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Nonlocality and entanglement in measured critical quantum Ising chains
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We study the effects of measurements, performed with a finite density in space, on the ground state of the
one-dimensional transverse-field Ising model at criticality. Local degrees of freedom in critical states exhibit
long-range entanglement, and as a result, local measurements can have highly nonlocal effects. Our analytical
investigation of correlations and entanglement in the ensemble of measured states is based on properties of
the Ising conformal field theory (CFT), where measurements appear as (1+0)-dimensional defects in the
(1+1)-dimensional Euclidean spacetime. So that we can verify our predictions using large-scale free-fermion
numerics, we restrict ourselves to parity-symmetric measurements. To describe their averaged effects analytically
we use a replica approach, and we show that the defect arising in the replica theory is an irrelevant perturbation
to the Ising CFT. Strikingly, the asymptotic scalings of averaged correlations and entanglement entropy are
therefore unchanged relative to the ground state. In contrast, the defect generated by postselecting on the most
likely measurement outcomes is exactly marginal. We then find that the exponent governing postmeasurement
order parameter correlations, as well as the “effective central charge” governing the scaling of entanglement
entropy, vary continuously with the density of measurements in space. Our work establishes connections between
the effects of measurements on many-body quantum states and of physical defects on low-energy equilibrium
properties.
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I. INTRODUCTION

Measuring one of the qubits in a Bell pair nonlocally alters
the state of the unmeasured qubit. In many-body systems,
where the entanglement of a state can be highly complex, the
nonlocal effects of measurements can give rise to a remarkable
variety of different structures [1–15]. Strikingly, even when
starting from a state with short-ranged entanglement, one
can use measurements to create topological order and other
long-range entangled states [3,5,6,8,10–13]. In the context of
the measurement-induced phase transition in quantum circuits
[16–24], the nonlocal effects of measurements are known to
be crucial for the emergence of conformal symmetry at the
critical point [2].

Given such a diverse range of phenomena, it is important
to seek unifying principles underlying the effects of mea-
surements on many entangled degrees of freedom. Critical
ground states [25] in one spatial dimension here offer a high
degree of theoretical control because universal structures are
described at long distances by (1+1)-dimensional conformal
field theories (CFTs) [26–28]. Moreover, as shown in Ref. [9],
studies of the effects of measurements on these states are
closely related to problems arising in the theory of surface
critical phenomena [29,30]. This connection has more re-
cently appeared in studies of the effects of local decoherence
on topological [31–33] and critical states [33,34].

In this work we set out to understand the effects of mea-
surements on the ground state of the transverse-field Ising
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model (TFIM) at criticality, which is described at long dis-
tances by the Ising CFT [25], and to study the entanglement
entropy of the postmeasurement quantum states. The struc-
ture of these states can be understood by considering the
introduction of (1+0)-dimensional defects to the Ising CFT,
a problem which has been studied extensively both in and out
of equilibrum [35–40].

Our study of the TFIM is motivated in part by the aim
of observing measurement-induced collective phenomena
in experimental quantum simulators. As discussed in
Refs. [9,11,41–44], the effects of large numbers of measure-
ments can, quite generally, be observed when experimental
data are complemented by results from a simulation, thereby

FIG. 1. Schematic depiction of the measurement protocol con-
sidered in this work. The ground state |ψg.s.〉 of the critical
transverse-field Ising model (1) is measured using the measurement
operator M̂m, which is a product of an extensively large set of local
projectors. The remaining state |ψm〉 ∝ M̂m|ψg.s.〉 retains nontrivial
long-range correlations and entanglement scaling.
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avoiding the infamous “postselection problem” [16,18,41,45].
This raises the question of which phenomena can be observed
in exact simulations. The TFIM is a natural setting to explore
this because, within certain measurement schemes, the
many-body state can be represented exactly with polynomial
computational resources. With this hybrid of quantum and
classical simulation in mind, throughout this work we will
emphasize the connection between the effects of projective
measurements on a lattice model, which bears a close relation
to the situation in experiment, and that of defects in a CFT.

We focus on parity-preserving local measurements per-
formed with a finite density in space (see Fig. 1). We first
consider physical quantities averaged over the ensemble of
measurement outcomes, weighting the contributions from dif-
ferent outcomes according to the Born rule. To characterize
a postmeasurement state one can compute the expectation
value of an observable, but since this object is linear in the
postmeasurement density matrix, a naive average over runs
of the experiment converts our local measurements into a
dephasing channel with strictly local effects [46]. In order to
diagnose the nonlocal effects of measurements on average, it
is instead necessary to consider quantities postmeasurement
that are nonlinear in the density matrix, such as connected
correlation functions and the entanglement entropy of a sub-
region. Following Ref. [9] we use a replica approach to study
averages of these nonlinear objects. These observables can
then be studied at long distances using a replicated Ising CFT,
where measurements give rise to an interreplica coupling at
a fixed imaginary time (a “spacelike” defect). For averages
over parity-preserving measurements this defect is irrele-
vant under the renormalization group (RG), and consequently
long-distance properties of the ensemble of postmeasurement
states are not significantly modified relative to the ground
state. Remarkably, critical correlations are therefore robust
to measurements: the exponents governing power-law corre-
lations between unmeasured qubits, and the prefactor of the
logarithmically scaling entanglement entropy, are unchanged.

Following this, we consider the effects of “forced”
measurements, which in practice would correspond to postse-
lecting for a particular set of outcomes. We focus our attention
on the single most likely measurement outcome for a given
set of measurement locations; these generate a marginal de-
fect which, in the Ising CFT, appears as a finite density of
energy operators inserted along a line of fixed imaginary
time. This type of defect has been analyzed in the context of
classical statistical mechanics [35–38] and is known to result
in order parameter correlations with a power-law exponent
which continuously varies with the strength of the defect.
Correspondingly, we numerically observe order parameter
correlations in the measured states with a power-law exponent
which continuously varies with the density of measurements
in space. A defect of this kind at a fixed point in space (i.e.,
a “timelike” defect) has also been shown to result in a loga-
rithmically scaling half-system entanglement entropy with a
continuously varying effective central charge [39,40,47–50].
We derive a general relation between the effects of forced
measurements and of physical defects on the entanglement
entropy in CFTs, which suggests a similar logarithmic entan-
glement entropy of arbitrary subregions of the measured state

with the same varying effective central charge. We confirm
this relation numerically in TFIMs.

The effects of measurements on the entanglement of
critical ground states has previously been investigated in
Refs. [7,51,52]. In Refs. [51,52], the authors used CFT tech-
niques to compute the entanglement entropy between two
unmeasured subsystems after completely disentangling a fi-
nite region of space via measurements. Conversely, Ref. [7]
considers the remaining entanglement after measuring nearly
all degrees of freedom of a critical state, such as the ground
state of the critical TFIM, as a diagnostic of the state’s “sign
structure.” In contrast to these previous works, we focus here
on measurements performed with a finite density throughout
all of space. Separately, we note that in the dynamics of
continuously monitored TFIMs and free-fermionic systems
[53–64], a continuously varying effective central charge has
previously been identified in the steady-state entanglement
entropy. However, the physical mechanism behind this entan-
glement scaling is entirely different from that of the present
work; in particular, it does not share the same connection to
surface critical phenomena employed here.

This paper is organized as follows. First, in Sec. II we
describe the lattice model and standard properties of the Ising
CFT. In Sec. III we study the full ensemble of measurement
outcomes by calculating postmeasurement correlation func-
tions weighted according to their Born probabilities. There we
also show explicitly the connection between projective mea-
surements on the lattice and a defect in the CFT. In Sec. IV we
then consider postselecting on the most likely measurement
outcomes. Here we derive the connection between the entan-
glement entropies of subregions in (i) the postmeasurement
states and (ii) the ground state of a Hamiltonian featuring
defects at fixed points in space. We discuss our results and
suggest future directions in Sec. V.

II. MODEL

Here we review basic definitions and properties of the
transverse-field Ising model (TFIM). We consider a one-
dimensional system of N qubits with periodic boundary
conditions, with the Hamiltonian

H = −J
N∑

j=1

(ZjZ j+1 + gXj ), (1)

where Zj and Xj are the standard Pauli matrices acting on
the jth qubit, and ZN+1 = Z1. We fix J = 1 throughout. The
TFIM exhibits a quantum phase transition between paramag-
netic and ferromagnetic ground states for g > 1 and g < 1,
respectively [25,65]; the critical point at g = 1, which is our
primary focus, features a gapless spectrum and is described at
long distances by the Ising conformal field theory (CFT) [27].

For both analytical convenience and numerical tractability,
it is useful to rewrite H as a model of Majorana fermions
using the Jordan-Wigner transformation [25]. Defining the
Majorana fermion operators γ2 j−1 = [

∏
i< j Xi]Zj and γ2 j =

[
∏

i< j Xi]Yj , which satisfy {γi, γ j} = 2δi j , H takes the form

H = −iJ
N∑

j=1

(gγ2 j−1γ2 j + γ2 jγ2 j+1), (2)
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where we define γ2N+1 = −γ1�, with � = ∏
j Xj the total

parity. The ground state |ψg.s.〉 of H lies in the even-parity
sector, � = +1 [66]; so long as we restrict our attention to
parity-even observables, we may set � = +1 throughout. The
model H is then a quadratic free-fermion Hamiltonian and is
amenable to efficient numerical simulation using covariance
matrix techniques [67–69], as discussed in Appendix A.

We will be interested in the effects of measurements on
the critical g = 1 ground state |ψg.s.〉 of H . Since our focus is
on universal long-distance properties of the postmeasurement
states, it will often be useful to work with the Ising CFT [27],
which can be obtained from the continuum limit of H . In the
scaling limit g → 1, long-distance correlation functions can
be obtained from the Euclidean action

S0[ψ] = 1

2

∫
dτdx ψT (∂τ − iσ x∂x + mσ y)ψ, (3)

where x is the spatial coordinate and τ is the imaginary time.
Here ψ = [ψ1, ψ2]T is a two-component Grassmann field,
with ψ1(x) and ψ2(x) reproducing correlations of γ2 j−1 and
γ2 j , respectively, and σ x and σ y are the Pauli matrices acting
on the two components of ψ . The Ising CFT is obtained
upon setting m ∝ g − 1 to zero. It is useful to note that ψ

has scaling dimension [ψ] = [x−1/2] = 1/2. We provide more
details in Appendix B on the correspondence between the
lattice model and the continuum field theory.

