting Eq. (26) into Eq. (25), we get

−i
δGφ

εζ (z1, z2)

δφγ δ (z4, z3)
= −iGφ

εγ (z1, z4)Gφ

δζ (z3, z2) − iGφ
εᾱ (z1, z̄3)

× δ�
φ
ᾱη̄(z̄3, z̄5)

δGφ

θ̄ω̄
(z̄6, z̄7)

δGφ

θ̄ω̄
(z̄6, z̄7)

δφγ δ (z4, z3)
Gφ

η̄ζ (z̄5, z2),

(27)

where we used the chain rule for the self-energy �[G]. Defin-
ing the two-particle irreducible G-skeletonic vertex function
� ≡ − δ�

δG (cf. Eq. (12.34) in Ref. [40]), we get the BSE (cf.
Eq. (12.17) in Ref. [40]):

χ
φ

εζ ;γ δ (z1, z2; z4, z3) = −iGφ
εγ (z1, z4)Gφ

δζ (z3, z2)

− Gφ
εᾱ (z1, z̄3)�φ

ᾱη̄;θ̄ ω̄
(z̄3, z̄5; z̄6, z̄7)

× χ
φ

θ̄ω̄;γ δ
(z̄6, z̄7; z4, z3)Gφ

η̄ζ (z̄5, z2).

(28)

We then finally note that Eqs. (23) and (28) can be combined
to give

i〈TC ĉ†
γ (z4)ĉδ (z3)ĉε (z1)ĉ†

ζ (z2)〉φ
= iGφ

δγ (z3, z4)Gφ

εζ (z1, z2) − iGφ
εγ (z1, z4)Gφ

δζ (z3, z2)

− Gφ
εᾱ (z1, z̄3)�φ

ᾱη̄;θ̄ ω̄
(z̄3, z̄5; z̄6, z̄7)χφ

θ̄ω̄;γ δ
(z̄6, z̄7; z4, z3)

× Gφ

η̄ζ (z̄5, z2). (29)

Equation (29) allows us to determine the equations of motion
of the Hubbard model Eq. (1) and to calculate the TPSC self-
energy.
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2. Equations of motion

To properly account for the different degrees of freedom
defining the Hubbard model, the Greek indices in Eq. (20)
will be replaced by tuples of lattice sites represented by Latin
letters and spin represented by σ . To obtain the equations of
motion, we differentiate the contour one-body Green’s func-
tion (20):

i∂z1G
φ

lm,σ
(z1, z2) = ∂z1〈TC ĉl,σ (z1)ĉ†

m,σ (z2)〉φ
= δC (z1, z2)〈{ĉl,σ , ĉ†

m,σ }〉φ
+ 〈

TC∂z1 S[φ]ĉl,σ (z1)ĉ†
m,σ (z2)

〉
φ

+ i〈TC[Ĥ, ĉl,σ ](z1)ĉ†
m,σ (z2)〉φ, (30)

where the chemical potential term is absorbed into the Hamil-
tonian Ĥ → Ĥ − μN̂ since we work in the grand-canonical
ensemble [56]. The first term on the right hand side of Eq. (30)
yields the identity matrix. The second term has to be dealt with
carefully because the differentiation involves the source field
S[φ]:〈
TC∂z1 S[φ]ĉl,σ (z1)ĉ†

m,σ (z2)
〉
φ

= iφāb̄,σ̄ ′σ̄ ′′ (z1, z̄4)〈TC[ĉ†
ā,σ̄ ′ (z1)ĉb̄,σ̄ ′′ (z̄4), ĉl,σ (z1)]ĉ†

m,σ (z2)〉φ
= φl b̄,σ σ̄ ′′ (z1, z̄4)Gφ

b̄m,σ̄ ′′σ (z̄4, z2). (31)

Here, we used the fact that, in the exponential representing
the time-evolution operators, ∂x

∫ x′

x dx′′ f ′(x′′) = − f ′(x), and
also the relation [AB,C] = A{B,C} − {A,C}B = A[B,C] +
[A,C]B. The annihilation operator in the exponential an-
ticommutes with ĉl,σ (z1) which is taken care of by the
contour-ordering operator. There is no global sign associated
with shifting around S[φ] within the thermal average, since
its arguments consist of an even number of annihilation and
creation operators.

Finally, after evaluating the commutator in Eq. (30) (last
term) using the Hamiltonian (1), the equations of motion
become

i∂z1G
φ

lm,σ
(z1, z2) + thop

l b̄
(z1)Gφ

b̄m,σ
(z1, z2)

− φl b̄,σ σ̄ ′′ (z1, z̄4)Gφ

b̄m,σ̄ ′′σ (z̄4, z2)

= δC (z1, z2)δlm − iU (z1)〈TC n̂l,−σ (z1)ĉl,σ (z1)ĉ†
m,σ (z2)〉φ.

(32)

Note that the adjoint can be obtained in a similar fashion by
acting from the right with the complex conjugate operator
−i

←−
∂z2 on the single-particle Green’s function. In Eq. (32), one

can recognize the modified Dyson equation (26). Indeed, we
have [

G0
l b̄,σσ ′′ (z1, z̄2)

−1 − φl b̄,σ σ̄ ′′ (z1, z̄2)
]
Gφ

b̄m,σ̄ ′′σ (z̄2, z2)

= δC (z1, z2)δlm + �
φ

l b̄,σ σ̄ ′′ (z1, z̄2)Gφ

b̄m,σ̄ ′′σ (z̄2, z2),

such that the four-point correlation function is related to the
self-energy and Green’s function via

�
φ

l b̄,σ σ̄ ′′ (z1, z̄2)Gφ

b̄m,σ̄ ′′σ (z̄2, z2)

= −iU (z1)〈TC n̂l,−σ (z1)ĉl,σ (z1)ĉ†
m,σ (z2)〉φ. (33)

Equation (33) provides an expression for the self-energy of
the model Hamiltonian we are interested in. Once the desired
correlation functions have been generated, the physical results
are obtained by setting the source field φ to zero. We will
show below that the very same four-point correlation function
can be calculated in both the longitudinal and transversal
channels, i.e. by using a source field to derive Eqs. (23) and
(28) which does not induce a spin-flip (φσ,σ ) and one induc-
ing a spin-flip (φσ,−σ ), respectively. The two expressions of
the self-energy will then be averaged to restore the crossing
symmetry, giving the self-energy approximation of the theory
�TPSC,(1).

3. Longitudinal expression of the self-energy

To get the second-level longitudinal self-energy, we need
to use Eq. (29) and perform the following substitutions for
the indices: γ → (l,−σ ), δ → (l,−σ ), ε → (l, σ ), and ζ →
(m, σ ). At the same time, for the contour-time variables, we
have to make the following substitutions: z4 → z++

1 , z3 → z+
1 ,

z2 → z2, and z1 → z1. Then, inserting the resulting four-point
correlation function into Eq. (33), we end up with the relation

�
φ,long.
l b̄,σ σ̄ ′′ (z1, z̄2)Gφ

b̄m,σ̄ ′′σ (z̄2, z2)

= −iU (z1)Gφ

ll,−σ−σ
(z+

1 , z++
1 )Gφ

lm,σσ
(z1, z2)

+ iU (z1)Gφ

ll,σ−σ
(z1, z++

1 )Gφ

lm,−σσ
(z+

1 , z2)

+ U (z1)Gφ

(l,σ ),ᾱ (z1, z̄3)�φ

ᾱη̄;θ̄ ω̄
(z̄3, z̄5; z̄6, z̄7)

× χ
φ

θ̄ω̄;(l,−σ )(l,−σ )
(z̄6, z̄7; z++

1 , z+
1 )Gφ

η̄(m,σ )(z̄5, z2), (34)

where z++ is placed infinitesimally later than z+ along C.
The second term of Eq. (34) vanishes for the Hubbard model
when the source field is spin diagonal (longitudinal channel),
namely, Gσ−σ = 0. The longitudinal component to the self-
energy can then be straightforwardly isolated by multiplying
with G−1

σ from the right:

�
φ,long.
lm,σ

(z1, z2)

= −iU (z1)Gφ

l,−σ
(z+

1 , z++
1 )δC (z1, z2)δl,m

+ U (z1)Gφ

(l,σ )ᾱ (z1, z̄3)�φ

ᾱ(m,σ );θ̄ ω̄
(z̄3, z2; z̄6, z̄7)

× χ
φ

θ̄ω̄;(l,−σ )(l,−σ )
(z̄6, z̄7; z1). (35)

In Eq. (35), for the sake of conciseness, we have
used an unambiguous notation compressing tuples of
repeated indices denoting the same degree of freedom,
i.e., χ js,σσ ;ll,−σ−σ (z6, z7; z++

1 , z+
1 ) → χ js,σ ;l,−σ (z6, z7; z1).

Furthermore, since σ always denotes spin and the remaining
Latin subscripts real-space positions, the commas on each
side of the semicolons can be safely removed. By expanding
the implicitly summed quantities in Eq. (35), we obtain

�
long.
lm,σ

(z1, z2)

= −iU (z1)Gl,−σ (z1, z+
1 )δC (z1, z2)δl,m + U (z1)Gl ī,σ (z1, z̄3)

× [�īmσ ; j̄ s̄σ (z̄3, z2; z̄6, z̄7)χ j̄ s̄σ ;l−σ (z̄6, z̄7; z1)

+ �īmσ ; j̄ s̄−σ (z̄3, z2; z̄6, z̄7)χ j̄ s̄−σ ;l−σ (z̄6, z̄7; z1)]. (36)
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Let us now define two susceptibilities, namely, the charge χ ch and spin χ sp susceptibilities. We will use two corresponding
G-skeletonic irreducible vertices, i.e., the charge �ch and spin �sp vertices. Using spin-rotational symmetry, the spin and charge
susceptibilities are defined as

χ
ch/sp
i j (z1, z+

1 ; z+
2 , z2) = −2i

(
δGφ

i,↑(z1, z+
1 )

δφ j,↑(z+
2 , z2)

± δGφ

i,↑(z1, z+
1 )

δφ j,↓(z+
2 , z2)

)∣∣∣∣
φ→0

. (37)

The factor of 2 comes from tracing over the spin degrees of freedom and the upper (lower) sign corresponds to the charge (spin)
susceptibility. We then expand the functional derivatives using Eq. (27):

χ
ch/sp
i j (z1; z2) = −2iGi j,↑(z1, z+

2 )G ji,↑(z2, z+
1 ) − 2Gil̄,↑(z1, z̄3)[�l̄ m̄↑;n̄s̄σ̄ ′σ̄ ′′ (z̄3, z̄5; z̄6, z̄7)χn̄s̄σ̄ ′σ̄ ′′; j↑(z̄6, z̄7; z2)

± �l̄ m̄↑;n̄s̄σ̄ ′σ̄ ′′ (z̄3, z̄5; z̄6, z̄7)χn̄s̄σ̄ ′σ̄ ′′; j↓(z̄6, z̄7; z2)]Gm̄i,↑(z̄5, z+
1 ). (38)

The summed-over spin indices σ ′ and σ ′′ must take the same value to lead to a nonzero result [57], i.e. χσ ′σ ′′;σ = 0 ∀ σ ′ �= σ ′′;
this allows us to conveniently collapse those two spin labels into one. In Eq. (37), only the functional derivative with all the same
spin projections gives a nonzero Hartree term, hence we get only one bubble term in Eq. (38). Using that �ch/sp ≡ �↑;↓ ± �↑;↑
and χ0 ≡ −2iGσGσ , the spin and charge susceptibilities in the paramagnetic state read

χ
ch/sp
i j (z1; z2) = −2iGi j,↑(z1, z+

2 )G ji,↑(z2, z+
1 ) ∓ 2Gil̄,↑(z1, z̄3)[±�l̄ m̄↑;n̄s̄↑(z̄3, z̄5; z̄6, z̄7) + �l̄ m̄↑;n̄s̄↓(z̄3, z̄5; z̄6, z̄7)]

× [χn̄s̄↑; j↑(z̄6, z̄7; z2) ± χn̄s̄↓; j↑(z̄6, z̄7; z2)]Gm̄i,↑(z̄5, z+
1 )

= χ0
i j (z1, z2) ∓ i

2
χ0

i;l̄ m̄(z1; z̄3, z̄5)�ch/sp
l̄ m̄;n̄s̄

(z̄3, z̄5; z̄6, z̄7)χ ch/sp
n̄s̄; j (z̄6, z̄7; z2). (39)