Throughout this work, we primarily focus on three ob-
servables: namely, the order parameter correlation function
C(r), the connected energy density correlation function G(r),
and the entanglement entropy S(r) of a contiguous subregion
A = [0 : r) of r sites. In the ground state, these are [27,70]

Cg.s.(r) = 〈Z0Zr〉g.s. ∼ r−1/4,

Gg.s.(r) = 〈X0Xr〉g.s. − 〈X0〉g.s.〈Xr〉g.s. ∼ r−2,

Sg.s.(r) = −trρA
g.s. log ρA

g.s. ∼ 1
6 log r + b0,

(4)

where 〈·〉g.s. = 〈ψg.s.| · |ψg.s.〉 denotes ground-state correla-
tions at the critical point, ρA

g.s. = trAc |ψg.s.〉〈ψg.s.| is the
reduced density matrix of subsystem A, and ∼ indicates the
asymptotic scaling behavior of these three observables for
large r. In the first two equations we have omitted a nonuni-
versal constant prefactor; in the last equation, the coefficient
1/6 corresponds to a central charge c = 1/2, while b0 is a
nonuniversal constant [70].

III. BORN ENSEMBLE PROJECTIVE MEASUREMENTS

Due to its algebraic correlations and long-range entan-
glement, local measurements performed on the ground state
|ψg.s.〉 of the critical TFIM can potentially exhibit highly
nonlocal effects [9]. To determine the effects of projective
measurements on the ground state, we randomly perform a
projective measurement of Xj at each site j with probability
p, with measurement outcomes sampled according to the Born
rule. The postmeasurement states remain nontrivial on the
∼(1 − p)N unmeasured qubits, and in this section we aim
to characterize the average long-distance behavior of corre-
lations and entanglement in the ensemble of such measured
states.

Our protocol is conveniently described using a measure-
ment operator M̂m = ∏N

j=1 M̂mj , j , which is a product of the
local measurement operators

M̂0, j =
√

1 − p, M̂±1, j = √
p

1 ± Xj

2
. (5)

Here mj = 0 corresponds to not performing a measurement
on site j, while mj = ±1 corresponds to a projective mea-
surement of Xj with result ±1. Naturally, the full set of
measurement operators satisfies the probability-conserving
condition

∑
m M̂2

m = 1 (in other words, the set of all M̂2
m

constitute a positive operator-valued measure [46]). The mea-
surement outcome m occurs with Born probability pm and
results in the postmeasurement state |ψm〉, where

|ψm〉 = M̂m|ψg.s.〉√〈
M̂2

m

〉
g.s.

, pm = 〈
M̂2

m

〉
g.s.. (6)

In Appendix G we additionally discuss projective measure-
ments of ZjZ j+1 for each bond. The results are qualitatively
similar to the case of Xj measurements discussed here; in the
continuum limit, both operators are given to leading order by
the Ising CFT energy operator [71].

We would like to determine the typical behavior of long-
range correlations in the states |ψm〉. As has been elaborated
elsewhere [9], although a given set of measurements can have
nonlocal effects on the ground state, the averaged behavior
of linear observables 〈O〉m = ∑

m pm〈ψm|O|ψm〉 is identical
to the behavior of observables following a series of local
quantum channels. Since local quantum channels can exhibit
only local effects on the ground state, the nonlocality of mea-
surements is hidden from these averages.

Instead, we focus on the measurement-averaged behavior
of observables which are nonlinear in the density matrix ρm =
|ψm〉〈ψm|: namely, the squared order parameter correlation
function C2

m(r), as well as the connected energy density cor-
relation function Gm(r) and the entanglement entropy Sm(r),
the latter two of which are already nonlinear observables. Here
the subscripts m indicate that these observables are computed
with respect to the postmeasurement state |ψm〉, rather than
|ψg.s.〉 as in Eq. (4). Explicitly,

C2
m(r) = 〈Z0Zr〉2

m, Gm(r) = 〈X0Xr〉m − 〈X0〉m〈Xr〉m,

Sm(r) = −trρA
m log ρA

m. (7)

We now describe how averages of these objects, with weights
given by the Born probabilities pm, can be studied analyti-
cally.

A. Replica field theory

To analyze the average effects of measurements on these
nonlinear observables, we develop a replica approach analo-
gous to the one employed in Ref. [9]. The resulting replica
observables are described by a replicated Ising CFT in the
continuum limit, and we show that the average effect of pro-
jective measurements on the ground state is to couple the
replicas together along the τ = 0 axis in Euclidean spacetime.
A simple scaling analysis will then suggest that this coupling
is irrelevant.
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For purposes of illustration, consider the average of Gm(r).
We will comment on C2

m(r) and Sm(r) at the end of this
section. Starting with just the disconnected piece, the average
is given by

〈X0〉m〈Xr〉m =
∑

m

pm〈X0〉m〈Xr〉m =
∑

m

〈
X0M̂2

m

〉
g.s.

〈
XrM̂2

m

〉
g.s.〈

M̂2
m

〉
g.s.

,

(8)
where we have used [Xj, M̂m] = 0. The difficulty in averaging
this quantity directly lies in the nontrivial denominator arising
from the normalization of |ψm〉. In order to compute observ-
ables of this form, we employ the following replica scheme:

〈X0〉m〈Xr〉m = lim
n→1

∑
m pn

m〈X0〉m〈Xr〉m∑
m pn

m

= lim
n→1

∑
m

〈
M̂2

m

〉n−2
g.s.

〈
X0M̂2

m

〉
g.s.

〈
XrM̂2

m

〉
g.s.∑

m

〈
M̂2

m

〉n
g.s.

. (9)

In this scheme, we effectively weight each set of measure-
ment outcomes m by the alternative probability distribution
pn

m/
∑

m′ pn
m′ , thereby biasing the distribution towards the

most likely measurement outcomes. By writing the product
of expectation values as a single expectation value over an
n-fold replicated Hilbert space, we obtain Gm(r) as the n → 1
replica limit of

G(n)
m (r) =

〈
ψ⊗n

g.s.

∣∣(X (0)
0 X (0)

r − X (0)
0 X (1)

r

)
M̂avg

∣∣ψ⊗n
g.s.

〉
〈
ψ⊗n

g.s.

∣∣M̂avg

∣∣ψ⊗n
g.s.

〉 . (10)

Here X (α)
j denotes the Xj operator in replica α, while M̂avg is

given by

M̂avg =
∑

m

[
M̂2

m

]⊗n

=
N∏

j=1

[
(1 − p)n + pn

∑
mj=±1

(
1 + mjXj

2

)⊗n
]

∝
N∏

j=1

(
1+ μ


n/2�∑
r=1

∑
1�α1<...<α2r�n

X (α1 )
j . . . X (α2r )

j

)
, (11)

where μ = [1 + 2n−1(p−1 − 1)n]−1 is a monotonic function
of p, and we have neglected an overall constant which cancels
between the numerator and denominator. Acting on |ψ⊗n

g.s.〉,
M̂avg has the effect of weakly locking the multiple replicas to-
gether by favoring spin configurations in which X (1)

j = · · · =
X (n)

j .

As in Ref. [9], we now interpret the insertion of M̂avg as
a spacelike defect in Euclidean spacetime. Towards this end,
we rewrite both the numerator and denominator of Eq. (10)
using an imaginary-time path integral of Majorana fermions,
and we take a continuum limit; technical details are contained
in Appendix D. The denominator of Eq. (10) is then given by
the partition function Z (n)

M of a multireplica Ising field theory
with an interreplica coupling along the τ = 0 line, defined by

Z (n)
M =

∫ n∏
α=1

Dψ (α) e−∑n
α=1 S0[ψ (α)]−S (n)

M [{ψ (α)}], (12)

where S (n)
M [{ψ (α)}] gives the coupling between replicas due to

measurements:

S (n)
M = −μ

∑
α<β

∫
dx(ψT σ yψ )(α)(ψT σ yψ )(β ) + · · · , (13)

where the ellipsis denotes four-replica terms and higher,
which are less relevant than the two-replica term written ex-
plicitly. The numerator of Eq. (10) is given by a multireplica
correlation function having the same action. Note that the
fields in S (n)

M are evaluated strictly at τ = 0. By dimensional
analysis, one immediately finds that μ has dimension −1, and
is therefore irrelevant. Furthermore, we show in Appendix D
that higher-order corrections in the perturbative RG cannot
generate relevant or marginal terms; more precisely, we show
that any possible marginal terms generated by the perturbative
RG are inconsequential to observables in the n → 1 replica
limit.

B. Correlation functions

Having developed a field-theoretical framework for ana-
lyzing the effects of measurements on the TFIM ground state,
we now discuss the consequences for the nonlinear observ-
ables of Eq. (7). In the previous section we showed that the
average effect of Xj measurements on the correlation function
Gm(r), with outcomes sampled according to the Born rule,
is to contribute an irrelevant defect-like perturbation to the
replicated Ising CFT. We therefore expect Gm(r) to exhibit the
same asymptotic scaling as in the unmeasured ground state.
Specifically, we expect

Gm(r) ∼ r−2 (r � 1). (14)

On the other hand, the preceding analysis does not im-
mediately apply to C2

m(r), since Zj does not commute with
the measurement operator M̂m whenever site j is measured.
Instead, it is useful to note that both Gm(r) and Cm(r) vanish
for every measurement realization in which either site 0 or site
r is measured. We can therefore freely replace our measure-
ment averages in both quantities with a restricted ensemble
in which sites 0 and r are unmeasured. The resulting average
measurement operator in this case then commutes with both X
and Z observables, and the above mapping follows identically
for both cases. We elaborate this discussion in more detail in
Appendix E, where we show explicitly that C2

m(r) is given at
long distances by

C2
m(r) ∼ lim

n→1

〈
ψ⊗n

g.s.

∣∣Z (0)
0 Z (1)

0 Z (0)
r Z (1)

r M̂avg

∣∣ψ⊗n
g.s.

〉
〈
ψ⊗n

g.s.

∣∣M̂avg

∣∣ψ⊗n
g.s.