In Eq. (39), the spin rotational invariance allowed us to factorize χ and � into their spin and charge components. Now, if we
write out �chχch + �spχsp, we symbolically get

�chχch + �spχsp = 2[�↑;↑ + �↑;↓][χ↑;↑ + χ↑;↓] + 2[�↑;↓ − �↑;↑][χ↑;↑ − χ↑;↓]

= 4�↑;↑χ↑;↓ + 4�↑;↓χ↑;↑. (40)

Equation (40) can be substituted into the longitudinal expression for the self-energy Eq. (36). Doing so, the physical longitudinal
self-energy can be expressed as (φ → 0)

�
long.
lm,↑ (z1, z2) =U (z1)nl,↓(z1, z+

1 )δC (z1, z2)δl,m + U (z1)

4
Gl ī,↑(z1, z̄3)

[
�ch

īm; j̄ s̄(z̄3, z2; z̄6, z̄7)χ ch
j̄ s̄;l (z̄6, z̄7; z1)

+ �
sp
īm; j̄ s̄

(z̄3, z2; z̄6, z̄7)χ sp
j̄ s̄;l

(z̄6, z̄7; z1)
]
. (41)

If we replace the irreducible vertices in Eq. (41) with local ones (in space and time), namely,

�
ch/sp
im; js (z3, z2; z6, z7) → �ch/sp

m (z2)δC (z2, z6)δC (z+
2 , z7)δC (z2, z3)δm, jδm,sδm,i, (42)

we get [31,36]

�
long.
lm,σ

(z1, z2) = U (z1)nl,−σ (z1)δC (z1, z2)δl,m + U (z1)

4
Glm,σ (z1, z2)

[
�ch

m (z2)χ ch
m;l (z2; z1) + �sp

m (z2)χ sp
m;l (z2; z1)

]
. (43)

4. Transversal expression of the self-energy

The four-point correlation function appearing in Eq. (33)
can also be obtained by employing a transversal field [58].
To see that, we return to Eq. (29) expressing the four-point
correlation function in terms of the self-energy and Green’s
function. We first notice that, in a transverse field, when we
work out Eq. (23) using an off-diagonal source field φσ−σ in
spin, we have

χ
φ,σ−σ ;σ−σ

ab;dc (z1, z2; z4, z3)

= i〈TC ĉ†
d,σ

(z4)ĉc,−σ (z3)ĉa,σ (z1)ĉ†
b,−σ

(z2)〉φ
− iGφ

cd,−σσ
(z3, z4)Gφ

ab,σ−σ
(z1, z2), (44)

where we have rendered the notation more compact by turn-
ing the spin subscripts into superscripts. Furthermore, to
get Eq. (44), we performed the following substitutions in
Eq. (23): ε → (a, σ ), ζ → (b,−σ ), γ → (d, σ ), and δ →
(c,−σ ). In the transversal particle-hole channel, another ex-
pression of the form χ

φ,−σσ ;σ−σ

ab;dc (z1, z2; z4, z3) is produced,
but since it includes a four-point correlation function of the
form i〈TC ĉ†

d,σ
(z4)ĉc,−σ (z3)ĉa,−σ (z1)ĉ†

b,σ (z2)〉φ , it is equal to 0
in the Hubbard model due to spin conservation. To match the
four-point correlation function appearing in Eq. (33), we need
to perform at last the variable substitutions (a, z1) → (l, z+

1 ),
(b, z2) → (m, z2), (c, z3) → (l, z1), and (d, z4) → (l, z++

1 ).
Doing so, the last term of Eq. (44) vanishes when the source
field is turned off. Making the same variable substitutions in
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Eq. (28) as done hitherto in Eq. (23), we obtain

χ
φ,σ−σ ;σ−σ

lm;l (z+
1 , z2; z++

1 , z1)

= −iGφ

l,σ (z+
1 , z++

1 )Gφ

lm,−σ
(z1, z2)

− Gφ

l ā,σ
(z+

1 , z̄3)�φ,σ−σ ;σ̄ ′σ̄ ′′

āb̄;c̄d̄
(z̄3, z̄5; z̄6, z̄7)

× χ
φ,σ̄ ′σ̄ ′′;σ−σ

c̄d̄;l
(z̄6, z̄7; z++

1 , z1)Gφ

b̄m,−σ
(z̄5, z2). (45)

In Eq. (45), we used the spin selection rule forbidding antipar-
allel spins in Green’s functions once φ → 0. Next, we insert
Eq. (45) into Eq. (44) to isolate the four-point correlation
function and then multiply by U (z1) to recover something
similar to Eq. (29), but now for the transversal channel. This
yields an expression for the TPSC self-energy in the transver-
sal channel:

�
φ,trans.
l b̄,−σ σ̄ ′ (z1, z̄2)Gφ

b̄m,σ̄ ′−σ
(z̄2, z2)

= iU (z1)Gφ

l,−σσ
(z1, z+

1 )Gφ

lm,σ−σ
(z1, z2)

− iU (z1)Gφ

l,σ (z1, z+
1 )Gφ

lm,−σ
(z1, z2)

− U (z1)Gφ

l ā,σ
(z1, z̄3)�φ,σ−σ ;σ̄ ′σ̄ ′′

āb̄;c̄d̄
(z̄3, z̄5; z̄6, z̄7)

× χ
φ,σ̄ ′σ̄ ′′;σ−σ

c̄d̄;l
(z̄6, z̄7; z1)Gφ

b̄m,−σ
(z̄5, z2). (46)

From Eq. (46), the physical transversal component to the
second-level TPSC self-energy reads

�trans.
lm,−σ (z1, z2) =U (z1)nl,σ (z1)δC (z1, z2)δl,m

− U (z1)Gl ā,σ (z1, z̄3)�σ−σ ;σ−σ

ām;c̄d̄
(z̄3, z2; z̄6, z̄7)

× χσ−σ ;σ−σ

c̄d̄;l
(z̄6, z̄7; z1), (47)

since χσσ ;−σσ = χσ−σ ;−σσ = 0.
It is now time to have a closer look at the different com-

ponents making up Eq. (47), namely χ and �. To start with,
we assume that the vertex appearing in Eq. (47) is fully local
(in space and time), as done in Sec. II C 3 for the longitudinal
component:

�σ−σ ;σ−σ
am;cd (z3, z2; z6, z7) = �σ−σ ;σ−σ

m (z2)δC (z2, z3)δC (z2, z6)

× δC (z+
2 , z7)δl,mδl,iδl, j . (48)

Next, we work out an expression for χσ−σ ;σ−σ , using Eq. (23):

χσ−σ ;σ−σ
cd;l (z6, z7; z+

1 , z1)

= −i〈TC ĉ†
l,σ (z+

1 )ĉl,−σ (z1)ĉ†
d,−σ

(z7)ĉc,σ (z6)〉. (49)

Since it follows from Eq. (48) that z7 → z+
6 and d → c in

Eq. (49), we obtain

χσ−σ ;σ−σ
c;l (z6, z+

6 ; z+
1 , z1) = −i〈TC Ŝc,+(z6)Ŝl,−(z1)〉

= χc+;l−(z6; z1), (50)

where Ŝc,+/− ≡ 1
2 (Ŝc,x ± iŜc,y), such that Eq. (50) can be ex-

pressed as

χc+;l−(z6; z1) = − i

4
〈TC Ŝc,x(z6)Ŝl,x(z1)〉 − i

4
〈TC Ŝc,y(z6)Ŝl,y(z1)〉

= − i

2
〈TC Ŝc,z(z6)Ŝl,z(z1)〉. (51)

Hence, from Eqs. (51) and (48), the transversal component
Eq. (47) becomes [58]

�trans.
lm,σ (z1, z2) =U (z1)nl,−σ (z1)δC (z1, z2)δl,m

− U (z1)

2
Glm,−σ (z1, z2)�σ−σ ;σ−σ

m (z2)

× χ
sp
m;l (z2; z1). (52)

The spin off-diagonal irreducible vertex �σ−σ ;σ−σ showing up
in Eq. (52) will be specified in Sec. II C 5 using the first-level
TPSC approximations.

5. TPSC ansatz

To calculate the single- and two-particle correlation func-
tions, TPSC employs an ansatz for the Luttinger-Ward
functional � that approximates the local irreducible vertices
in the particle-hole channel (transversal and longitudinal with
respect to some generating field), namely, the charge �ch and
spin �sp. The starting point is the following Luttinger-Ward
functional [31]:

�[G] = 1

2

∫
C

dz
∑

σ

Gσ (z, z+)�σ ;σ (z)Gσ (z, z+)

+ 1

2

∫
C

dz
∑

σ

Gσ (z, z+)�σ ;−σ (z)G−σ (z, z+), (53)

where the quantities are defined on the Konstantinov-Perel’
contour, with arguments z ∈ C. The integral can be decom-
posed into contour components according to the Langreth
rules. From Eq. (53), both the self-energy and the G-skeletonic
irreducible vertices can be obtained. The first-level TPSC self-
energy �(0) reads

�(0)
σ (z2, z3) = δ�[G]

δGσ (z3, z2)
, (54)

which yields [59]

�(0)
σ (z2, z3) = �σ ;σ (z3)Gσ (z3, z+

3 )δC (z+
3 , z2)

+ �σ ;−σ (z3)G−σ (z3, z+
3 )δC (z+

3 , z2), (55)

where the rotational spin symmetry �σ ;−σ = �−σ ;σ was used.
Since the � factors are scalars, the first-level self-energy
Eq. (55) can be absorbed into a shift of the chemical potential
μ0 when defining the lattice Green’s function at the first level
of approximation:

(i∂z + μ0 − �(0)
σ (z)δC (z, z′) − ε(k, z))G (0)

k,σ
(z, z′) = δC (z, z′).

(56)

In essence, the Green’s function at the first level of approxi-
mation is noninteracting.

Let us now contrast Eq. (55) with the full expression de-
scribing the Hubbard self-energy (33). TPSC at the first-level
approximation corresponds to a Hartree-Fock factorization of
Eq. (33),

�
φ,(0)
l b̄,σ σ̄ ′ (z1, z̄2)Gφ,(0)

b̄m,σ̄ ′σ (z̄2, z2)

� Aφ

l,σ (z1)
(
Gφ,(0)

l,−σ
(z1, z+

1 )Gφ,(0)
lm,σ

(z1, z2)

− Gφ,(0)
l,σ−σ

(z1, z+
1 )Gφ,(0)

lm,−σσ
(z1, z2)

)
, (57)
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where the kernel Aφ appearing in Eq. (57) is defined as

Aφ

l,σ (z1) ≡ −iU (z1)
〈TC n̂l,−σ (z1)n̂l,σ (z1)〉φ
〈n̂l,−σ (z1)〉φ〈n̂l,σ (z1)〉φ

. (58)

The kernel Eq. (58) becomes exact in the local case where
z2 → z+

1 and m → l; one can indeed recover Eq. (33) given
the definition of the local vertex Aφ

l,σ . The self-consistent
qualification in the original TPSC formulation stems from
the fact that the single-particle quantities (� and G) and the
two-particle quantities (single-orbital double occupancy in
this case) are locally (in space and time) “consistent” with
the equations of motion of the Hubbard model. In Eq. (57),
the source field is complete, i.e., it contains both the diagonal
(longitudinal) and off-diagonal (transversal) spin components.
The first (second) term of Eq. (57) results from the factor-
ization of the longitudinal (transversal) four-point correlation
function. From Eq. (57), because the transversal contribution
vanishes when multiplying from the right by Gφ

σ

−1
, the first-

level longitudinal self-energy approximation reads

�
φ,(0)
lm,σ

(z1, z2) = Aφ

l,σ (z1)Gφ

l,−σ
(z1, z+

1 )δC (z1, z2)δl,m

= iAφ

l,σ (z1)nl,−σ (z1)δC (z1, z2)δl,m, (59)

such that

δ�
φ,(0)
lm,σ

(z1, z2)

δGφ,(0)
i j,−σ (z4, z3)

= Aφ

l,σ (z1)δC (z1, z4)δC (z+
1 , z3)δC (z1, z2)δl,iδl, jδl,m

+ δAφ

l,σ (z1)