〉 . (15)

Whereas (10) is exact, Eq. (15) is expected to hold asymptot-
ically at long distances. We may now immediately apply the
analysis of the preceding section: since the contribution (13)
to the action due to measurements is irrelevant, we again ex-
pect C2

m(r) to asymptotically recover its ground-state scaling
at long distances:

C2
m(r) ∼ r−1/2 (r � 1). (16)

We now numerically verify these analytical predictions.
A crucial benefit of focusing on parity-preserving projective
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FIG. 2. Ensemble-averaged correlation functions (a) C2
m(r) and

(b) Gm(r) as defined in Eq. (7), for measurement probabilities p =
0.2 (blue), 0.5 (green), and 0.8 (red), and for system sizes N = 32,
64, 128, and 256 (light to dark). Data are plotted as a function
of s = N

π
sin( πr

N ) to achieve scaling collapse of the various system
sizes. Dotted lines depict the behavior in the unmeasured system.
Both correlation functions exhibit excellent scaling collapses with
the power-law exponents of the unmeasured system at sufficiently
large distances.

measurements of the TFIM is that our analytical predictions
can be confirmed using large-scale free-fermion numerics
[67–69]. We provide explicit details of our numerical ap-
proach in Appendix A; in short, since arbitrary k-point
correlations of the quadratic Hamiltonian (2) can be obtained
using Wick’s theorem, the full physical content of the state
|ψg.s.〉 is contained in the N (2N − 1) entries of the covari-
ance matrix Gi j = 〈iγiγ j〉g.s. − iδi j , rather than in 2N complex
amplitudes (as would be the case in a generic nonintegrable
system).

Figure 2 depicts the ensemble-averaged correlation func-
tions Gm(r) and C2

m(r) for several measurement probabilities
and system sizes, computed numerically using Monte Carlo
sampling of both the measurement locations and outcomes.
As demonstrated in Appendix C, conformal invariance pre-
dicts that both of these correlation functions depend on the
single parameter

s = N

π
sin

(πr

N

)
. (17)

From the analysis of Sec. III A, we expect C2
m(r) ∼ s−2 and

Gm(r) ∼ s−1/2 at sufficiently large values of s. Figure 2
supports this conclusion, with excellent finite-size scaling col-
lapses of both correlation functions.

Interestingly, C2
m(r) does not exhibit any pronounced

crossover behavior at any measurement probability: even at
p = 0.8, measurements reduce the power-law prefactor with-
out altering the s−1/2 scaling. In contrast, Gm(r) exhibits
stronger crossover behavior at short distances, and it would
be interesting to understand the origin of this effect.

Note that we have omitted the p = 0.8 curve in Gm(r)
since this exhibits strong finite-size effects. We nevertheless

FIG. 3. Ensemble-averaged entanglement entropy Sm(r) for a
contiguous subregion [0 : r) of r sites, for measurement probabilities
p = 0.2 (blue), 0.5 (green), and 0.8 (red), and for system sizes N =
32, 64, 128, and 256 (light to dark). Data are plotted as a function of
s = N

π
sin( πr

N ) to achieve scaling collapse of the various system sizes.
The dotted line depicts the behavior of the unmeasured system. For
each measurement probability, the entanglement entropy exhibits an
excellent scaling collapse with logarithmic scaling corresponding to
the central charge c = 1/2 of the unmeasured system at sufficiently
large distances.

expect that the s−2 decay observed at smaller measurement
probabilities will be recovered at sufficiently large values of s.

C. Entanglement entropy

Finally, we address the average behavior of the entangle-
ment entropy by noting that it can be obtained via the replica
limit [21]

Sm(r) = lim
n→1

1

1 − n
log

{∑
m pn

mtr
[(

ρA
m

)n]∑
m pn

m

}
, (18)

where ρA
m = trAc [M̂m|ψg.s.〉〈ψg.s.|M̂m]/pm. Following

Refs. [70,72], the numerator within the logarithm can be
understood as the partition function of the same model
defined on an n-sheeted Riemann surface with a branch cut
running from (τ, x) = (0, 0) to (τ, x) = (0, r). The impurity
(13) due to measurements, which couples fields between
sheets of the Riemann surface, can be taken to lie at τ = 0−
just below the branch cut. Given that the impurity is irrelevant,
we expect that the asymptotic logarithmic scaling 1

6 log r will
be recovered at sufficiently large r, up to a renormalization of
the nonuniversal constant b0.

Figure 3 depicts the ensemble-averaged entanglement en-
tropy Sm(r) for several measurement probabilities and system
sizes, again plotted as a function of s. In the unmeasured
system, S(r) ∼ 1

6 log s + b1(p) for a r-independent constant
b1(p) which decreases with p. Remarkably, we see from Fig. 3
that the logarithmic scaling of the entanglement entropy and
the prefactor 1/6 are unaffected by measurements, even at
large measurement strengths.

Here we have shown that, on average, the correlations char-
acteristic of the critical TFIM are robust to parity-preserving
measurements. However, as we show in the next section, for
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the most likely measurement outcomes correlations are altered
radically relative to the ground state.

IV. FORCED PROJECTIVE MEASUREMENTS

In the previous section, we found that parity-preserving
projective measurements sampled according to the Born rule
fail to alter the asymptotic scaling of correlations or entan-
glement of the critical TFIM ground state |ψg.s.〉. It is natural
to ask whether an alternative measurement scheme can ex-
hibit larger effects on these observables. In previous work
[9] we found that postselected “no-click” density measure-
ments performed uniformly throughout a Luttinger liquid are
relevant (irrelevant) for Luttinger parameters K < 1 (K > 1).
Motivated by this result, we now consider postselecting on a
particular set of measurement outcomes in the TFIM. Since
the K = 1 Luttinger liquid is related to two copies of the
Ising CFT via bosonization [73], it is particularly interesting
to consider postselected measurements in the TFIM: if a finite
density of postselected projective measurements are believed
to behave qualitatively similarly to a uniform strength of
weak measurements, then the postselected measurements are
expected to contribute marginally.

Our measurement scheme is as follows: we again perform
Xj measurements on each site with probability p, but we
now force the outcome Xj = +1 for each measured site. This
outcome corresponds to qubits aligned along the local trans-
verse fields, and is the single most likely outcome given the
chosen measurement locations. It is convenient to describe
such a measurement protocol with a measurement operator
K̂k = ∏N

j=1 K̂k j , j given by a product of local measurement
operators K̂k j , j , defined here as

K̂0, j = 1, K̂1, j = 1 + Xj

2
. (19)

Unlike the previous measurement scheme, where mj = 0,±1
is sampled according to the Born rule, in this scheme we
simply choose to measure site j (k j = 1) or leave site j
unmeasured (k j = 0) with probabilities p and 1 − p, respec-
tively. The state |ψk〉 is obtained with probability pk, where

|ψk〉 = K̂k|ψg.s.〉√
〈K̂k〉g.s.

, pk = p|k|(1 − p)N−|k|, (20)

where |k| = ∑N
j=1 k j is the number of measurements per-

formed. Our focus here will be on correlation functions Gk(r)
and Ck(r), as well as the entanglement entropy Sk(r), in the
postmeasurement states |ψk〉. These correlation functions are
defined in analogy with Gm(r), Cm(r), and Sm(r) [see Eq. (7)],
respectively, differing only in the fact that they are evaluated
for states |ψk〉 rather than |ψm〉. We now show how averages
of these objects with respect to pk can be studied analytically.

A. Replica field theory

Since measurement outcomes are not sampled according to
the Born rule, even observables linear in the postmeasurement
density matrix ρk = |ψk〉〈ψk| can be sensitive to the nonlocal
effects of measurements. Due to the nontrivial denominator
appearing in correlation functions arising from the normal-

ization of |ψk〉, we nevertheless require a replica approach
to average over measurement locations. In the following we
show how the forced projective measurements appear in the
field theory [see Eq. (25)]. Taking Gk(r) again as an example,
the average over disorder realizations is given by

Gk(r) =
∑

k

pk[〈X0Xr〉k − 〈X0〉k〈Xr〉k]

=
∑

k

pk

(
〈X0XrK̂k〉g.s.

〈K̂k〉g.s.
− 〈X0K̂k〉g.s.〈XrK̂k〉g.s.

〈K̂k〉2
g.s.

)
,

(21)

where we have used [Xj, K̂k] = 0. Due to the absence of
Born factors in the sampling probabilities pk, we can employ
a replica approach directly analogous to those used in the
classical statistical mechanics of disordered systems [74]. We
obtain Gk(r) from the n → 0 limit of the replica quantity

G(n)
k (r), defined as

G(n)
k (r) = 1∑

k pk〈K̂k〉n
g.s.

∑
k

pk

(
〈K̂k〉n−1

g.s. 〈X0XrK̂k〉g.s.

− 〈K̂k〉n−2
g.s. 〈X0K̂k〉g.s.〈XrK̂k〉g.s.

)

=
〈
ψ⊗n

g.s.

∣∣(X (0)
0 X (0)

r − X (0)
0 X (1)

r

)
K̂avg

∣∣ψ⊗n
g.s.

〉
〈
ψ⊗n

g.s.

∣∣K̂avg

∣∣ψ⊗n
g.s.

〉 . (22)

As in the Born ensemble case, we have written the product
of expectation values as an expectation value over an n-fold
replicated ground state |ψ⊗n

g.s.〉. The average measurement op-
erator K̂avg is given by

K̂avg =
∑

k

pk[K̂k]⊗n

=
N∏

j=1

[
(1 − p) + p

(
1 + Xj

2

)⊗n
]

∝
N∏

j=1

(
1 + ν

n∑
r=1

∑
1�α1<...<αr�n

X (α1 )
j · · · X (αr )

j

)
, (23)

where ν = [1 + 2n(p−1 − 1)]−1 is a monotonic function of
p. The average effect of forced measurements on the multi-
replica ground state |ψ⊗n

g.s.〉 is once again to weakly lock the
replicas together. However, unlike M̂avg, K̂avg contains terms
with an odd number of X (α)

j replicas. These terms bias towards

amplitudes for which X (α)
j = +1, as expected from the mea-

surement scheme.
We can again interpret the insertion of K̂avg as a defect

along the τ = 0 line in Euclidean spacetime. The denominator
of (22) is given by a partition function Z (n)

K , analogous to that
of Eq. (12):

Z (n)
K =

∫ n∏
α=1

Dψ (α) e−∑n
α=1 S0[ψ (α)]−S (n)

K [{ψ (α)}], (24)
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where S (n)
K [{ψ (α)}] is given by

S (n)
K = ν

n∑
α=1

∫
dx(ψT σ yψ )(α) + · · · , (25)

and the ellipsis denotes irrelevant terms, including those listed
explicitly in Eq. (13). The translation-invariant perturbation in
Eq. (25) represents the dominant averaged effect of the forced
projective measurements. In fact, this perturbation also arises
from a forced weak measurement scheme that is manifestly
translation invariant [9], as we discuss in Appendix H.

Notably, this perturbation is exactly marginal, and as we
show below it has interesting consequences for the behavior
of both correlation functions and the entanglement entropy.
Since the leading term decouples across replicas, it will in
fact be sufficient to focus on the single replica theory in
discussions of long-distance properties. We then arrive at a
continuum theory identical to one arising in studies of lines
of weakened bonds in two-dimensional classical Ising models
[37], and therefore of local defects in the Hamiltonians of
TFIMs.

B. Correlation functions

First, we discuss the effects of the perturbation (25) on
the few-body correlation functions Ck and Gk. Exact calcula-
tions in two-dimensional classical Ising models and based on
field-theoretic techniques [37] have shown that energy density
correlators along the defect line retain the same scaling form
as in the homogeneous Ising CFT. This can be understood
simply by noting that the quadratic perturbation (25) does
not modify the scaling dimension of the fermion operators
ψ (τ, x), and therefore cannot modify the scaling form of
observables which are local in the fermion representation. We
therefore once again expect at sufficiently long distances

Gk(r) ∼ r−2 (r � 1), (26)

as in the unmeasured case.
The order parameter correlations Ck(r), on the other

hand, are nonlocal in the fermionic representation and can
be strongly modified by the defect (25). In particular,
Refs. [35,36] demonstrated that order parameter correlations
along the defect line of a classical Ising model exhibit nonuni-
versal scaling with a continuously varying exponent. We
therefore similarly expect Ck(r) to exhibit a continuously
varying power law:

Ck(r) ∼ r−2�(p) (r � 1), (27)

where �(p) defines the power-law scaling of Ck(r), with
�(0) = 1/8. Heuristically, the asymptotic limit of �(p) as
p → 1 can be inferred by writing Ck(r) as

〈ZjZ j+r〉k =
〈
γ2 j−1

⎡
⎣ j+r−1∏

i= j

Xi

⎤
⎦γ2 j+2r−1

〉
k

. (28)

At large values of p, Xj |ψk〉 = +|ψk〉 for a large frac-
tion of sites j. The leading contribution to Ck(r) then
comes from 〈iγ2 j−1γ2 j+2r−1〉g.s. ∼ r−1, and we therefore ex-
pect limp→1 �(p) = 1/2.

FIG. 4. Ensemble-averaged correlation functions (a) Ck(r) and
(b) Gk(r) in the forced-measurement ensemble, for measurement
probabilities p = 0.2 (blue), 0.5 (green), and 0.8 (red), and for
system sizes N = 32, 64, 128, and 256 (light to dark). Data are
plotted as a function of s = N

π
sin( πr

N ) to achieve scaling collapse
of the various system sizes. Black dotted lines depict the behavior
in the unmeasured system, while the red dotted line depicts the
asymptotic power law of Ck(r) as p → 1. While Gk(r) ∼ s−2 as in
the unmeasured system, Ck(r) ∼ s−2�(p) exhibits power-law scaling
with a continuously varying exponent �(p). For the measurement
probabilities shown, we have �(0.2)  0.167, �(0.5)  0.252, and
�(0.8)  0.367.

The analytically predicted behavior of these two correla-
tion functions can again be verified numerically. Figure 4
depicts the averaged correlation functions Gk(r) and Ck(r)
for various measurement probabilities and system sizes, once
again plotted as a function of the single parameter s [see
Eq. (17)]. As in the case of measurements sampled from the
Born ensemble, we observe an excellent finite-size scaling
collapse of both correlation functions. We observe as pre-
dicted that Gk(r) retains its s−2 scaling for each measurement
probability, while Ck(r) ∼ s−2�(p) obtains a continuously
varying critical exponent �(p). With increasing p, �(p) in-
creases monotonically towards an asymptotic value of 1/2.

C. Entanglement entropy

Whereas the correlation functions Gk(r) and Ck(r) have
natural interpretations in terms of analogous observables in
either classical Ising models with defect lines or the TFIM
with an ordinary timelike defect, the entanglement entropy
Sk(r) has no immediately obvious analog in either of these
models. In this section, we will utilize conformal invariance of
the Ising CFT to demonstrate a nontrivial connection between
Sk(r) and the entanglement entropy of a model with ordinary
timelike defects. In particular, we will show that the average
entanglement entropy following forced projective measure-
ments retains its logarithmic scaling, but with an effective
central charge ceff (p) which continuously decreases with in-
creasing measurement probability:

Sk(r) ∼ ceff (p)

3
log r + b2(p) (r � 1). (29)
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FIG. 5. (a) Spacetime diagrams depicting the relation between the average entanglement entropy Sk(r) of the TFIM following forced
projective measurements and the entanglement entropy Sd (N/2) of a dual impurity problem. (ai) One sheet of the Riemann surface used
to compute the partition function Zn in Eq. (31). The red line denotes the measurement defect along the τ = 0 line, while the blue line
denotes the entanglement branch cut. (aii) By redefining the replica fields ψ (α)(τ, x) in region D as in Eq. (33), the branch cut is continuously
deformed from the real axis onto the semicircle. (aiii) Using the conformal mapping of Eq. (34), the infinite plane is mapped to a cylinder
of circumference L. The spacelike measurement defect is mapped to two timelike impurities at x′ = 0 and x′ = L/2, while the deformed
entanglement cut is mapped to a spacelike cut along the τ ′ = 0 axis. (b) Ensemble-averaged entanglement entropy Sk(r) of a contiguous
subregion of r sites in the forced-measurement ensemble, for measurement probabilities p = 0.2 (blue), 0.5 (green), and 0.8 (red), and for
system sizes N = 32, 64, 128, and 256 (light to dark). Data are plotted as a function of s = N

π
sin( πr

N ) to achieve scaling collapse of the various
system sizes. The dotted line depicts the behavior in the unmeasured system. We observe Sk(r) ∼ ceff (p)

3 log s + b2(p) exhibits logarithmic
scaling at all measurement probabilities with a continuously decreasing effective central charge ceff (p). For the measurement probabilities
shown, ceff (0.2)  0.478, ceff (0.5)  0.339, and ceff (0.8)  0.105. (c) Numerical comparison between the effective central charge ceff (p) in
the average entanglement entropy Sk(r) in the forced-measurement ensemble, and the effective central charge ceff,d (gd ) of the half-system
entanglement entropy Sd (N/2) of a dual TFIM with defects described by the Hamiltonian (36). Purple dots: effective central charge ceff (p) for
several measurement probabilities p between 0 and 0.95 in increments of 0.05, as a function of the effective scaling dimension �(p) governing
the decay of Ck(r). Black curve: effective central charge ceff,d (gd ) as a function of the scaling dimension �d (gd ) governing the decay of order
parameter correlations 〈ψd |Z1ZN/2|ψd 〉 between the two impurities.

Here ceff (p) is a monotonically decreasing function, with
ceff (0) = 1/2 and ceff (1) = 0, and b2(p) is an r-independent
contribution that is generically different from b1(p) in
Sec. III C, which we also expect to continuously decrease
with increasing measurement probability. We present the basic
qualitative argument here and leave certain technical details
for Appendix F.

The irrelevance of interreplica couplings in Eq. (25) indi-
cates that it is sufficient to work directly at the fixed point [see
also Appendix H]. We therefore consider the entanglement
entropy of a contiguous subregion A of length r of the Ising
CFT with a measurement defect along the τ = 0 line, with the
action

S∗[ψ] = S0[ψ] + ν

∫
dxψT σ yψ, (30)

where S0 is given by Eq. (3) with m = 0, and in the latter term
ψ (τ, x) is taken along the line τ = 0. Following Refs. [70,72],
the entanglement entropy can be computed from the n → 1
limit of the ratio of two partition functions:

S∗(r) = lim
n→1

1

1 − n
log

(Zn

Zn
1

)
. (31)

Here S∗(r) denotes the entanglement entropy in the fixed-
point model (30), Z1 = ∫

Dψ e−S∗[ψ] is the single-replica
partition function, and Zn is the partition function of an n-fold
replicated theory subjected to the boundary conditions

ψ (α)(τ = 0−, x) =
{
ψ (α)(τ = 0+, x), x �∈ A
ψ (α+1)(τ = 0+, x), x ∈ A.

(32)

Alternatively, one can consider the n fields ψ (α) as a single
field defined on an n-sheeted Riemann surface. The Riemann
surface has a branch cut along the τ = 0+ axis, just above the
measurement defect, running from x = −r/2 to x = r/2.

Utilizing conformal invariance, we are free to perform a
scaling transformation so as to set r = 2. The entanglement
branch cut then lies along the x-axis with branch points
located at x = ±1, as depicted in Fig. 5(ai). We can now
continuously deform the branch cut from the real line to the
unit semicircle in the upper-half plane, as shown in Fig. 5(aii).
As a theory defined on an n-sheeted Riemann surface, the
precise location of the branch cut is unphysical and can be
freely deformed, so long as the branch points at x = ±1 are
left unmodified. Equivalently, as a theory of n replicated fields
subjected to the boundary conditions (32), the deformation
of the branch cut amounts to defining a new set of fields
ψ̃ (α)(τ, x) via

ψ̃ (α)(τ, x) =
{
ψ (α)(τ, x), (τ, x) �∈ D
ψ (α−1)(τ, x), (τ, x) ∈ D,

(33)

where D is the filled semicircle in the upper-half plane, shown
in Fig. 5(aii).

By deforming the entanglement cut onto the unit semi-
circle, we can relate the entanglement entropy in our
measurement problem to that of a problem with ordinary
timelike defects. Letting z = x + iτ and z′ = x′ + iτ ′, we use
the conformal mapping

z �→ z′ = f (z) = −i
L

2π
log z (34)
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to map the infinite plane to a cylinder of circumference L. The
measurement defect maps to two timelike defects at locations
x′ = 0 and x′ = L/2, while the deformed entanglement cut
maps to a spacelike entanglement cut from x′ = 0 to x′ = L/2,
as shown in Fig. 5(aiii). We therefore obtain a relation be-
tween the average entanglement entropy S∗(r) of the Ising
CFT in the presence of forced measurements, and the half-
system entanglement entropy S∗

d (L/2) of the Ising CFT on a
cylinder with ordinary defects at the entangling boundaries.