δGφ
i j,−σ (z4, z3)

nl,−σ (z1)δC (z1, z2)δl,m (60)

and

δ�
φ,(0)
lm,σ

(z1, z2)

δGφ,(0)
i j,σ (z4, z3)

= δAφ

l,σ (z1)

δGφ
i j,σ (z4, z3)

nl,−σ (z1)δC (z1, z2)δl,m. (61)

We have that Aφ

l,σ (z1) = Aφ

l,−σ
(z1). Now, since the irreducible

vertex in the spin channel reads

�
sp
lm;i j (z1, z2; z4, z3) ≡ δ�φ,(0)

σ

δGφ,(0)
−σ

∣∣∣∣
φ→0

− δ�φ,(0)
σ

δGφ,(0)
σ

∣∣∣∣
φ→0

= Al,σ (z1)δC (z1, z4)δC (z+
1 , z3)

× δC (z1, z2)δl,iδl, jδl,m, (62)

we can establish the following equivalence (within the TPSC
approximation) between the local irreducible spin vertex and
the double occupancy:

�
sp
lm;i j (z1, z2; z4, z3)

= −iU (z1)
〈TC n̂l,−σ (z1)n̂l,σ (z1)〉
〈n̂l,−σ (z1)〉〈n̂l,σ (z1)〉

× δC (z1, z4)δC (z+
1 , z3)δC (z1, z2)δl,iδl, jδl,m. (63)

The charge irreducible vertex is approximated in the same
fashion as Eq. (62),

�ch
lm;i j (z1, z2; z4, z3) ≡ δ�φ,(0)

σ

δGφ,(0)
−σ

∣∣∣∣
φ→0

+ δ�φ,(0)
σ

δGφ,(0)
σ

∣∣∣∣
φ→0

= �ch
l (z1)δC (z1, z4)δC (z+

1 , z3)

× δC (z1, z2)δl,iδl, jδl,m, (64)

where �ch has a different analytical expression from �sp and
can be calculated from our knowledge of �sp using two-
particle local sum rules and Eq. (63).

We next work out a useful expression for the vertex
�σ−σ ;σ−σ appearing in Eq. (52). To derive it, we need to
calculate

�σ−σ ;σ−σ
lm;i j (z1, z2; z4, z3) = δ�

φ,(0)
lm,σ−σ

(z1, z2)

δGφ,(0)
i j,σ−σ (z4, z3)

∣∣∣∣
φ→0

,

where �
φ,(0)
σ−σ can be extracted from Eq. (57):

�
φ,(0)
lb,σ−σ

(z1, z2) = iU (z1)
〈TC n̂l,−σ (z1)n̂l,σ (z1)〉φ
〈n̂l,−σ (z1)〉φ〈n̂l,σ (z1)〉φ

× Gφ,(0)
l,σ−σ

(z1, z+
1 )δC (z1, z2)δlm. (65)

Hence, we obtain

�σ−σ ;σ−σ
lm;i j (z1, z2; z4.z3)

= iU (z1)
〈TC n̂l,−σ (z1)n̂l,σ (z1)〉
〈n̂l,−σ (z1)〉〈n̂l,σ (z1)〉

× δC (z1, z4)δC (z+
1 , z3)δC (z1, z2)δl,iδl, jδl,m

= −�
sp
lm;i j (z1, z2; z4, z3). (66)

Equation (66) is inserted into Eq. (52) to replace �σ−σ ;σ−σ .
Gathering all the results stemming from the TPSC ansatz, we
can express the total self-energy for the second-level approx-
imation, which is an average of the longitudinal Eq. (43) and
the transversal Eq. (52) components:

�
TPSC,(1)
lm,σ

(z1, z2)

= U (z1)nl,−σ (z1)δC (z1, z2)δl,m + U (z1)

8
G (0)

lm,σ
(z1, z2)

× [
�ch

m (z2)χ ch
m;l (z2; z1) + 3�sp

m (z2)χ sp
m;l (z2; z1)

]
. (67)

The Fourier transform of Eq. (67) yields [36]∫
dD(rl − rm) e−ik·(rl −rm )�

φ,(1)
lm,σ

(z1, z2)

= �
TPSC,(1)
k,σ (z1, z2)

= U (z1)n−σ (z1)δC (z1, z2) + U (z1)

8

∫
dDq

(2π )D G (0)
k+q,σ

(z1, z2)

× [
�ch(z2)χ ch

q (z2, z1) + 3�sp(z2)χ sp
q (z2, z1)

]
. (68)

The susceptibilities χ ch/sp are functionals of G0 defined in
Eq. (56). The steps which lead from the first-level approxi-
mation to the self-energy �(0) (Eq. (55)) to the second-level
approximation �(1) [Eq. (68)] do not result in an approxi-
mation which is conserving in the Kadanoff-Baym sense, as
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FIG. 6. Flow chart describing the self-consistent determination of D(z), χ sp, and �sp (alternative method). In the actual simulations, we
modify the BSE as in Eq. (70) and use the multidimensional root-finding method.

was already pointed out in Ref. [37]. Nevertheless, in practice,
the second-level approximation conserves energy rather well
after a perturbation, for a large range of bare interactions
U and dopings n. Moreover, the fact that the second-level
approximation to the TPSC self-energy Eq. (68) reduces to the
second-order lattice IPT self-energy [54] in the limit of small
U makes it natural to combine TPSC within a DMFT scheme
based on a weak-coupling impurity solver. This nonequilib-
rium DMFT+TPSC scheme is explained in Sec. II D.

6. Algorithm

Our implementation of nonequilibrium TPSC contains the
following steps: We first compute the noninteracting Green’s
function G0 that allows us to calculate the noninteracting two-
particle Green’s function χ0 ≡ −2iG0G0 and make an initial
guess for the double occupancy D(z) = 〈n̂↑,σ (z)n̂↓,−σ (z)〉.
Then, we simultaneously solve for χ sp and �sp using the local
spin two-particle sum rule

i
∫

dDq

(2π )D χ sp/ch
q (z, z+)

= n(z) + 2(−1)l〈n̂−σ (z)n̂σ (z)〉 − (1 − l )n(z)2, (69)

where n = 〈n̂↑ + n̂↓〉 is the density of particles, l = 0 for
charge (ch), and l = 1 for spin (sp). This is done using a
multidimensional root-finding method for a nonlinear system
of equations at each time step. Alternatively, as shown in
Fig. 6, the spin quantities could be solved self-consistently
until D(z) converges. However, we make use of the multidi-
mensional root-finding method due to its higher efficiency. To
satisfy the local sum rules Eq. (69) out of equilibrium, we
introduce an additional approximation, resulting in a modified
(approximated) form of the BSEs written in the green panels
of the flow charts shown in Figs. 6 and 7. The approximated

form is

χ sp/ch
q (z, z′) = χ0

q (z, z′) + (−1)l+1 i

2
�sp/ch(z)

× χ0
q (z, z̄)χ sp/ch

q (z̄, z′), (70)

where, once again, l = 0 for charge (ch) and l = 1 for spin
(sp). The reason for this approximated form is explained in
Eq. (70) in Appendix C.

The next step is to solve for the charge quantities χ ch

and �ch. Again, a multidimensional root-finding method for
a nonlinear system of equations is used at each time step.
The two equations which must be simultaneously solved are
displayed in Fig. 7, which involves the charge two-particle
sum rule Eq. (69).

As far as TPSC is concerned, the algorithm terminates once
all the quantities in each channel have been solved and the
self-energy

�
TPSC,(1)
k,σ [α](z1, z2)

= U (z1)n−σ (z1)δC (z1, z2) + U (z1)

8

∫
dDq

(2π )D
α(z2)

× [
3�sp(z2)χ sp

q (z2, z1) + �ch(z2)χ ch
q (z2, z1)

]
× G (0)

k+q,σ
(z1, z2) (71)

has been computed. In Eq. (71), the one-time variable α has
been introduced into Eq. (68) to satisfy the sum rule involving
the double occupancy appearing in Eqs. (57) and (58), which
is needed for solving the spin quantities (see Fig. 6);

−i

2

∫
dDk

(2π )D

[
�

TPSC,(1)
k,σ̄

[α](z1, z̄)G (1)
k,σ̄

[�TPSC,(1)](z̄, z+
1 )

]
= U (z1)〈n̂−σ (z1)n̂σ (z1)〉. (72)

This extra renormalization of the irreducible vertices is neces-
sary to get physically sound results after parameter quenches

FIG. 7. Flow chart describing the self-consistent determination of χ ch and �ch. In the actual simulations, we modify the BSE as in Eq. (70).
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FIG. 8. Flow chart describing the self-consistent DMFT+TPSC procedure. In the actual calculations, the Bethe-Salpeter equations inside
the yellow panel are approximated by Eq. (70).

in the Hubbard model Eq. (1). Equation (72) enforces that the
potential energy calculated from the lattice TPSC quantities
be the same as the one calculated from the TPSC ansatz
Eq. (57) and thereby improves the energy conservation.

The variant TPSC+GG reintroduces the Green’s function
G (1)[�TPSC,(1)] computed with Eq. (71) into the noninteracting
bubble χ0 and repeats the subroutines described in Figs. 6
and 7 until overall convergence. This extra self-consistency
improves slightly the energy conservation in TPSC.

D. Nonequilibrium DMFT+TPSC

1. General remarks

Similar in spirit to established schemes like GW+DMFT
[16,17] or FLEX+DMFT [60,61], the combination of DMFT
(introduced in Sec. II B) and TPSC (introduced in Sec. II C)
can be accomplished by replacing the local TPSC self-energy
component with the DMFT one in a self-consistent manner to
better capture the local correlations. The resulting self-energy
reads �DMFT+TPSC

i j = �impδi j + �TPSC,(1)(1 − δi j ), with i, j
lattice site indices, and thus incorporates the effects of local
and nonlocal correlations on the spin and charge degrees
of freedom. These correlations feed back into the DMFT
calculations within a self-consistency loop. In the following
subsection, we describe the algorithmic procedure that defines
nonequilibrium DMFT+TPSC. The full scheme is illustrated
as a flow chart in Fig. 8.

2. Algorithm

To start the DMFT+TPSC procedure, one must guess an
initial Weiss Green’s function (5) (e.g., local Green’s function
of the noninteracting lattice) that enters the impurity solver

described in Sec. II B 3. The impurity solver computes an
impurity self-energy, denoted by �imp[G0] in this section,
that renormalizes and broadens the energy spectrum of the
impurity electrons. Then, the impurity double occupancy,

Dimp(z) = −i

2U (z)
Tr[�imp

σ (z, z̄)G imp
σ (z̄, z)]<

+ 1

4

∑
σ

nσ (z)n−σ (z), (73)

is used instead of that extracted from the ansatz Eq. (63),
which is employed in TPSC and TPSC+GG. Dimp determines
both the spin and charge irreducible vertices according to
Figs. 6 and 7, respectively, making use of the respective local
sum rules Eq. (69). This time, the susceptibilities defined
through the BSE (39) are slightly different, in that the bare
two-particle Green’s function χ0 is defined as

χ0
q (z, z′) = −2i

∫
dDk

(2π )D
Gk(z, z′)Gk+q(z, z′), (74)

where the lattice Green’s function Gk is obtained from
Eq. (7) and contains the local impurity self-energy. Then, the
momentum-dependent TPSC self-energy can be calculated
using Eq. (68) (with G (0) replaced with G). We finally replace
the local self-energy component of �

TPSC,(1)
k ,

�
TPSC,(1)
loc,σ (z, z′) ≡ 1

Nk

∑
k

�
TPSC,(1)
k,σ

(z, z′), (75)

by the impurity self-energy �σ
imp. The DMFT+TPSC self-

energy with improved local correlations thus reads

�
(1)
k,σ (z, z′) ≡ �

TPSC,(1)
k,σ (z, z′) − �

TPSC,(1)
loc,σ (z, z′) + �imp

σ (z, z′),
(76)
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and the improved lattice Green’s function G lat,(1)
k with �k from

Eq. (76) is defined as the solution of the Dyson equation

[i∂z + μ − ε(k) − �δ,σ
imp(z)]G lat,(1)

k,σ
(z, z′)

− �
(1)
k,σ

(z, z̄)G lat,(1)
k,σ

(z̄, z′) = δC (z, z′). (77)

Once the improved lattice Green’s function Eq. (77) is
known, the lattice average Gσ

loc(z, z′) ≡ 1
Nk

∑
k G

lat,(1)
k,σ

(z, z′) is
calculated and identified with the impurity Green’s func-
tion. Finally, by solving the Volterra equation (8), the Weiss
Green’s function can be updated and reinserted into the im-
purity solver. The whole process is repeated until all the local
DMFT quantities (�imp, G imp and �) have converged below
a given tolerance threshold, typically ranging from 10−7 to
10−8.