Having established this connection, we can now make con-
tact with previous studies of the effects of physical defects
on the entanglement entropy [39,40,48–50]. For the case pre-
sented here with exactly marginal defect lines, these works
suggest that the entanglement entropy should maintain its
logarithmic growth in L, but with an effective central charge
c∗

eff (ν) which continuously decreases with increasing defect
strength:

S∗
d (L/2) = c∗

eff (ν)

3
log L + bd (ν). (35)

Using the transformation properties of correlation functions
under conformal transformations, the results of the above
sequence of mappings suggest the form (29) for the entangle-
ment entropy of a subregion of length r in the original problem
with forced measurements. If the microscopic measurement
probability p results in a fixed-point defect strength ν(p), then
ceff (p) = c∗

eff (ν(p)).
We can once again numerically verify the predicted be-

havior (29) for the entanglement entropy following forced
projective measurements. Figure 5(b) depicts the average
entanglement entropy Sk(r) for various measurement prob-
abilities and system sizes; we again obtain an excellent
finite-size scaling collapse by plotting as a function of the
parameter s [see Eq. (17)]. As predicted, Sk(r) retains its
logarithmic scaling at all observed measurement probabilities
p, with a continuously decreasing effective central charge
ceff (p).

To verify the proposed connection to the Ising CFT with
ordinary timelike defects, we additionally numerically simu-
late the ground state |ψd〉 of the critical TFIM with two defect
transverse fields, for several system sizes N . The Hamiltonian
is

Hd = H − gd (X1 + XN/2), (36)

where H is the TFIM Hamiltonian in Eq. (1) with g = 1,
and gd gives an enhancement of the transverse field at the
defect sites j = 1 and j = N/2. Using free-fermion numerics
(see Appendix A), we compute order parameter correlations
〈ψd |Z1ZN/2|ψd〉 between the two defect sites and the entan-
glement entropy Sd (N/2) = −trρAd

d log ρ
Ad
d of the subregion

Ad = [1 : N/2] containing N/2 sites, including both defect
sites. As expected from previous works on the TFIM with
defects [39,40,48–50], we find

〈ψd |Z1ZN/2|ψd〉 ∼ N−2�d (gd ),

Sd (N/2) ∼ ceff,d (gd )

3
log N + b3(gd ). (37)

A priori, it is difficult to directly compare the effective central
charge ceff,d (gd ) in the defect model (36) with the effec-

tive central charge ceff (p) following forced measurements;
although both models are described at long distances by the
same Ising CFT with a defect line, there is no simple relation
between the microscopic parameters p and gd and the defect
strength ν at the fixed point. Instead, noting that both the order
parameter scaling dimension �(p) and the effective central
charge ceff (p) are controlled by the fixed-point defect strength
ν [and similarly for �d (gd ) and ceff,d (gd )], we eliminate ν al-
together by plotting ceff (p) as a function of �(p) and ceff,d (gd )
as a function of �d (gd ). The result is shown in Fig. 5(c), with
the black line denoting data obtained from the defect model
(36), and with purple dots depicting data obtained from the
large-s behavior of Sk(r) and Ck(r) for measurement proba-
bilities p between 0 and 0.95 in increments of 0.05. We find
a remarkable agreement between the data of the two models,
providing strong numerical support for the analytical mapping
discussed in this section.

V. DISCUSSION

Measuring part of a many-body quantum state can give
rise to surprising new correlations. In this work we have
studied the effects of local measurements on the critical
one-dimensional TFIM, a highly entangled system for which
exact numerical calculations are possible. Our focus has been
on the partial collapse of the ground state that arises from
parity-preserving measurements of a finite fraction ∼p of the
degrees of freedom. We have shown that, although measuring
all degrees of freedom (p = 1) certainly destroys quantum
correlations, if a finite fraction ∼(1 − p) remain unmeasured,
then the original critical correlations survive on average at
long distances. The origin of this robustness can be under-
stood from properties of the Ising CFT. We have developed
the replica framework of Ref. [9] to include the physically
realistic case of projective measurements, and in this way we
have established a direct link between a microscopic lattice
description of measurements of the TFIM and of defects in the
Ising CFT. In particular, parity-preserving measurements with
outcomes sampled according to the Born rule fail to alter long-
distance correlations (for p < 1) because they correspond to
an irrelevant perturbation in the replica theory: While the
unperturbed Ising theory in (1 + 1) dimensions is quadratic
in the fermion field ψ (τ, x), the perturbation is quartic in
ψ (τ, x) and acts only on a (1 + 0)-dimensional surface of
fixed imaginary time [see Eq. (13)].

However, postselecting on certain outcomes of parity-
preserving measurements does lead to interesting new correla-
tions. Measuring Xj (or ZjZ j+1; see Appendix G) and forcing
the most likely outcome Xj = +1 generates a marginal pertur-
bation in the field theory (quadratic in fermionic fields rather
than quartic). We have shown in Sec. IV that the exponents
governing the postmeasurement power laws vary continuously
with the fraction of measured sites. Continuously varying
power laws of this kind were identified some time ago in stud-
ies of the statistical mechanics of two-dimensional classical
Ising models with modified couplings along a line [35–37],
and the continuum description of these systems is essentially
the same as for our measured ground state with forced mea-
surements.
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A quantity that is meaningful in the problem we have
considered, but which does not arise naturally in classical
statistical mechanics, is the entanglement entropy. In addition
to modifying correlation functions, we have shown in Fig. 5(b)
that forced measurements lead to a variation of the effective
central charge. A key contribution of this work is to show that
the entanglement entropy of a finite subregion in this mea-
surement problem can be mapped, through a conformal trans-
formation, to an entanglement entropy of a system with two
physical defects; the latter problem having been the subject of
a number of previous studies [39,40,47–50]. By comparing
long-distance properties of lattice models corresponding to
the two sides of this duality transformation, we have con-
firmed numerically that the effective central charges coincide.

It is interesting to compare the entanglement scaling in
the present work to that of dynamically monitored TFIMs or
free fermion models [53–57]. As noted earlier, previous works
have observed logarithically scaling subsystem entanglement
entropy in the steady states of continuously monitored free
fermion dynamics, with effective central charges tuned by the
rate of either Born-averaged or forced measurements. More
recently, field-theoretical studies [75,76] have demonstrated
that the monitored dynamics of free fermion chains can be
described by a family of nonlinear sigma models; in contrast
to prior numerical studies, these works suggest that the late-
time subsystem entanglement entanglement entropy exhibits
area-law scaling or (log r)2 scaling in complex fermions or
Majorana fermions, respectively. We emphasize that the phys-
ical effects of measurements in these dynamical problems
differ strongly from the effects of measurements in the static
setting of the present work: whereas a single round of com-
muting measurements on a critical ground state appears as
a defect-like perturbation in Euclidean spacetime, measure-
ments in the monitored dynamics of free fermions appear as a
“bulk” perturbation to a field theory.

An advantage when working with the integrable TFIM
is that its ground state, and the effects of parity-preserving
measurements, can be described exactly with polynomial
computational resources. This has allowed us to verify the
above predictions numerically. While our numerical method
relies on the fact the that system is integrable, aspects of our
field-theoretic analysis do not. For example, if we introduce
to the Hamiltonian an irrelevant integrability-breaking pertur-
bation, then we expect that correlations will be modified at
short but not at long distances. The change in short-distance
correlations could lead to a renormalization of the effective
measurement probability, but we nevertheless expect long-
distance postmeasurement correlations to decay with the same
exponents as in the ground state. We also remark that our
results can be applied to certain measurement protocols of
tight-binding models (or equivalently XX models), whose
Hamiltonians can be expressed as two independent critical
Ising models [25].

If one moves away from free fermion simulations, it is
natural to consider the effects of measurements which do not
preserve the parity of the state. In particular, one can perform
local measurements of the order parameter, i.e., of the Zj

operators. Within the replica description of the Born ensemble
in Sec. III one immediately finds that, since the scaling dimen-
sion of the order parameter is 1/8 in the Ising CFT, measuring

these operators generates a relevant perturbation. This sug-
gests that measuring Zj typically causes the postmeasurement
field theory to flow to a “strong measurement” fixed point,
where the long-distance properties of correlation functions are
modified relative to the ground state.

The possibility for simulating the effects of measurements
has important implications for experiments. This is because
the effects of many measurements can be observed without
postselection provided one has access to an appropriate simu-
lation on a classical computer [9,11,41,42]. Only averages of
quantities nonlinear in the postmeasurement density matrix,
such as 〈Z0Zr〉2

m, are sensitive to the effects of measurement
as distinct from dephasing, but these cannot be determined
directly since each outcome m occurs at most once (see the
discussion in, e.g., Ref. [9]). Instead of trying to determine
averages such as 〈Z0Zr〉2

m, which suffer from a postselection
problem, one can weight the results of measurements of the
operator Z0Zr by estimates for its expectation value coming
from a simulation on a classical computer 〈Z0Zr〉cl.

m . In this
way one can obtain the “quantum-classical estimator” [9]
〈Z0Zr〉cl.

m 〈Z0Zr〉m (or “computationally assisted observable”
[11]) which is the cross-correlation between the experiment
and our prediction, and the “classical-classical estimator”
(〈Z0Zr〉cl.

m )2, which is simply the prediction. Coincidence be-
tween these two objects provides a necessary condition that
the quantum system studied in experiment has exhibited the
same behavior as the classical simulation.

With regard to experimental platforms, Rydberg quantum
simulators have proved to be a highly controllable setting for
the study of quantum Ising models [77,78], with the important
caveat that the long-range van der Waals interactions render
the effective Ising models nonintegrable. However, since these
interactions decay as the sixth power of the separation be-
tween qubits, they are an irrelevant perturbation to the Ising
CFT, and certain coarse-grained features of a classical simula-
tion of the integrable TFIM should match those of a quantum
simulation using Rydberg atoms. It is natural to ask whether,
by cross-correlating results from a Rydberg quantum simula-
tor with the results of exact free-fermion numerics, the effects
of measurements can be observed without postselection. One
can also address this kind of question numerically: given two
different lattice simulations of the same critical theory, to
what extent are coarse-grained correlations postmeasurement
sensitive to differences on short length scales?