Apart from looking at the energy conservation during the
time propagation of the (undriven) DMFT+TPSC solution,
the comparison between the DMFT double occupancy Dimp

Eq. (73) and the one extracted from the lattice quantities,

DTPSC,(1)(z) = −i

2U (z)
Tr

[
�

(1)
k,σ (z, z̄)G lat,(1)

k,σ (z̄, z)
]<

+ 1

4

∑
σ

nσ (z)n−σ (z), (78)

with �
(1)
k defined in Eq. (76) and G lat,(1)

k defined in Eq. (77),
turns out to be a good consistency check for the method. If
the difference between Dimp(z) and DTPSC,(1)(z) becomes too
large, the results become unreliable. Note that in our single-
band model, Eq. (78) can be obtained by Fourier-transforming
Eq. (33).

Similarly to TPSC and TPSC+GG, which employ the sum
rule Eq. (72) to obtain a consistent result for the double oc-
cupation, DMFT+TPSC can be modified by enforcing that
the impurity double occupancy Dimp [Eq. (73)] be equal to
that computed from the lattice quantities obtained from TPSC
Eq. (78):

Tr
[
�

(1)
k,σ

[α](z, z̄)G lat,(1)
k,σ

(z̄, z)
]< ≡ Tr

[
�imp

σ (z, z̄)G imp
σ (z̄, z)

]<
,

(79)

with

�
(1)
k,σ [α](z, z′) = �

TPSC,(1)
k,σ [α](z, z′)

− �
TPSC,(1)
loc,σ [α](z, z′) + �imp

σ (z, z′) (80)

or, alternatively,

�
(1)
k,σ

[α](z, z′) = �
TPSC,(1)
k,σ

(z, z′)

− α(z)�TPSC,(1)
loc,σ (z, z′) + �imp

σ (z, z′), (81)

where α, in the case of Eq. (80), serves a similar purpose as in
Eq. (72), in that it renormalizes further the irreducible vertices
in Eq. (71) so as to fulfill Eq. (79). In Eq. (81), the parameter
α can be seen as a time-dependent correction to the hy-
bridization function appearing in the DMFT self-consistency
[Eq. (3)]. These modified DMFT+TPSC methods are coined
DMFT + TPSCα. It turns out, however, that neither the lattice
self-energy Eq. (80) nor the one defined in Eq. (81) leads
to a stable nonequilibrium evolution. Thus, DMFT + TPSCα

will only be discussed in equilibrium setups, making use of

TABLE I. Properties of the TPSC variants considered in this
paper. Checkmarks (�) indicate that a method is endowed with
the corresponding characteristic, while the X marks (X) mean the
opposite. In the last column, we list the equations defining the lattice
self-energy.

Self-consistent D consistency �
(1)
k

OG TPSC X X Eq. (68)
TPSC X � Eqs. (71) and (72)
TPSC+GG � � Eqs. (71) and (72)
DMFT+TPSC � X Eq. (76)
DMFT+TPSCα � � Eqs. (80) and (79)

Eq. (80). Developing DMFT extensions that are two-particle
self-consistent and conserving at the same time is, quite gen-
erally, a significant challenge [62].

E. Summary of the different schemes

To clarify the similarities and differences between the
methods considered in this paper, we summarize the key char-
acteristics of the methods in Table I. Moreover, the graph in
Fig. 9 illustrates the connection between the first- and second-
level approximations.

The first column of Table I titled “Self-consistent” spec-
ifies which methods are self-consistent, i.e., feed back the

FIG. 9. Flow graph showing the connections between the two
levels of TPSC, namely, the first- (blue boxes) and second-level
(green boxes) approximations. The red line shows that second-
level irreducible vertices could, in principle, be obtained from the
second-level self-energy � (1). The α renormalization of the vertices
introduced via Eq. (72) modifies the irreducible vertices such that the
two levels of the approximation become consistent.
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interacting lattice Green’s functions into a self-consistency
loop until convergence. The methods without this charac-
teristic compute the self-energy and related quantities in a
one-shot fashion. The second column titled “D consistency”
indicates which methods make use of a parameter α to enforce
consistency between the double occupancies obtained from
local and lattice quantities. For example, in the case of TPSC
and TPSC+GG, the sum rule Eq. (72) ensures that the double
occupancy obtained within the first-level approximation from
Eq. (63) is equal to that calculated from the second-level quan-
tities �

(1)
k and G (1). Indeed, in a fully consistent scheme, the

double occupancy appearing in Eq. (63), which is extracted
from the first-level approximation self-energy �

(0)
k Eq. (65),

should be equal to that obtained from the second-level single-
particle quantities �

(1)
k and G (1)

k [Eq. (72)]. Finally, the last
column of Table I refers to the second-level self-energies
featuring in each method, together with the extra sum rule they
need to satisfy if the method is D consistent.

III. RESULTS

A. General remarks

We first test TPSC, TPSC+GG, and DMFT+TPSC as
introduced in Sec. II D by studying equilibrium lattice mod-
els and comparing some results with data published in the
literature [63]. In Sec. III B, we benchmark our results against
diagrammatic Monte Carlo (DiagMC) [64,65] and compare
our implementations with TPSC in its original formula-
tion, coined from now on “OG TPSC” [31]. Then, TPSC,
TPSC+GG and DMFT+TPSC are used to compute various
equilibrium properties of the cubic lattice Hubbard model.
In Sec. III C, we present the nonequilibrium applications. We
simulate ramps in one of the hopping terms to induce a dimen-
sional crossover from a square to a cubic lattice and analyze
the corresponding spin and charge dynamics.

B. Equilibrium

1. Benchmarks against DiagMC

To understand how well the different methods capture
nonlocal correlations, we first focus on the 2D square lat-
tice Hubbard model. The first Matsubara frequencies of the
self-energy at the antinode �(1)(k = (0, π ); iωn) are plotted
for U = 2 in Fig. 10 for the original TPSC formulation (OG
TPSC), TPSC, TPSC+GG, DMFT+TPSC, DMFT+TPSCα,
and DiagMC. The TPSC and TPSC+GG schemes used here
were introduced in Ref. [30], while OG TPSC corresponds
to the variant introduced in Ref. [31]. The DiagMC results
are taken from Ref. [63]. The top subplot shows results for
T = 0.33 (β = 3) and the bottom subplot for T = 0.1 (β =
10). As a reminder, we note that OG TPSC does not ensure
consistency in the double occupancy between the first- and
second-level TPSC approximations, i.e., no α parameter is
used. We also note that the TPSC+GG scheme introduced
in Ref. [63] does not make use of the α parameter either.
Furthermore, in Ref. [63], a variant of TPSC called TPSC+
has been introduced. This variant uses a mixture of dressed
and bare Green’s functions in the calculation of the bare two-
particle Green’s function, namely,

χ0(z, z′) ∝ 1
2

[
Gσ (z, z′)G0

σ (z′, z) + G0
σ (z, z′)Gσ (z′, z)

]
.

FIG. 10. Imaginary part of the Matsubara self-energy at the
antinode (k = (0, π )) for the half-filled Hubbard model at U = 2.
Results for T = 0.33 (top subplot) and T = 0.1 (bottom subplot)
are shown for the various methods indicated in the legend. This
figure can be compared with the “TPSC” panel in Fig. 10 of Ref.
[63].

Comparing the results of Fig. 10 with the TPSC panel in
Fig. 10 of Ref. [63], which in our notation corresponds to
OG TPSC, one can notice that TPSC+GG (green curves) im-
proves the self-energy substantially so it almost overlaps with
the numerically exact result from the DiagMC method (black
curves). DMFT+TPSC (orange curves) and DMFT+TPSCα

also show a good agreement at T = 0.33 with TPSC+GG and
DiagMC. In the DMFT+TPSC schemes, the antinodal self-
energy follows very closely that of TPSC+GG and DiagMC,
except for the lowest Matsubara frequency, which reveals
a too metallic behavior in this weak-coupling regime. The
TPSC self-energy, on the other hand, systematically overes-
timates the self-energy (red curves). This result is rescaled,
with respect to the result of OG TPSC (cyan curves), by the
introduction of the parameter α [see Eq. (71)], which worsens
the agreement with DiagMC. However, since TPSC+GG also
uses the parameter α and agrees very well with DiagMC, the
lack of self-consistency seems to be the main problem. At
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FIG. 11. Bandwidth-renormalized spin and charge irreducible
vertices as a function of normalized bare interaction for the nearest-
neighbor square (2D) and cubic (3D) lattices for TPSC (bold lines)
and TPSC+GG (dashed lines). The dimensionless temperature is
T/W = 0.05 and we consider half-filled systems. These data are
taken from Ref. [30].

the lower temperature T = 0.1, shown in the bottom panel of
Fig. 10, TPSC+GG is clearly the most accurate of the TPSC
variants and, again, remarkably on top of the exact DiagMC
result. While DMFT+TPSC and DMFT+TPSCα underes-
timate the antinodal self-energy, it follows qualitatively the
trend of the TPSC+GG and DiagMC results, while this is
not the case for both TPSC and OG TPSC, which bend in
the opposite direction at lower Matsubara frequencies and
hence overestimate the pseudogap tendency. Furthermore, the
DMFT+TPSC schemes and TPSC+GG allow one to access
lower temperature results by alleviating the convergence prob-
lems that limit the applicability of TPSC and OG TPSC in
the vicinity of Tx (crossover temperature to the renormalized
classical regime). It is also worth mentioning that the non-
self-consistent TPSC+DMFT scheme introduced in Ref. [38]
matches the DiagMC data well, although less accurately than
TPSC+GG. The non-self-consistent DMFT+TPSC approach
discussed in Ref. [38] does not consider the feedback of
the lattice correlations onto the quantum impurity due to its
single-shot nature. Moreover, the local double occupancy used
to satisfy the two-particle sum rules is not determined self-
consistently, making it unclear whether one should take the
DMFT double occupancy from a paramagnetic (PM) or AFM
calculation.

As we will see in Sec. III C, even though TPSC+GG looks
most convincing in the benchmark of Fig. 10, this is not
the case anymore out of equilibrium when evaluating local
quantities such as the impurity double occupancy Eq. (73),
although we lack exact benchmarks in this case.

2. Spin and charge vertices

TPSC gives access to consistently computed spin and
charge vertices, which exhibit a distinct U dependence. In 3D,
the separation between the charge and spin vertices, renormal-
ized by the bandwidth W , grows a bit faster with U/W than in
2D, as shown in Fig. 11 [30]. The distinction between �ch and
�sp is more pronounced in TPSC compared to TPSC+GG for
both dimensions considered. Corresponding results without

FIG. 12. �ch (top panel) and �sp (bottom panel) as a function of
T/W for U = 2, 3, 4, 5 in the half-filled 3D Hubbard model, calcu-
lated with TPSC+GG. The values of the vertices are normalized by
U for presentation reasons.

rescaling of the vertices and of the interaction by W can be
found in Ref. [30].

In Fig. 12, the temperature dependence of the vertices
calculated with TPSC+GG for various interaction strengths
is plotted for the cubic lattice, while in Fig. 13, the TPSC
results are shown for the same model parameters. These plots
illustrate how the effective charge and spin interactions evolve
when the renormalized classical regime is approached in the
two methods. The vertical dotted lines in Fig. 13 indicate
the temperatures where �sp bends down and these tempera-
tures will be later linked to a sharp upturn in the static spin
susceptibility [66]. There is no significant T dependence of
the spin and charge vertices in TPSC+GG at intermediate
temperatures. In TPSC+GG, only a hint of an upturn in �ch

FIG. 13. �ch (top panel) and �sp (bottom panel) as a function
of T/W for U = 2, 3, 4, 5 in the half-filled 3D Hubbard model,
calculated with TPSC. The values of the vertices are normalized
by U .
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FIG. 14. Dimensionless spin and charge irreducible vertices as a
function of normalized bare interaction for the square and cubic lat-
tices, calculated with DMFT+TPSC. The dimensionless temperature
is T/W = 0.05 and the systems are half filled.

can be resolved near Tx due to a convergence slowdown at
low temperatures, while in the case of TPSC a much more
pronounced upturn can be observed. The sharp downturn of
�sp close to the renormalized classical regime Fig. 13 is due
to the suppression of the double occupancy extracted from the
ansatz (63).