It is also worth noting that postmeasurement correlation
functions are essentially unaffected by local decoherence. Al-
though the statistics of operators such as Z0Zr are in principle
modified by measurements at all sites, the fact that local
quantum channels have strictly local effects means that these
statistics are sensitive only to decoherence involving sites
0 and/or r. Using classical simulations and a noisy quan-
tum simulator, it should therefore be possible to observe the
robustness of critical Ising correlations to parity-preserving
measurements, as well as their modification by measurements
of the order parameter. The entanglement of a large subregion
is, however, vulnerable to decoherence within it. While both
measurements and decoherence tend to disentangle system
degrees of freedom, they are distinguished by the nonlocal
effects of the former. Building on Refs. [33,34], it would be
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interesting to understand how this distinction manifests in the
ensemble of postmeasurement states.

Note added. We would like to draw the readers’ attention
to two parallel works by Yang et al. [79] and Murciano et al.
[80]. Our results agree where they overlap.
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APPENDIX A: FREE FERMION SIMULATION

Here we summarize some of the technical details required
for simulations based on fermionic Gaussian states. On a
finite system of size N with periodic boundary conditions, the
Hamiltonian reads

H = −J
N∑

j=1

(gXj + ZjZ j+1)

= −iJg
N∑

j=1

γ2 j−1γ2 j − iJ
N−1∑
j=1

γ2 jγ2 j+1 + iJ�γ2Nγ1,

(A1)

where we have used the Jordan-Wigner transformation

γ2 j−1 =
⎡
⎣ j−1∏

i=1

Xi

⎤
⎦Zj, γ2 j =

⎡
⎣ j−1∏

i=1

Xi

⎤
⎦Yj . (A2)

The Majorana fermions γ j satisfy the anticommutation rela-
tions {γi, γ j} = 2δi j , as well as the identities Xj = iγ2 j−1γ2 j

and ZjZ j+1 = iγ2 jγ2 j+1. We have also defined the total parity
operator

� =
N∏

j=1

Xj = iN
2N∏
j=1

γ j, (A3)

which appears, with periodic boundary conditions, in the
bond-connecting sites j = 1 and j = N . Thus, the Majorana
representation of the TFIM has antiperiodic boundary condi-
tions in the parity-even (� = +1) sector of the Hilbert space,
while it has periodic boundary conditions in the parity-odd
(� = −1) sector. Since the exact ground state of H lies in
the parity-even sector [66], we can freely set � = +1 so long
as we consider measurements and observables which preserve
the parity of the ground state.

The Hamiltonian (A1) with � = 1 is quadratic, and there-
fore its ground-state correlations can be efficiently computed
[67–69,81]. Let us briefly review the method for a generic
quadratic Hamiltonian of the form

H = i

4

2N∑
i, j=1

γiAi jγ j . (A4)

Here A is a 2N × 2N real antisymmetric matrix, and so can
be block-diagonalized into blocks of the form εα (iσ y) by a
matrix R ∈ SO (2N ) [82]. To do this one can first diagonalize
the (fully imaginary) Hermitian matrix −iA, whose (real)
eigenvalues come in oppositely signed pairs. Note then that
the diagonalized −iA is expressed in terms of 2 × 2 blocks
εασ z, which are unitarily related to εασ y. Finally we identify
εα (iσ y) as the real antisymmetric blocks of the transformed
matrix A, and from this procedure we extract R. If we then ap-
ply the orthogonal transformation R to the Majoranas (which
preserves the anticommutation relations), we obtain

H = i

2

N∑
α=1

εαη2α−1η2α, ηα =
2N∑
i=1

Riαγi. (A5)

Choosing each εα to be positive, the ground state and
ground-state energy are immediately found by demanding
iη2α−1η2α = −1. In particular, the two-point correlations in
the ground state are

Gi j = 〈iγiγ j〉 − iδi j =
2N∑

β,γ=1

RiβRjγ [〈iηβηγ 〉 − iδβγ ]

= −
N∑

α=1

(Ri,2α−1Rj,2α − Ri,2αRj,2α−1), (A6)

where we have used the fact that 〈iηβηγ 〉 = 0 unless β, γ =
2α − 1, 2α (in either order).

The ground state of a quadratic Hamiltonian (A4), or more
generally a thermal state of any inverse temperature1 β, is
called a Gaussian state [69]. Once the covariance matrix Gi j

of a Gaussian state has been obtained, all higher-order corre-
lations of the Majoranas are determined via Wick’s theorem
[67]. For example,

i2〈γiγ jγkγ�〉 = 〈iγiγ j〉〈iγkγ�〉 − 〈iγiγk〉〈iγ jγ�〉
+ 〈iγiγ�〉〈iγ jγk〉

= Gi jGk� − GikGj� + Gi�Gjk . (A7)

In general, a 2n-point correlation function in〈γi1 . . . γi2n〉 can
be computed using the Pfaffian of a submatrix of Gi j , contain-
ing only the rows and columns i1 through i2n. Explicitly,

in
〈
γi1 · · · γi2n

〉 = 1

2nn!

∑
σ∈S2n

(−1)σ
〈
iγiσ (1)γiσ (2)

〉 · · · 〈iγiσ (2n−1)γiσ (2n)

〉

= 1

2nn!

∑
σ∈S2n

(−1)σ Giσ (1)iσ (2) · · · Giσ (2n−1)iσ (2n)

= Pfi1,...,i2n [G], (A8)

1To be precise, the set of Gaussian states consist of density matrices
of the form ρ = 1

Z e−βH , where H is of the form (A4) and Z =
tre−βH . In this equation, β = ∞ recovers the ground-state density
matrix ρ = |ψ〉〈ψ |. Even more generally, H is allowed to have indi-
vidual single-particle energies εα = ±∞, corresponding to definite
fermion parities 〈iη2α−1η2α〉 = ∓1 amongst other indefinite fermion
parities.
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where S2n is the permutation group of 2n elements, (−1)σ =
±1 is the sign of the permutation σ , and the indices of Pf
denote the subset of rows and coulumns of G appearing in the
second line. Such a Pfaffian can be computed efficiently using
the algorithm of Ref. [83]. We also note that Gaussian states
necessarily commute with parity, which immediately implies
that odd (2n + 1)-point correlators vanish.

As an application of Eqs. (A7) and (A8), we provide ex-
plicit formulas for the correlators 〈XjXj+r〉 − 〈Xj〉〈Xj+r〉 and
〈ZjZ j+r〉 employed in the main text. The former correlator
is local in the Majorana representation and therefore has a
simple representation in terms of the covariance matrix:

〈XjXj+r〉 − 〈Xj〉〈Xj+r〉 = G2 j−1,2 j+2rG2 j,2 j+2r−1

− G2 j−1,2 j+2r−1G2 j,2 j+2r . (A9)

On the other hand, the latter expression is nonlocal in the
Majorana representation and requires computing a Pfaffian of
a 2r × 2r submatrix of G:

〈ZjZ j+r〉 = 〈irγ2 j · · · γ2 j+2r−1〉 = Pf2 j,...,2 j+2r−1[G]. (A10)

Projective measurements of the pairing operators iγkγ� pre-
serve the Gaussianity of the ground state [67,69]; in particular,
measurements of both Xj = iγ2 j−1γ2 j and ZjZ j+1 = iγ2 jγ2 j+1

preserve Gaussianity. Up to a normalization factor, the effect
of such a projective measurement on a state |ψ〉 is

|ψ〉 �→ P±
k�|ψ〉, P±

k� = 1 ± iγkγ�

2
, (A11)

where the outcomes iγkγ� = ±1 occur with probability
〈ψ |P±

k�
|ψ〉 respectively, according to the Born rule. Following

the measurement, the covariance matrix evolves to

Gi j �→ G′
i j = 〈ψ |P±

k�
iγiγ jP

±
k�

|ψ〉
〈ψ |P±

k�
|ψ〉 , (A12)

which can be evaluated using Wick’s theorem if the initial
state |ψ〉 is Gaussian.

Finally, computation of the entanglement entropy S(A) of a
subregion A can be performed efficiently using the covariance
matrix. We first note that the reduced density matrix ρA =
trAc |ψ〉〈ψ | is automatically Gaussian if |ψ〉 is Gaussian, since
all of its correlations can be obtained using Wick’s theorem.
Its correlation matrix GA

i j is simply a submatrix of Gi j with
entries from region A. We can then infer the spectrum of ρA

directly from the spectrum of GA
i j : block-diagonalizing GA

i j

using an orthogonal matrix RA
iα ,

GA
αβ =

∑
i, j∈A

RA
iαRA

jβGA
i j =

NA⊕
α=1

(
0 λα

−λα 0

)
, (A13)

where |λα| < 1. The unique Gaussian reduced density matrix
reproducing these correlations is then

ρA =
NA∏

α=1

(
1 + iλαξ2α−1ξ2α

2

)
, ξα =

∑
i∈A

RA
iαγi, (A14)

where NA is the number of sites in region A. From this ex-
pression we can immediately read off the spectrum of ρA, and

thereby compute the entanglement entropy:

S(A) = −trρA log ρA

= −
NA∑

α=1

[(
1 + λα

2

)
log

(
1 + λα

2

)

+
(

1 − λα

2

)
log

(
1 − λα

2

)]
. (A15)

We can therefore numerically compute S(A) simply by block-
diagonalizing GA

i j , or equivalently by diagonalizing iGA
i j .

APPENDIX B: ISING CONFORMAL FIELD THEORY

In this Appendix we provide a brief account on the relation
between the microscopic lattice Hamiltonian (1) for the TFIM
and the continuum action (3) for the Ising CFT. Starting from
the Majorana representation (2), we can trivially rewrite the
Hamiltonian as

H = − iJ

2

N∑
j=1

[γ2 j (γ2 j+1 − γ2 j−1) + γ2 j−1(γ2 j − γ2 j−2)

+ (g − 1)(γ2 j−1γ2 j − γ2 jγ2 j−1)]. (B1)

In the scaling limit g → 1, the correlation length diverges
and the lattice Hamiltonian can be traded for a continuum
description. We introduce a lattice spacing a → 0 and a
two-component spinor ψ̂ (x = ja) = 1√

2a
[γ2 j−1, γ2 j]T , whose

components satisfy {ψ̂a(x), ψ̂b(x′)} = 1
aδabδ j j′ → δabδ(x −

x′). Up to irrelevant terms, the Hamiltonian is written in terms
of ψ̂ as

H = v

2

∫
dxψ̂T (−iσ x∂x + mσ y)ψ̂, (B2)

where v = 2Ja is the Fermi velocity from the exact solution
of the TFIM, and m = (g − 1)/a vanishes at the critical point.