The local two-particle irreducible spin and charge ver-
tices can also be computed within DMFT+TPSC. Throughout
this paper, the weak-coupling impurity solver introduced in
Sec. II B 3 is used to treat the local impurity interactions. At
half filling, the second-order IPT self-energy is used, unless
mentioned otherwise, in which case the self-energy diagrams
up to the third order are considered. In Fig. 14, the irre-
ducible vertices are plotted as a function of the normalized
bare interaction parameter U/W at normalized temperature
T/W = 0.05. These can be compared with the TPSC and
TPSC+GG results for 2D and 3D in Fig. 11, which are very
similar. �ch and �sp drift apart with increasing U/W , and as
mentioned before this is more pronounced in 3D than in 2D.
In DMFT+TPSC, both �ch and �sp have larger values than
in TPSC or TPSC+GG at a given U/W . Because the IPT
impurity solver is reliable only in the weak-coupling regime,
the range of interactions shown is limited to U/W = 0.5.

The DMFT+TPSC irreducible vertices �ch (top panel)
and �sp (bottom panel) are plotted in Fig. 15 as a function
of temperature for the half-filled 3D Hubbard model with
U = {2, 3, 4, 5}. For a better comparison with the TPSC+GG
and TPSC results, we use here the same y axis range as in
Figs. 12 and 13. Again, the vertical lines in Fig. 15 indicate
the temperatures where �sp bends down, and these will be
related to an upturn in the static spin susceptibility. Contrary
to the TPSC+GG and TPSC temperature dependence of �ch,
the charge vertex gets significantly reduced as temperature
is lowered, but it starts from higher values at high T . On
the other hand, �sp almost saturates at lower temperatures in
DMFT+TPSC, and then sharply drops in the renormalized
classical regime near Tx. In contrast to TPSC, the rapid de-
crease of the spin irreducible vertex �sp (concomitant with
a drop in the double occupancy) in DMFT+TPSC does not
coincide with a shooting up of �ch (compare Figs. 13 and 15).

FIG. 15. �ch (top panel) and �sp (bottom panel) as a function of
T for U = 2, 3, 4, 5 in the 3D half-filled nearest-neighbor Hubbard
model. The values of the vertices are normalized by U and were
obtained using DMFT+TPSC. At lower temperatures for U = 5, the
DMFT solution could not be converged.

3. Spin susceptibility

In Fig. 16, the static spin susceptibility at half-filling is
plotted for both TPSC and TPSC+GG in 2D (bottom sub-
plot) and 3D (top subplot). It shows the growth of the static
spin correlations as temperature is lowered. The upturn in
χ sp(τ = 0, kπ ) marks the temperature crossover Tx to the

FIG. 16. Static spin susceptibility of the 3D (top subplot) and 2D
(bottom subplot) models at momentum kπ as a function of tempera-
ture for the interactions U = 2, 3, 4, 5 and half filling. Results are
shown for TPSC (bold lines) and TPSC+GG (dashed lines). The
vertical lines coincide with those in Fig. 13.
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FIG. 17. Static spin susceptibility of the half-filled 2D and 3D
model at momentum kπ as a function of temperature for inter-
actions U = 1, 2, 3, 4 (2D) and U = 2, 3, 4, 5 (3D), obtained with
DMFT+TPSC. The vertical lines coincide with those in Fig. 15.

renormalized classical regime. Increasing the interaction U
displaces the upturn to higher temperatures in both TPSC and
TPSC+GG. However, in TPSC+GG, for the same interaction
value, the estimated crossover temperature Tx is consistently
lower than that extracted from the TPSC static susceptibility.
In 3D, the shooting up of the static spin susceptibility at kπ

at low temperature in TPSC coincides with the upturn of �ch,
cf. Figs. 13 and 16 (top subplot), as becomes clear from the
vertical dashed lines which are at the same temperatures in
both figures.

In the bottom subplot of Fig. 16, the static spin suscepti-
bility χ sp(τ = 0, kπ ) is plotted for the 2D model. For equal
interaction strengths U (without normalizing U by W ), the
upturns in the static susceptibility happen at slightly lower
temperatures when increasing the dimension, except at U �
4. As a consequence, a larger temperature range is accessible
in 3D compared to 2D at weak coupling, since Tx is lowered
in 3D. In 3D, the TPSC+GG results of the static susceptibility
are qualitatively more similar to TPSC than is the case in
2D, where only the beginning of the upturn is numerically
accessible [30]. This might be an indication that TPSC is more
accurate in 3D.

To demonstrate that DMFT+TPSC still captures the
growth of the AFM correlations with decreasing temperature
at various interactions, the 2D and 3D static spin suscep-
tibilities are plotted for DMFT+TPSC in Fig. 17. These
results can be compared directly to Fig. 16 for TPSC and
TPSC+GG. It is obvious that the same qualitative behavior
of the static spin response is observed also in the presence
of the DMFT correction: with increasing interaction strength,
the upturn in the static spin susceptibility is shifted to higher
temperatures. Furthermore, the relative change in the T value
of the upturns increases as U is decreased. (Remember that
since TPSC and its variants make use of the spin rotational
symmetry in the derivation, these methods can only describe
the growth of spin correlations, but not the spontaneous
symmetry-breaking.) Similarly to TPSC+GG, the upturns at
fixed U in DMFT+TPSC occur at lower temperatures when
compared to TPSC.

A different way of quantifying the growth of the spin corre-
lations is to plot the AFM correlation length ξsp as a function

FIG. 18. ξsp as a function of β = 1/T for U = 2 in the half-
filled 2D Hubbard model. The y axis uses a logarithmic scale. The
methods compared are OG TPSC (green circles, called TPSC in
Refs. [38,63]), TPSC+GG (orange diamonds), DMFT+TPSC (cyan
crosses), D�A (blue circles), DiagMC (black triangles), TRILEX
(red circles), and PA (green triangles). The data calculated using
TRILEX, DiagMC, OG TPSC, D�A, and PA were taken from Ref.
[63]. The third-order IPT impurity solver is used in DMFT+TPSC
(see Sec. II B 3 2).

of inverse temperature. In Fig. 18, ξsp is shown for the half-
filled 2D square lattice Hubbard model at constant interaction
U = 2. Several methods are compared against each other,
namely, OG TPSC, TPSC+GG, DMFT+TPSC, D�A [67],
DiagMC [64,68], TRILEX [69,70], and the Parquet approx-
imation (PA) [71,72]. The correlation length ξsp is extracted
from the Ornstein-Zernicke fit of the momentum-dependent
static spin susceptibility χ

sp
q−Q(iqn = 0) in the vicinity of the

AFM scattering wave vector Q,

χ
sp
q−Q(iqn = 0) ≈ A

(q − Q)2 + ξ−2
sp

,

where Q = kπ (kπ = (π, π ) in 2D) at half filling and A is
some weight of the order of 1. It is clear from Fig. 18 that the
original formulation of TPSC (OG TPSC) overestimates the
growth of spin correlations as the temperature is decreased,
i.e., Tx is much higher than the values estimated by the other
more accurate methods. The latter predict similar correla-
tion lengths in the temperature range down to β � 12. In
particular, both TPSC+GG and DMFT+TPSC follow very
closely the ξsp results obtained from TRILEX, PA, and D�A.
Thus, TPSC+GG and DMFT+TPSC both correct the over-
estimation of the spin correlations of OG TPSC and this is
reflected also in the antinodal self-energy at the Fermi surface,
where TPSC+GG and DMFT+TPSC agree quite well with
DiagMC, especially in the case of TPSC+GG (Fig. 10).

4. Double occupancy

In DMFT+TPSC, there are local Green’s functions and
self-energies of the auxiliary Anderson impurity model, i.e.,
G imp, �imp, and corresponding functions defined on the lattice,
i.e., GTPSC, �TPSC. With these quantities, we can calculate a
double occupancy for the impurity Dimp via Eq. (73) and a
double occupancy on the lattice DTPSC via Eq. (78). In Fig. 19,
we plot both estimates for the 3D model. The lower the tem-
perature and the larger the interaction, the larger the deviation
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FIG. 19. Double occupancies Dimp [Eq. (73)] and DTPSC

[Eq. (78)] as a function of temperature for several interactions U in
the half-filled 3D Hubbard model. The annotated percentages denote
the largest absolute variation relative to Dimp.

between Dimp and DTPSC becomes. The largest deviation for
each interaction is displayed in the figure as an absolute rel-
ative percentage with respect to Dimp. Overall, the deviations
are quite small (below 3%). The deviations are larger in the 2D
model, but the same qualitative trend in U and T is observed
(not shown). At larger temperature, the double occupancies
flex upwards since they approach D = 0.25 as T → ∞ at half
filling.

C. Nonequilibrium

1. General remarks

We now switch to the real-time dynamics of perturbed
correlated lattice systems, as described by the different TPSC
variants. In Fig. 10, it was shown by comparing to DiagMC
that the equilibrium self-energy at the antinodal point of the
Fermi surface calculated with TPSC+GG and DMFT+TPSC
was improved substantially, compared to TPSC, especially
at higher temperatures. One might thus naively expect that
these two methods also provide the best description of the
nonequilibrium dynamics. However, as shown below, the in-
corporation of the DMFT local self-energy has substantial
effects on the time evolution and cures some anomalies of our
(approximate) TPSC+GG implementation.

2. Interaction ramps

We first investigate the double occupancy following an
interaction ramp from U = 0 → 1 in the 2D Hubbard model
at half filling, which is the most challenging filling for
TPSC [31,38]. Besides the various TPSC-based methods, we
consider second-order lattice perturbation theory, �(2) [73],
which employs the self-energy

�
(2)
k,σ (z1, z2) = U (z1)U (z2)

∫
dDqdDk′

(2π )2D

× G0
k+q,σ (z1, z2)G0

k′+q,−σ (z2, z+
1 )

× G0
k′+q,−σ (z1, z2

+)

in the lattice Dyson Eq. (77). This scheme should provide
useful reference data in the weak-coupling regime U � W .
OG TPSC refers to the original formulation of TPSC that

FIG. 20. Double occupancy of the 2D Hubbard model calculated
from the lattice quantities, Eq. (78), for � (2), DMFT (bare and
bold), OG TPSC, DMFT+TPSC, and TPSC+GG. The interaction
is ramped from U = 0 to U = 1 in the time interval indicated by the
grey shading and the initial temperature is T = 0.2.

utilizes the self-energy �k → �
(1),TPSC
k [Eq. (68)]. In the

case of TPSC+GG, the self-energy �k used is laid out in
Eq. (71). DMFT employs the third-order IPT as an impurity
solver (see Sec. II B 3), so the local self-energy becomes �

(3)
imp,

while DMFT+TPSC uses the momentum-dependent �k de-
fined in Eq. (76). We remind the reader that OG TPSC does
not enforce the sum rule (72), i.e., it does not include the
time-dependent parameter α that forces the double occupancy
calculated from the TPSC ansatz [Eq. (63)] to be the same
as that computed from the trace over lattice TPSC quantities
[Eq. (72)].

In this paper, the interaction ramp �U is described by the
error function

�U (t ) = ±
(

Uf − Ui

2

)
erf(γ t + δ) +

(
Uf + Ui

2

)
, (82)

where Ui corresponds to the initial interaction value and Uf to
the final one, γ controls the steepness of the inflection of the
curve, and δ its position on the time axis. A global minus sign
appears in Eq. (82) in the case of a down ramp (Uf < Ui). The
same form is also used for the lattice hopping ramps (U →
thop
z ).

Figure 20 plots the double occupancy calculated from
the lattice quantities [Eq. (78)] for an interaction ramp with
parameters γ = 3.5 and δ = 2.45 in Eq. (82). The double oc-
cupancies D computed by DMFT and �(2) follow each other
quite closely, both featuring a dip at the end of the interaction
ramp, succeeded by a fast thermalization. OG TPSC, with the
approximate solution Eq. (70) of the BSE, however, predicts a
qualitatively different transient behavior of this local quantity:
it yields an (unphysical) increase of the double occupancy
at the beginning of the interaction ramp and no dip at the
end of the ramp. Furthermore, the thermalized value of the
double occupancy is lower than the value predicted by the
other methods. DMFT+TPSC agrees rather well at all times
with the results from DMFT and �(2).