To derive the path integral representation of the above
continuum model [73], we introduce a second copy of the
same system, written in terms of a Majorana spinor χ̂ (x). We
can then combine ψ̂ and χ̂ into a single Dirac spinor, D̂ =

1√
2
(ψ̂ + iχ̂ ), which is an ordinary complex Dirac fermion. We

then write the partition function using the usual Grassmann
coherent-state path integral, trading the fermion operators D̂a

and D̂†
a for Grassmann numbers Da and D̄a. Finally, we re-

express the “complex” Grassmann spinor D = 1√
2
(ψ + iχ )

in terms of “real” Grassmann spinors ψ and χ , which are
decoupled from each other, and integrate over χ . Absorbing
v into the definition of the imaginary time τ , the result of this
computation is the imaginary-time action

S0[ψ] = 1

2

∫
dτdx ψT (∂τ − iσ x∂x + mσ y)ψ. (B3)

Following this same procedure for arbitrary correlation func-
tions of ψ̂ , one finds that each such correlation function is
obtained in the path integral representation simply by replac-
ing operators ψ̂ with Grassmann numbers ψ .

At the critical point m = 0, S0[ψ] is one of the simplest
examples of a CFT [27]. The Ising CFT in particular is
characterized by two scaling operators σ (τ, x) and ε(τ, x),
with scaling dimensions �σ = 1/8 and �ε = 1, respectively.
These represent the two relevant perturbations to the Ising

245132-12



NONLOCALITY AND ENTANGLEMENT IN MEASURED … PHYSICAL REVIEW B 107, 245132 (2023)

critical point and, respectively, reproduce the correlations of
the operators Zj and Xj at long distances:

〈Z0Zr〉g.s. ∼ 〈σ (0)σ (x)〉 = 1

x1/4
,

〈X0Xr〉g.s. − 〈X0〉g.s.〈Xr〉g.s. ∼ 〈ε(0)ε(x)〉 = 1

x2
, (B4)

where we are restricted always to equal-τ correlations, and
we have set x = ra. The energy operator2 ε = 2π i :ψ1ψ2 : is
invariant under the Z2 Ising symmetry and can therefore be
expressed locally in the fermionic representation. On the other
hand, the spin operator σ is nonlocal in the fermionic repre-
sentation. Nevertheless, the correlators (B4) can be obtained
both directly within the fermionic representation [84] or by
utilizing bosonization techniques [27,85].

It is well known that critical one-dimensional systems ex-
hibit logarithmic-scaling entanglement entropy. In particular,
it can be shown quite generally that the entanglement entropy
of a contiguous subregion [0 : r) of length r in the ground
state of a one-dimensional CFT is given by [70]

S(r) = c

3
log r + b0, (B5)

where b0 is a nonuniveral constant, and c is the so-called
central charge of the CFT. In the Ising CFT, c = 1/2.

APPENDIX C: FINITE-SIZE SCALING

In numerical simulations of finite-sized systems, it is con-
venient to work with periodic boundary conditions, j ∼= j +
N . Conformal invariance of the low-energy theory then al-
lows for a precise prediction of the behavior of correlation
functions C(r) and G(r) as a function of the system size N
[27]. Specifically, if the continuum model (B3) is taken at
the critical point m = 0, we expect that correlation functions
will transform covariantly under holomorphic mappings z �→
z′ = f (z) of the complex variable z = x + iτ . If the model
is initially defined on the cylinder, such that x ∼= x + L with
L = Na, then we can obtain correlation functions on the cylin-
der from correlation functions on the infinite plane using the
mapping

z′ = f (z) = L tan
(πz

L

)
, (C1)

which maps the cylinder to the infinite plane. This partic-
ular mapping is especially useful for our purposes, since it
preserves the τ = 0 line. Since measurements in our models
appear as defects along the τ = 0 line of Euclidean spacetime,
we can therefore predict the numerically observed effects of

2Here i :ψ1ψ2 : = iψ1ψ2 − 〈iψ1ψ2〉 denotes normal ordering. Nor-
mal ordering is a priori unnecessary at the fixed point, since the
symmetry ψ → σ xψ implies 〈iψ1ψ2〉 = 0. However, since this sym-
metry is broken by irrelevant perturbations, we keep normal ordering
to ensure 〈ε(x)〉 = 0 and ε → −ε under Kramers-Wannier duality.

measurements on finite-sized systems using analytical calcu-
lations in the thermodynamic limit. Specifically, the above
mapping suggests that the correlators (B4) on the cylinder are
given by3

〈σ (0)σ (x)〉cyl
g.s. =

[
L

π
sin

(πx

L

)]−1/4

,

〈ε(0)ε(x)〉cyl
g.s. =

[
L

π
sin

(πx

L

)]−2

. (C2)

We therefore expect the correlators G(r) and C(r), which are
a priori functions of r and N separately, to be functions of
the single variable s = N

π
sin( πr

N ). The infinite-plane behavior
is recovered in the limit N → ∞, upon which s → r for any
finite r. A similar result holds for the entanglement entropy of
a finite system with periodic boundary conditions [70]:

Scyl(r) = c

3
log

[
N

π
sin

(πr

N

)]
+ b′

0. (C3)

These finite-size expressions allow for excellent scaling col-
lapses of various numerically computed observables across
several system sizes, as demonstrated in the main text.

APPENDIX D: CONTINUUM LIMIT OF M̂avg AND K̂avg

In this Appendix we explain the continuum descriptions of
the averaged measurement operators M̂avg and K̂avg defined in
Eqs. (11) and (23), respectively. In particular, we show that
these two measurement operators result in defects along the
τ = 0 line in Euclidean spacetime; the former of these defects
is irrelevant, while the latter contains an exactly marginal
perturbation to the Ising CFT. We also show that the irrelevant
contributions to the former averaged measurement operator
cannot generate marginal terms at higher orders of the pertur-
bative RG—or, more precisely, that any generated marginal
terms are inconsequential to observables in the replica
limit.

Starting with M̂avg, the denominator of n-replica correla-
tion functions of the form (10) takes the form of a partition

3In CFT, σ and ε are examples of so-called “primary operators.”
Under a conformal transformation z �→ f (z), a generic primary op-
erator φ(z, z̄) transforms inside correlation functions as φ(z, z̄) �→
φ′(z′, z̄′) = [ f ′(z)]−h[ f̄ ′(z̄)]−h̄φ(z, z̄), where (h, h̄) are the so-called
“conformal dimensions” of φ. Using hσ = h̄σ = 1/16 and hε = h̄ε =
1/2, one immediately obtains the given expressions for the correla-
tions 〈σ (0)σ (x)〉cyl

g.s. and 〈ε(0)ε(x)〉cyl
g.s. on the cylinder.
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function

Z (n)
M = 〈

ψ⊗n
g.s.

∣∣M̂avg

∣∣ψ⊗n
g.s.

〉 ∝
〈

N∏
j=1

⎛
⎝1 + μ


n/2�∑
r=1

∑
1�α1<···<α2r�n

(iγ2 j−1γ2 j )
(α1 ) · · · (iγ2 j−1γ2 j )

(α2r )

⎞
⎠〉

g.s.

. (D1)

Note that from the definition of Z (n)
M we have the normalization Z (n)

M = 1 for p = 0. The notation (iγ2 j−1γ2 j )(α) simply means
iγ (α)

2 j−1γ
(α)

2 j , the product of Majorana operators within replica α.

We can write Z (n)
M within the path integral formalism by simply replacing each γ j with the Grassmann field4

√
2ψ j (τ ),

evaluated at τ = 0:

Z (n)
M =

∫ n∏
α=1

Dψ (α) e−∑n
α=1 S0[ψ (α)]

N∏
j=1

(
1 + μ


n/2�∑
r=1

∑
1�α1<...<α2r�n

(2iψ2 j−1(0)ψ2 j (0))(α1 ) · · · (2iψ2 j−1(0)ψ2 j (0))(α2r )

)

=
∫ n∏

α=1

Dψ (α) e−∑n
α=1 S0[ψ (α)] exp

{
μ

N∑
j=1

∑
1�α<β�n

(2iψ2 j−1(0)ψ2 j (0))(α)(2iψ2 j−1(0)ψ2 j (0))(β ) + · · ·
}

, (D2)

where the ellipsis denotes four-replica terms and higher. Finally, we take the continuum limit by constructing the continuum
Grassmann spinor ψ (τ, x = ja) = 1√

a
[ψ2 j−1(τ ), ψ2 j (τ )]T . Rewriting 2iψ2 j−1ψ2 j = −aψT σ yψ , we obtain the result

Z (n)
M =

∫ n∏
α=1

Dψ (α) e−∑n
α=1 S0[ψ (α)] exp

{
μ̃

∑
1�α<β�n

∫
dx(ψT σ yψ )(α)(ψT σ yψ )(β ) + · · ·

}
=

∫
Dψ e−S0[ψ]−S (n)

M [{ψ (α)}], (D3)

where μ̃ = μa has dimension −1; in the main text we set a = 1 for simplicity. In the first equation, the field ψ in the latter
exponential must be understood as ψ (τ = 0, x), and in the second line we have defined S (n)

M [{ψ (α)}] as the exponent appearing
in braces {· · · } in the first. Considering the quantity in braces as a perturbation to the Ising CFT localized to the τ = 0 line, one
immediately finds from dimensional analysis that the parameter μ̃ is irrelevant.

A similar analysis applies to K̂avg. Performing the same continuum limit as above, we obtain

〈
ψ⊗n

g.s.

∣∣K̂avg

∣∣ψ⊗n
g.s.

〉 = Z (n)
K ∝

〈
N∏

j=1

[
1 + ν

n∑
r=1

∑
1�α1<···<αr�n

(iγ2 j−1γ2 j )
(α1 ) · · · (iγ2 j−1γ2 j )

(αr )

]〉
g.s.