One way to correct the transient anomalies of OG TPSC
is to resort to the sum rule Eq. (72) and employ the TPSC
second-level approximation Eq. (71), i.e., switch to TPSC (or
TPSC+GG if there is self-consistency). In these schemes, the
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FIG. 21. Double occupancies calculated using the impurity
quantities Eq. (73) in the cases of DMFT (bare and bold) and
DMFT+TPSC. In the case of TPSC and TPSC+GG, the double
occupancy taken from Eq. (63) is shown. The result for � (2) as well
as the parameters are the same as in Fig. 20.

double occupancy does not show a transient increase at the
start of the up ramp and there is no ambiguity in the definition
of the double occupancy, since D obtained from the ansatz
is equal to D calculated from the lattice quantities by con-
struction [Eq. (72)]. The effect of this correction is illustrated
in Fig. 21 along with the same result for �(2) as in Fig. 20.
While the unphysical increase in the double occupation no
longer appears, there is no minimum at the end of the ramp
and—most prominently—a time shift in the response to the
interaction ramp appears, compared to the other methods.
Some of these discrepancies may be related to the fact that
we approximately solve the BSEs by using Eq. (70).

Note that for DMFT and DMFT+TPSC, the double occu-
pancies illustrated in Fig. 21 are obtained from the impurity
quantities using Eq. (73). In the case of DMFT, this gives the
same result as in Fig. 20, while there is a small difference for
DMFT+TPSC, which employs a momentum-dependent self-
energy. However, the difference between the DMFT+TPSC
data of Figs. 20 and 21 is only about 1%.

We next consider an interaction ramp from U = 1 to U = 3
with the ramp profile corresponding to the parameters γ = 1.5
and δ = 0.675 in Eq. (82). The initial temperature is T =
0.33, the model is still the half-filled 2D Hubbard model, and
we focus on the results from DMFT+TPSC. In Fig. 22, the lo-
cal irreducible vertices �ch (top panel) and �sp (second panel
from top), the impurity double occupancy Dimp [Eq. (73),
third panel from top], and lattice double occupancy DTPSC

[Eq. (78), bottom panel] are displayed over a time window
of �t = 8. After the ramp, �ch thermalizes to 6.10 and �sp to
2.05 in DMFT+TPSC (dashed lines). These values are close
to those obtained with TPSC+GG for the same ramp (solid
lines), which are �ch � 6.01 and �sp � 2.05. The same holds
for the local double occupancies, which are calculated from
Eq. (63) in TPSC+GG and from Eq. (73) in DMFT+TPSC:
for TPSC+GG, the double occupancy reaches D = 0.172,
while the value is Dimp = 0.177 for DMFT+TPSC (green
curves). The thermalized value of the lattice double occupancy
DTPSC [Eq. (78)] is 0.174 (orange curve), which is quite close
to that of TPSC+GG. The double occupancies DTPSC and
Dimp overlap almost perfectly. Moreover, given that the inter-

FIG. 22. Local DMFT+TPSC (dashed lines) and TPSC+GG
(solid lines) quantities in the 2D Hubbard model for the ramp from
U = 1 to U = 3 at initial temperature T = 0.33. The charge ir-
reducible vertex (top panel), spin irreducible vertex (second panel
from top), Dimp (third panel from top), and DTPSC (bottom panel) are
plotted for a time window of �t = 8.

action ramp used in Fig. 22 is slower than that used in Figs. 20
and 21, no transient dips in the double occupancies are ob-
served near the end of the ramp. Notice that the response of the
charge vertex �ch to the ramp (top panel of Fig. 22) is delayed
compared to that of the spin vertex �sp (second top panel of
Fig. 22), as was previously reported in the case of TPSC and
TPSC+GG [30], which in contrast to DMFT+TPSC makes
use of the ansatz Eq. (63) to connect D and �sp.

A drawback of the DMFT+TPSC implementation which
does not enforce the equivalence of DTPSC [Eq. (78)] and Dimp

[Eq. (73)] is that there is no unambiguous way to determine
the potential energy and hence the thermalized temperature
from the total energy after the ramp. In the following analy-
sis, we calculate the total energy from the lattice quantities
�k [Eq. (76)] and G lat

k [Eq. (77)]. Then the kinetic energy
of the system is Ek(t ) = −i

Nk

∑
k εkG<

k (t, t ), while the poten-

tial energy is Ep(t ) = −i
Nk

∑
k

∫
C dz[�k(t, z)Gk(z, t )]<, which

gives the total energy of the lattice electrons Etot(t ) = Ek(t ) +
Ep(t ). A temperature of Ttherm � 0.32 is obtained for the U =
1 → 3 ramp used in Fig. 22. In Fig. 23, the corresponding
total energy in the postramp state is marked by a red cross in
the energy plane and compared to results calculated in equilib-
rium (colored dots). The green cross shows the DMFT+TPSC
total lattice energy after the interaction ramp U = 0 → 1 pre-
sented in Fig. 20. One can notice that the red cross is quite far
from the thermal reference points for U = 3, corresponding to
the postramp value of the interaction, meaning that the state
after the ramp is not a thermalized state (even though there
seems to be little evolution in physical observables). This is
surprising, since a trapping in nonthermal states is generically
expected for weak interactions, but not in the intermediate
coupling regime [27,28].

From Fig. 23, different effective temperatures could be
defined based on the potential energy Ep or the kinetic energy
Ek. The temperature extracted from Ep is Ttherm(Ep) � 0.93,
whereas that extracted from Ek is Ttherm(Ek) � 0.28. This
unexpected trapping in a nonthermal state may be related to
the fact that U = 3 is close to the regime where the weak-
coupling impurity solver breaks down [44]. At the weaker
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FIG. 23. Color plot illustrating the relation between the potential
energy Ep (x axis), the kinetic energy Ek (y axis), and the correspond-
ing equilibrium temperature for DMFT+TPSC and U = 1, 2, 3, 4
(see annotations). The 2D square lattice Hubbard model is used.
The red (green) cross marks the postramp state, obtained from the
interaction ramp shown in Fig. 22 (Fig. 20).

post-ramp interaction U = 1, the energy is almost compatible
with a thermalized state, since the green cross practically
falls on the U = 1 line of thermalized states. Here, the small
discrepancy to the thermalized value may indeed be the result
of slow thermalization.

For comparison, we show in Fig. 24 the same type of
analysis as in Fig. 23, but for TPSC+GG. This time, the red
(green) cross corresponds to the TPSC+GG postramp state
for the ramp shown in Fig. 22 (Fig. 20). This figure clearly
demonstrates that within TPSC+GG, the system approxi-
mately thermalizes after an interaction ramp, even at U = 3.
The problem identified in the DMFT+TPSC calculation at
intermediate U is thus most likely not a trapping phenomenon

FIG. 24. Color plot analogous to Fig. 23, but for TPSC+GG.
The red (green) cross marks the postramp state obtained from the
interaction ramp shown in Fig. 22 (Fig. 20).

FIG. 25. Local TPSC (solid lines) and TPSC+GG (dashed lines)
quantities in a dimensional ramp from a square lattice to a cubic
lattice corresponding to a ramp from thop

z = 0 to thop
z = 1 in the

dispersion relation [Eq. (2)]. The initial temperature is T = 0.2 and
the constant interaction is U = 2.5. The charge irreducible vertex
(top panel), spin irreducible vertex (second panel from top), Dimp

(third panel from top), and α (bottom panel) are plotted for a time
window of �t = 7.

(which would be most prominent at weak U [27,28]), but
simply a problem with energy conservation originating from
the bare-IPT solver [44].

One way to address the issue of nonunique double occupa-
tions and potential energies is to introduce a parameter α that
enforces the equivalence between the impurity Dimp [Eq. (73)]
and the lattice DTPSC [Eq. (78)], as indicated in Eq. (79). This
extra sum rule promotes DMFT+TPSC to DMFT+TPSCα.
This scheme, however, only works well in equilibrium, as
already mentioned, and it does not solve problems originating
from the bare IPT solver.

3. Dimensional crossover

We next consider lattice hopping ramps to test the
performance of TPSC, TPSC+GG, and DMFT+TPSC in di-
mensions � 2. In these ramps, we switch on the hopping thop

z

in the direction perpendicular to the plane, and thus induce
a transition from the 2D Hubbard model (thop

z = 0) to the
3D model (thop

z = 1). Figure 25 shows TPSC (solid lines)
and TPSC+GG (dashed lines) results of such a ramp for the
constant interaction U = 2.5 and initial temperature T = 0.2.
As the dimension is increased, �ch decreases while the double
occupation increases. This makes sense, since the bandwidth
W increases from 8thop (square lattice) to 12thop (cubic lattice)
and hence the correlation strength is reduced. On the other
hand, the spin irreducible vertex �sp varies in the opposite
direction (see second panel from the top), since D increases
and �sp and D are related via the ansatz (63). As a result,
the spin and charge vertices become more similar, which
is the expected result if U/W decreases. The parameter α,
which enforces consistency between the different evaluations
of the double occupancy, relaxes slowly since it is strongly
affected by the k-dependent thermalization of the (convolved)
single-particle quantities. Overall, TPSC admits larger varia-
tions of the quantities with faster thermalization compared to
TPSC+GG.
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FIG. 26. Local DMFT+TPSC quantities in the dimensional
ramp from thop

z = 0 to thop
z = 1 in the single-band nearest-neighbor

Hubbard model for U = 2.5 at initial temperature T = 0.2. The
charge irreducible vertex (top panel), spin irreducible vertex (second
panel from top), Dimp (third panel from top) and DTPSC (bottom panel)
are plotted for a time window of �t = 8.

By construction, nonequilibrium TPSC and its variants rely
to a much larger extent on the conservation of the potential
energy Ep than on the kinetic energy Ek, because the local
irreducible vertices are strongly dependent on the double oc-
cupancy D [see, for instance, Eqs. (63), (69), or (72)]. When
the total energy drifts after the ramp, which happens for too
large and/or too fast ramps, especially for TPSC following
a lattice hopping ramp as depicted in Fig. 25, this drift is
mainly caused by Ek. Therefore, as long as Ep is stable
after the ramps, which is the case in most situations, the
TPSC quantities such as �sp/ch and D will stabilize at some
value. One particularly useful observation is that even if Ek

drifts, thermalized temperatures can be assigned within TPSC
frameworks by matching the postramp values of the local
quantities (�sp/ch and D) with those calculated at equilibrium
for the same postramp value: the Ttherm values thereby ex-
tracted for the different local quantities are almost exactly the
same [74], i.e., Ttherm(�ch) = Ttherm(�sp) = Ttherm(D). Since
Ek is calculated with Gk, the only meaningful kinetic energy
is that of the lattice. When calculating the thermalized tem-
perature of the system after the thop

z ramp in Fig. 25, one
finds that the variation from the initial temperature (T = 0.2)
is negligible in TPSC. Hence, the thermalized values of the
local quantities depicted in Fig. 25 are those, at equilib-
rium, of a cubic lattice at U = 2.5 and Ttherm � 0.204. On
the other hand, the thermalized temperature calculated from
TPSC+GG would be much higher, that is, Ttherm � 1.06. Note
that the system heats up much more in TPSC+GG as well
when ramping the interaction, compared to TPSC [30]. The
way the thermalized temperature is computed after a lattice
hopping ramp is the same as the one explained for U ramps
[Eq. (82)], with the exception that equilibrium results are
calculated with the postramp thop

z (U is fixed).
The analogous results to Fig. 25, but for DMFT+TPSC,

are shown in Fig. 26. The overall trend follows that of Fig. 25,
in that �ch is reduced and �sp increased as the dimensional-
ity is increased from 2D to 3D. Also the double occupancy
Dimp increases, although significantly less than what is ob-
served in TPSC (Fig. 25), while DTPSC even shows a transient

FIG. 27. Imaginary parts of the lesser component of the spin (top
subplot) and charge (bottom subplot) susceptibilities for momentum
kπ and TPSC. The initial temperature is T = 0.2 and the interaction
is U = 2.5. The inset shows the profile of the perpendicular hopping
ramps thop

z with the vertical bars representing the times for which the
spectra are calculated. The time window for the Fourier transforma-
tion is �t = 2.5.

reduction. The main qualitative difference for this particu-
lar setup, however, is that the DMFT+TPSC results exhibit
prominent humps—one located at t � 0.7 and the other at
t � 1.7—in all the local quantities in Fig. 26 and that there is a
slower approach to the thermalized state. The lattice hopping
ramp stops around the time of the second hump. The minima
in the charge vertex correlate with maxima in �sp as well as in
the double occupancies.

4. Momentum-resolved spectra

Next, the time evolution of the spin and charge suscep-
tibilities is illustrated in Fig. 27 for the dimensional ramp
simulated with TPSC. In this figure, we show the spectra at
momentum kπ = (π, π, π ). The lesser component of the spin
susceptibility (top subplot) shows that the peak at ω � 0 melts
when going from 2D to 3D, which we attribute to the lower Tx

in the 3D system. Since the bandwidth increases, the energy
range of the spin and charge excitations also increases. The
bottom subplot shows the result for the lesser component of
the charge susceptibility. The peak of the charge excitation
spectrum is shifted up in energy when going from 2D to 3D
and is reduced in height. Furthermore, the peak is broadened
in 3D because of the larger bandwidth.

The k-dependent spectral evolution of the spin and charge
susceptibilities obtained with TPSC is displayed in Fig. 28,
along the momentum path indicated in the inset (kz = π ). We
plot the change in the spectra during the ramp, defined as
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FIG. 28. Top (bottom) panels: Difference spectra of the lesser
component of the charge (spin) susceptibility after the interaction
ramp shown in the inset. The inset black triangle illustrates the path
in reciprocal space—within the kz = π plane – along which the
spectra are displayed. The times ti and t f used in the calculation of
the difference spectra are annotated in each panel. The time window
used in the Fourier transformation is �t = 2.5. Each row of panels
uses the same color scale. The method used here is TPSC.

�Q(t f , ti; ω) ≡ Q(t f ; ω) − Q(ti; ω). The top panels show the
results for the charge susceptibility (Q = χ ch), while the bot-
tom panels show those for the spin susceptibility (Q = χ sp).
On the left-hand side, the difference �χ (t f , ti; ω) is plotted
for ti = 0 and t f = 1.3, whereas ti = 1.3 and t f = 2.4 on the
right-hand side. The vertical bars in the inset indicate the
time snapshots ti and t f relative to the ramp profile. One
striking feature is the qualitative difference between the left
and right panels; much of the change happens in the first half
of the ramp, while only small changes occur in the second
half of the ramp. This can be partly explained by the fact that
these spectra are computed using a forward Fourier transform
defined as

QR,<(ω, t ′) =
∫ t ′+�t

t ′
dt eiω(t−t ′ ) QR,<(t, t ′), (83)

using a time window �t that is larger than the duration of
the ramp; these transforms take into account the state after
the ramp, even at early times t ′. The two-time quantity Q in
Eq. (83) represents the Green’s function or spin/charge sus-
ceptibility. Since the relative weight of the ripples appearing
at |ω| � 15 varies a lot with the time window �t used in the
forward Fourier transform, we believe that these are artifacts
of the Fourier transformation. These ripples, however, only
appear in the TPSC simulations. In the case of the charge
susceptibility, the excitations are redistributed to larger abso-
lute energies. The same is true for the spin excitation spectra,
which in addition exhibit a strong decrease at kπ , consistent
with the top panel of Fig. 27.

The corresponding data obtained with DMFT+TPSC are
shown in Fig. 29 (for the evolution of the local quantities,
see Fig. 26). The results obtained from TPSC+GG are quan-
titatively almost the same (not shown). The time differences
�χ ch/sp,<(t f , ti; k) of the lesser charge susceptibility (top pan-
els) and spin susceptibility (bottom panels) are shown for
times ti = 0 and t f = 1.3 in the left panels and for times

FIG. 29. Top (bottom) panels: Difference spectra of the
DMFT+TPSC lesser component of the charge (spin) susceptibility
after the perpendicular lattice hopping ramp from thop

z = 0 to thop
z = 1

shown in the inset. The time window employed in the Fourier trans-
formation is �t = 2.5. Each row of panels uses the same color scale.
The initial temperature is T = 0.2.

ti = 1.3 and t f = 2.4 in the right panels. Similar to the TPSC
results shown in Fig. 28, the dominant changes occur during
the first time interval. The results from DMFT+TPSC display
less oscillations in the spectra than TPSC, especially for the
charge susceptibility. As in the case of TPSC (Fig. 28), the
spin-spin correlations in the vicinity of kπ are substantially
reduced when going from 2D to 3D, since at fixed U , the
crossover temperature Tx is reduced (cf. Fig. 17) and the sys-
tem heats up. In Appendix B, we show comparisons between
TPSC, TPSC+GG, and DMFT+TPSC results for a U ramp
going from U = 1 to U = 3 in the half-filled square lattice
Hubbard model.

IV. CONCLUSIONS

The nonequilibrium formulation of TPSC and its variants
on the Konstantinov-Perel’ contour has been detailed. We also
introduced nonequilibrium DMFT+TPSC, which makes use
of the TPSC self-energy to incorporate nonlocal electronic
correlations into the DMFT framework in a self-consistent
manner or, alternatively speaking, replaces the local com-
ponent of the TPSC self-energy by the DMFT counterpart.
Focusing on the weak-to-intermediate correlation regime,
we employed second-order or third-order IPT to solve the
DMFT impurity problem. In equilibrium, our self-consistent
version of DMFT+TPSC gives similar results to the non-self-
consistent scheme recently introduced in Ref. [38].

We have extensively tested the different TPSC variants
and provided benchmarks against more sophisticated methods
to check the accuracy. For the 2D Hubbard model, it was
demonstrated that the momentum-dependent self-energy of
TPSC+GG and DMFT+TPSC match very well the DiagMC
results, especially in the case of TPSC+GG. Moreover, it was
shown that the growth of the AFM correlation length as tem-
perature is lowered is significantly improved in TPSC+GG
and DMFT+TPSC when compared to OG TPSC, which over-
estimates the spin correlations.
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TPSC and its variants were then tested in nonequilibrium
settings by applying interaction ramps and lattice hopping
ramps designed to switch between 2D and 3D lattices. While
in this case, we lack exact benchmark results, the comparison
to established approximate schemes like �(2) or DMFT could
provide some useful insights. It turns out that the transient
dynamics of the double occupancy is substantially improved
in both DMFT+TPSC and TPSC+GG, compared to OG
TPSC, which produces seemingly unphysical features in the
time evolution. DMFT+TPSC yields double occupancies
very close to DMFT, which shows that for this local quantity,
the feedback from the nonlocal components of the self-
energy has only minor effects. More generally, we found that
in the weak-to-intermediate correlation regime, TPSC+GG
and DMFT+TPSC lead to very similar results both for
momentum-resolved two-particle and single-particle spectral
functions, and for time-dependent two-body local quantities.

A conceptual problem of the DMFT+TPSC approach lies
in the fact that the double occupancy measured from the
impurity problem can deviate from the one estimated from
the lattice quantities, thereby creating an ambiguity in the
definition of the potential energy. Calculating all the energy
contributions from the lattice Green’s functions and self-
energies, we found that the state after a ramp to intermediate
interactions (e.g., U = 3 in the 2D Hubbard model) is not
consistent with a thermalized state, even though the post-ramp
evolution of physical observables is almost constant. Since
a thermalization bottleneck at intermediate couplings is not
expected, this points to a breakdown of the formalism, which
may be related to the aforementioned ambiguity in the calcu-
lation of the potential energy contribution, the nonconserving
nature of the formalism, or the perturbative impurity solver,
which becomes unreliable at intermediate U . The mismatch
between the postramp observables and the expected thermal-
ized values is much reduced within TPSC+GG, where it
might (at weak coupling) originate from slow thermalization.
An attempt to enforce consistency between the impurity and
lattice double occupancies within a DMFT+TPSCα scheme
resulted in an algorithm which suffers from an unstable time
propagation on the real axis.

In further studies, different avenues to overcome the is-
sues with the effective temperature at intermediate coupling
will be investigated. For instance, the spin and charge ir-
reducible vertices could be extracted in the same fashion
as discussed in Ref. [75], i.e., directly from the impurity
self-energy, bypassing the two-particle sum rules and the
approximated BSE [Eq. (70)]. The DMFT+TPSC scheme
could also be employed without replacing the local TPSC
self-energy with the DMFT one (only the DMFT double oc-
cupancy is used in the two-particle sum rules). More accurate
impurity solvers should be employed within DMFT+TPSC
to access the intermediate and strong coupling regime. In
equilibrium, Monte-Carlo-based impurity solvers [76] are an
obvious choice, while for nonequilibrium simulations in the
strong coupling regime, the noncrossing approximation and
the one-crossing approximation are realistic options [77,78].
Furthermore, the consequences of the approximate solution of
the BSE [Eq. (70)] need to be investigated. For this purpose,
nonequilibrium setups in which this approximation can be
circumvented, such as nonequilibrium steady-state solutions,
are of particular interest.

While this paper presented the current status in the devel-
opment of TPSC-based nonequilibrium methods, and revealed
a certain number of challenges and inconsistencies, it also
demonstrated the potential of TPSC and DMFT+TPSC ap-
proaches as a promising and computationally efficient method
to access nonequilibrium dynamics of correlated lattice sys-
tems [32]. In particular, this approach enables calculations
with self-consistently renormalized spin and charge vertices
and full momentum resolution. Since single-band TPSC can
be extended to treat multiorbital Hubbard systems [37], the
combination of DMFT+TPSC with DFT input [79] provides
a promising and computationally tractable path towards sim-
ulations of photoexcited correlated materials.
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APPENDIX A: WEAK-COUPLING SELF-ENERGY EXPANSION

The weak-coupling self-energy expansion can be derived starting from the general physical (φ → 0) self-energy expression
Eq. (33), whose Fock term vanishes in the case of the Hubbard model. Substituting the first-order term describing the
susceptibility Eq. (28) into Eq. (29), one gets

�σσ ′ (z1, z2) = −iU (z1)G−σ (z1, z+
1 )δC (z1, z2)δσ,σ ′ + U (z1)Gσ σ̄3 (z1, z̄3)�σ̄3σ ′σ̄4σ̄5 (z̄3, z2, z̄4, z̄5)[−iGσ̄4−σ (z̄4, z+

1 )G−σ σ̄5 (z1, z̄5)].

(A1)

Note that the propagators appearing in this self-energy expression are boldified, i.e., they are dressed with self-energy insertions
according to the Dyson equation (26). Recalling that the vertex function appearing in Eq. (A1) is defined as

�σ3σ ′σ4σ5 (z3, z2; z4, z5) = −δ�σ3σ ′ (z3, z2)

δGσ4σ5 (z4, z5)
, (A2)

one obtains �(2), as defined in Eq. (10), by selecting the Hartree term in Eq. (A1) as the differentiated self-energy component in
Eq. (A2). Doing so and using the first-order term in the Dyson equation (26), Eq. (A1) becomes

�
(2)
σσ ′ (z1, z2) = U (z1)G0

σ σ̄3
(z1, z̄3)

[
iU (z̄3)δC (z̄3, z̄4)δC (z̄+

3 , z̄5)δC (z̄3, z2)δσ̄3,σ ′δ−σ̄3,σ̄4δ−σ̄3,σ̄5

][ − iG0
σ̄4−σ (z̄4, z+

1 )G0
−σ σ̄5

(z1, z̄5)
]
. (A3)

Since σ ′ needs to be equal to σ for a nonzero self-energy, Eq. (A3) reduces to Eq. (10).
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Next, to determine the second-order Hartree term �
(2)
H defined in Eq. (9), one needs to use the Dyson equation to expand the

boldified propagator, whereby the Hartree term constitutes the self-energy (second term in the G expansion):

G (2)
−σ (z1, z+

1 ) = G0
−σ σ̄ (z1, z̄2)[−iU (z̄2)G0

−σ̄ (z̄2, z̄+
2 )δσ̄ ,σ̄ ′δC (z̄2, z̄3)]G0

σ̄ ′−σ (z̄3, z+
1 ). (A4)

Reinserting the Green’s function expansion Eq. (A4) into the Hartree term of Eq. (A1), one finds the following �
(2)
H term:

�
(2)
H,σ,σ ′ (z1, z2) = −iU (z1)[G0

−σ (z1, z̄2)[−iU (z̄2)G0
σ (z̄2, z̄+

2 )δC (z̄2, z̄3)]G0
−σ (z̄3, z+

1 )]δC (z1, z2)δσ,σ ′ . (A5)

Moving on to the third-order diagrams, the first set of diagrams, comprised of two elements, uses the second-order diagram
Eq. (A3) in the vertex calculation Eq. (A2). Carrying out the functional derivatives and changing all propagators to G0, one gets

�σ3σ ′σ4σ5 (z3, z2; z4, z5) = − U (z3)U (z2)G0
−σ3

(z2, z3)G0
−σ3

(z3, z+
2 )δσ3,σ4δσ3,σ5δσ3,σ ′δC (z3, z4)δC (z2, z5)

− U (z3)U (z2)G0
σ3

(z3, z2)G0
−σ3

(z3, z+
2 )δ−σ3,σ4δ−σ3,σ5δσ3,σ ′δC (z2, z4)δC (z+

3 , z5)

− U (z3)U (z2)G0
σ3

(z3, z2)G0
−σ3

(z2, z+
3 )δ−σ3,σ4δ−σ3,σ5δσ3,σ ′δC (z3, z4)δC (z2, z5). (A6)

The first term of Eq. (A6) vanishes because σ4 and σ5 cannot have the same spin projection as σ ′. Otherwise, the first-order
bubble term appearing in the susceptibility vanishes [see Eq. (A1)]. Substituting the third term featuring in Eq. (A6) into the
self-energy expression Eq. (A1) leads to the self-energy �3a [Eq. (14)],

�3a
σσ ′ (z1, z2) = iU (z1)Gσ σ̄3 (z1, z̄3)[U (z̄3)U (z2)G0

σ3
(z̄3, z2)G0

−σ̄3
(z2, z̄+

3 )δ−σ̄3,σ̄4δ−σ̄3,σ̄5δσ̄3,σ ′δC (z̄3, z̄4)δC (z2, z̄5)]

× [Gσ̄4−σ (z̄4, z+
1 )G−σ σ̄5 (z1, z̄5)], (A7)

while the second term of Eq. (A6) inserted into Eq. (A1) gives the self-energy �3b [Eq. (15)]:

�3b
σσ ′ (z1, z2) = iU (z1)Gσ σ̄3 (z1, z̄3)[U (z̄3)U (z2)G0

σ̄3
(z̄3, z2)G0

−σ̄3
(z̄3, z+

2 )δ−σ̄3,σ̄4δ−σ̄3,σ̄5δσ̄3,σ ′δC (z2, z̄4)δC (z̄+
3 , z̄5)]

× [Gσ̄4−σ (z̄4, z+
1 )G−σ σ̄5 (z1, z̄5)]. (A8)

The second set of third-order self-energy diagrams is generated by substituting the second term of the expanded boldified
Green’s function Eq. (A4) into each interacting Green’s function making up the second-order self-energy diagram. This produces
three different diagrams, whose expressions are

�3c
σσ ′ (z1, z2) = U (z1)U (z2)[G0

σ σ̄ (z1, z̄1)[−iU (z̄1)G0
−σ̄ (z̄1, z̄+

1 )δC (z̄1, z̄2)δσ̄ ,σ̄ ′]G0
σ̄ ′σ (z̄2, z2)]G0

−σ (z2, z+
1 )G0

−σ (z1, z+
2 ), (A9)

corresponding to Eq. (16),

�3d
σσ ′ (z1, z2) = U (z1)U (z2)G0

σ (z1, z2)[G0
−σ σ̄ (z2, z̄1)[−iU (z̄1)G0

σ̄ (z̄1, z̄+
1 )δC (z̄1, z̄2)δσ̄ ,σ̄ ′]G0

σ̄ ′−σ (z̄2, z+
1 )]G0

−σ (z1, z+
2 ), (A10)

corresponding to Eq. (17), and

�3e
σσ ′ (z1, z2) = U (z1)U (z2)G0

σ (z1, z2)G0
−σ (z2, z+

1 )[G0
−σ σ̄ (z1, z̄1)[−iU (z̄1)G0

σ̄ (z̄1, z̄+
1 )δC (z̄1, z̄2)δσ̄ ,σ̄ ′]G0

σ̄ ′−σ (z̄2, z+
2 )], (A11)

corresponding to Eq. (18).
Next, turning to the third-order Hartree self-energy diagrams, the top Green’s function of �

(2)
H [Eq. (A5)] is dressed by a

Hartree self-energy insertion

�3a
H,σσ ′ (z1, z2) = − iU (z1)G0

−σ (z1, z̄2)[−iU (z̄2)G0
σ σ̄ (z̄2, z̄3)[−iU (z̄3)G0

−σ̄ (z̄3, z̄+
3 )δC (z̄3, z̄4)δσ̄ ,σ̄ ′]G0

σ̄ ′σ (z̄4, z̄+
2 )δC (z̄2, z̄3)]

× G0
−σ (z̄3, z+

1 )δC (z1, z2)δσ,σ ′ , (A12)

and this simplifies to �3a
H defined in Eq. (11). The next third-order Hartree diagram is obtained by expanding the Dyson

equation up to third order. The third-order term reads

G (3)
−σ (z1, z+

1 )=G0
−σ σ̄ (z1, z̄2)[−iU (z̄2)G0

−σ̄ (z̄2, z̄+
2 )δσ̄ ,σ̄ ′δC (z̄2, z̄3)]G0

σ̄ ′σ̄ ′′ (z̄3, z̄4)[−iU (z̄4)G0
−σ̄ ′′ (z̄4, z̄+

4 )δσ̄ ′′,σ̄ ′′′δC (z̄4, z̄5)]G0
σ̄ ′′′−σ (z̄5, z+

1 ).
(A13)

Replacing the Green’s function in the Hartree diagram of Eq. (A1) by G (3) [Eq. (A13)], one obtains �3b as described by Eq. (12):

�3b
H,σσ ′ (z1, z2) = − iU (z1)G0

−σ σ̄ (z1, z̄2)[−iU (z̄2)G0
−σ̄ (z̄2, z̄+

2 )δσ̄ ,σ̄ ′δC (z̄2, z̄3)]G0
σ̄ ′σ̄ ′′ (z̄3, z̄4)

× [−iU (z̄4)G0
−σ̄ ′′ (z̄4, z̄+

4 )δσ̄ ′′,σ̄ ′′′δC (z̄4, z̄5)]G0
σ̄ ′′′−σ (z̄5, z+

1 )δC (z1, z2)δσ,σ ′ . (A14)

For Eq. (A14) to be nonzero, since the off-diagonal spin component of the Green’s function is zero within the Hubbard model,
it is easy to deduce that σ̄ = σ̄ ′ = σ̄ ′′ = σ̄ ′′′ = −σ .

Finally, the very last third-order Hartree self-energy diagram comes from the insertion of the second-order self-energy diagram
Eq. (10) into the second term of the Dyson equation expansion:

G (2)
−σ

′
(z1, z+

1 ) = G0
−σ σ̄ (z1, z̄2)[U (z̄2)G0

σ̄ (z̄2, z̄3)U (z̄3)G0
−σ̄ (z̄3, z̄+

2 )G0
−σ̄ (z̄2, z̄+

3 )]G0
σ̄−σ (z̄3, z+

1 ). (A15)
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Inserting G (2)′ from Eq. (A15) into the Hartree term of Eq. (A1), one obtains �3c
H [Eq. (13)]:

�3c
H,σσ ′ (z1, z2) = −iU (z1)G0

−σ σ̄ (z1, z̄2)[U (z̄2)G0
σ̄ (z̄2, z̄3)U (z̄3)G0

−σ̄ (z̄3, z̄+
2 )G0

−σ̄ (z̄2, z̄+
3 )]G0

σ̄−σ (z̄3, z+
1 )δC (z1, z2)δσ,σ ′ . (A16)

APPENDIX B: INTERACTION QUENCH COMPARISONS

In this Appendix, we use DMFT+TPSC to calculate the
time differences in the k-resolved susceptibility spectra for
the interaction ramp from U = 1 to U = 3 [γ = 1.5 and
δ = 0.675 in Eq. (82)] in the 2D system. The results are
shown in Fig. 30. Analogous plots with TPSC+GG (top sub-
plot) and TPSC (bottom subplot) data for the same ramp are
plotted in Fig. 31. The interaction ramps used are shown in
the inset plots of Figs. 30 and 31. Here, we consider the
time differences �χ ch/sp,<(t f , ti; k) with ti = 0 and t f = 2.8
in the left panels, and ti = 2.8 and t f = 5 in the right panels.
The fact that the interaction ramp spans over a longer time
window in Figs. 30 and 31, compared to Fig. 29, explains
why the two panels corresponding to the first and second time
window look more similar, as it is the case for the perpendic-
ular lattice hopping ramp thop

z . Both the TPSC+GG and the
DMFT+TPSC results are quantitatively very similar. TPSC
shows a qualitatively similar time evolution, namely, a growth
of spin correlations with increasing interaction strength and a
shift of the charge excitation spectra to higher energies due to
the enhancement of the correlations. The ripples appearing in
the TPSC results (bottom subplot of Fig. 31) are of the same
nature as those showing up in the thop

z ramp (Fig. 28).

APPENDIX C: NONEQUILIBRIUM APPROXIMATION
TO THE TPSC IRREDUCIBLE VERTICES

In this Appendix, we motivate the approximation
employed in the BSEs so as to satisfy the two-particle sum
rules Eq. (69) on the real-time axis. Since the local sum rules

FIG. 30. Top (bottom) panels: Difference spectra of the
DMFT+TPSC lesser component of the charge (spin) susceptibility
after the interaction ramp from U = 1 to U = 3 shown in the inset.
The time window employed in the Fourier transformation is �t = 5.
Each row of panels uses the same color scale. The initial temperature
is T = 0.33.

Eq. (69) involve lesser components [80], the Langreth rule for
the lesser component of the spin/charge susceptibility is used:

χ sp/ch,<(>)
q (t, t ′)

=
∫ t

0
dt̄ χ0,R

q (t, t̄ )�sp/ch(t̄ )χ sp/ch,<(>)
q (t̄, t ′)

+
∫ t ′

0
dt̄ χ0,<(>)

q (t, t̄ )�sp/ch(t̄ )χ sp/ch,A
q (t̄, t ′)

− i
∫ β

0
d τ̄ χ0,¬

q (t, τ̄ )�sp/ch(0−)χ sp/ch,�
q (τ̄ , t ′). (C1)

FIG. 31. Top (bottom) panels: Difference spectra of the lesser
component of the charge (spin) susceptibility after the interaction
ramp from U = 1 to U = 3 shown in the inset. The top (bottom)
subplot shows the results obtained using TPSC+GG (TPSC). The
time window employed in the Fourier transformation is �t = 5.
Each row of panels uses the same color scale. The initial temperature
is T = 0.33.
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Note that in these expressions, the general contour-time
arguments z have been replaced by real-time variables t . Now,
the local-time two-particle sum rules apply at equal time, i.e.,
when t = t ′ in Eq. (C1). In the time-stepping scheme, these
sum rules have to be fulfilled at each time step by varying
the local vertices �sp/ch at the latest time t . Since the suscep-
tibilities χ sp/ch and χ0 are bosonic quantities, their equal-time
retarded/advanced components give 0, because

χR
q (t, t ′) = �(t − t ′)[χ>

q (t, t ′) − χ<
q (t, t ′)] t ′→t= 0

and χR
q (t, t ′)∗ = χA

q (t ′, t ).

This property makes it numerically difficult to fix the ver-
tex at time t from the solution of the BSE (C1). We thus
change χ0

q (z, z̄)�sp/ch(z̄) to �sp/ch(z)χ0
q (z, z̄) in the BSE which

defines χq to obtain Eq. (70), which is an ad hoc modification
of the original TPSC scheme.

Overcoming this approximation might involve resorting to
modified two-particle sum rules more suitable to nonequilib-
rium setups or alternative schemes for extracting the vertices
directly from the impurity self-energy, as done in Ref. [75] at
equilibrium.
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