=
∫ n∏

α=1

Dψ (α) e−∑n
α=1 S0[ψ]

N∏
j=1

(
1 + ν

n∑
r=1

∑
1�α1<···<αr�n

(2iψ2 j−1ψ2 j )
(α1 ) · · · (2iψ2 j−1ψ2 j )

(αr )

)

=
∫ n∏

α=1

Dψ (α) e−∑n
α=1 S0[ψ] exp

{
− ν̃

n∑
α=1

∫
dx(ψT σ yψ )(α) + · · ·

}

=
∫ n∏

α=1

Dψ (α)e−∑n
α=1 S0[ψ (α)]−S (n)

K [{ψ (α)}], (D4)

where the ellipsis again denotes higher-order irrelevant terms, including those written explicitly in (D3). As above, in the final
line we have defined the perturbation to the action, here S (n)

K [{ψ (α)}], as the exponent appearing in braces in the previous line.
An important question is whether higher orders in the perturbative RG can generate relevant or marginal terms in (D3). It

is immediately clear that no relevant terms can be generated: since any Grassmann-even contribution to the action contains at
minimum two ψ’s with scaling dimension 1/2, power counting suggests that there are no relevant perturbations upon restricting
to the τ = 0 line. There are, on the other hand, marginal perturbations of the form

δSM,2 = −μ2

n∑
α=1

∫
dx(ψT σ yψ )(α). (D5)

While this term properly respects the replica symmetry, it does not respect the symmetry ψ (α) → σ xψ (α) present at the
unperturbed critical point, and so it cannot be generated under the perturbative RG.

An important subtlety, however, is that this symmetry is explicitly broken by irrelevant perturbations to S0. If we intend to
understand measurements of the microscopic lattice TFIM, rather than measurements of the Ising CFT, then these irrelevant

4The factor of
√

2 arises from our normalization convention for the Majorana operators, {γi, γ j} = 2δi j , rather than {γi, γ j} = δi j . It can be
obtained by retracing the steps outlined in Appendix B for deriving the path integral representation of the Majorana system.
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terms must be taken into consideration. These irrelevant perturbations result in a nonzero expectation value 〈ψT σ yψ〉g.s.. As a
result, performing a single step of first-order perturbative RG on S (n)

M yields

δSM,2 = −μ̃
∑

1�α<β�n

∫
dx[B(ψT σ yψ )(β ) + (ψT σ yψ )(α)B] = −μ̃B(n − 1)

n∑
α=1

∫
dx(ψT σ yψ )(α), (D6)

where B is a constant originating from the integration of fast
modes.5 We therefore find, at first order in the perturbative
RG, that μ2 = μ̃B(n − 1).

While it seems that the RG has generated an exactly
marginal term, it is important to note that its prefactor μ2

is proportional to n − 1. As a result, it is inconsequential to
any correlation function upon taking the replica limit n →
1: performing a perturbative expansion in δSM,2, each term
containing a factor μ2 will vanish upon taking the replica
limit. This observation can be understood simply on physical
grounds: since probability conservation requires

∑
m M̂2

m =
1, we must have Z (1)

M = 〈ψg.s.|ψg.s.〉 = 1. As a result, all
single-replica contributions to to the action of the form (D6)
must vanish in the n → 1 limit. The vanishing of μ2 as n → 1
is therefore completely general, to all orders of the pertur-
bative RG, and this term can be discarded for purposes of
computing correlation functions in the replica limit.

APPENDIX E: NONCOMMUTING MEASUREMENTS
AND OBSERVABLES

In the main text, our analytical approach relied on as-
suming that the measurement operator commuted with the
observable being investigated. In this Appendix we show how
to analyze observables which do not commute with the mea-
surement operators using the same analytical mapping. The
details are slightly more technically involved than the ap-
proach followed in the main text, but are conceptually similar.

We demonstrate our approach explicitly for C2
m(r) =

〈Z0Zr〉2
m in the ensemble-average measurement scheme; other

cases, such as Ck(r) in the forced measurement scheme, or
GZ

m(r) under ZZ measurements (see Appendix G), follow
similarly. To start, it is useful to note that 〈Z0Zr〉m vanishes
whenever sites 0 or r are measured. Using the replica scheme
of Eq. (9), the numerator reads

∑
m

pn
m〈Z0Zr〉2

m =
∑

m

〈
M̂2

m

〉n−2

g.s. 〈M̂mZ0ZrM̂m〉2
g.s.

= (1 − p)2n
〈
ψ⊗n

g.s.

∣∣Z (0)
0 Z (1)

0 Z (0)
r Z (1)

r

∏
j �=0,r

[
(1 − p)n + pn

∑
mj=±1

(
1 + mjXj

2

)⊗n
]∣∣ψ⊗n

g.s.

〉
. (E1)

To recover the form (11) for the averaged measurement operator on the right, we simply multiply and divide by the local terms
in braces on the right corresponding to sites 0 and r. We note that these operators have strictly positive spectra, and therefore
have well-defined inverses. In particular,[

(1 − p)n + pn
∑

mj=±1

(
1 + mjXj

2

)⊗n
]−1

= (1 − p)−n

[
1 − pn

(1 − p)n + pn

∑
mj=±1

(
1 + mjXj

2

)⊗n
]

∝ 1 − ω


n/2�∑
r=1

∑
1�α1<···<α2r�n

X (α1 )
j · · · X (α2r )

j , (E2)

where ω is a monotonically increasing function of p, and we have omitted a p-dependent prefactor which does not affect the
asymptotic scaling behavior of C2

m(r). We therefore obtain

∑
m

pn
m〈Z0Zr〉2

m ∝ 〈
ψ⊗n

g.s.

∣∣Z (0)
0 Z (1)

0 Z (0)
r Z (1)

r

⎛
⎝1 − ω


n/2�∑
r=1

∑
1�α1<···<α2r�n

X (α1 )
0 · · · X (α2r )

0

⎞
⎠

×
⎛
⎝1 − ω


n/2�∑
r=1

∑
1�α1<···<α2r�n

X (α1 )
r · · · X (α2r )

r

⎞
⎠M̂avg

∣∣ψ⊗n
g.s.

〉
. (E3)

This equation is thus far exact, and is simply a sum of higher-order multireplica correlation functions with respect to multireplica
ground state coupled by the defect M̂avg.

5To avoid unnecessary details, we have not explained the perturbative RG explicitly. The constant B is given by the expectation 〈ψT
>σ yψ>〉>

g.s.

of the modes with momenta between a shell of width d�. The rescaling step is inconsequential, since the term is marginal at tree level.
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At sufficiently long distances, higher-order terms proportional to ω or ω2 decay more rapidly than the zeroth-order term
proportional to ω0. Since we are anyway primarily concerned with the long-range behavior, we are justified in dropping all of
these higher-order terms. Altogether, we find

C2
m(r) = lim

n→1

∑
m pn

m〈Z0Zr〉2
m∑

m pn
m

∼ lim
n→1

〈
ψ⊗n

g.s.

∣∣Z (0)
0 Z (1)

0 Z (0)
r Z (1)

r M̂avg

∣∣ψ⊗n
g.s.

〉
〈
ψ⊗n

g.s.

∣∣M̂avg

∣∣ψ⊗n
g.s.

〉 (r � 1). (E4)

APPENDIX F: FORCED MEASUREMENT
ENTANGLEMENT ENTROPY

In Sec. IV C we used the conformal invariance of the Ising
CFT to provide a qualitative argument relating the average
entanglement entropy Sk(r) of the TFIM following forced
projective measurements to the half-system entanglement en-
tropy Sd (N/2) of a dual ground-state defect problem. Here we
provide some of the technical details required to complete the
argument.

As in Sec. IV C, we are interested in computing the en-
tanglement entropy S∗(r) of the fixed-point model (30), for a
subregion of length r. This can be computed from the n → 1
limit of the following ratio of two partition functions:

S∗(r, ε0) = lim
n→0

1

1 − n
log

[Zn(r, ε0)

Zn
1

]
. (F1)

Here Z1 = ∫
Dψ e−S∗[ψ] is the single-replica partition func-

tion, while Zn(r, ε0) is the partition function of an n-fold
replicated theory subjected to the boundary conditions given
in Eq. (32). Alternatively, we can think of the n replica fields
ψ (α)(τ, x) as a single field defined on an n-sheeted Riemann
surface, with a branch cut running from x = −r/2 to x =
+r/2 along the τ = 0 axis. Both partition functions contain
a defect running along the τ = 0 axis,6 as given in (30). In
defining (F1), we have introduced explicit dependence on a
short-distance cutoff ε0 into the definition of both S∗(r, ε0)
and Zn(r, ε0), which widens the branch points at x = ±r/2
into circles of radius ε0. The value of ε0 is fixed but otherwise
arbitrary, and is necessary for obtaining a finite expression for
the entanglement entropy [70,72].

In order to exploit conformal invariance of the Ising CFT,
it is useful to introduce the complex coordinate z = x + iτ .
Then, using the scale invariance of the action (30), we first
rescale z → 2z/r. This transformation maps the branch points
from z = ±r/2 to z = ±1, but modifies the short-distance
cutoff from ε0 to 2ε0/r. We therefore have Zn(r, ε0) =
Zn(2, 2ε0/r). Without loss of generality, may therefore set
r = 2 and compute Zn(2, ε), from which we obtain the result
for general r by setting ε = 2ε0/r.

We next deform the entanglement branch cut from the
real line onto the unit semicircle in the upper-half plane, as
depicted in Fig. 5(aii). As discussed in Sec. IV C, the precise

6To avoid the branch cut lying at exactly the same imaginary time
as the defect, we can take the second term in the action (30) to
be evaluated at τ = 0−. By returning to the properly discretized
expression for the entanglement entropy and applying the cyclicity
of the trace, it is clear that the entanglement cut can be chosen to lie
just above the measurement defect.

location of the branch cut on a Riemann surface is immaterial
and can be deformed freely so long as its endpoints remain
fixed. Alternatively, as a theory of n replica fields, the field
redefinitions ψ (α)(τ, x) → ψ̃ (α)(τ, x) of Eq. (33) can be used
to move the branch cut. Explicitly, the boundary condition
ψ (α)(0−, x) = ψ (α+1)(0+, x) for |x| < 1 (i.e., at the bottom
boundary of the semicircle D) is equivalent to the continuity
condition7 ψ̃ (α)(0−, x) = ψ̃ (α)(0+, x). Similarly, the continu-
ity of ψ̃ (α)(τ, x) at the top boundary of region D becomes a
matching condition analogous to that of Eq. (32). We empha-
size that this transformation of fields is exactly what is done
to deform a branch cut in the analysis of an ordinary complex
function defined on a Riemann surface.

Next, we use the conformal transformation

z �→ z′ = f (z) = −i
L

2π
log z (F2)

which maps the complex plane to a cylinder of circumference
L, with complex coordinate z′ = x′ + iτ ′ with x′ ∼= x′ + L [see
Fig. 5(aiii)]. The defect due to measurements, which lies along
the τ = 0 line of the original complex plane, maps to two
timelike defects on the cylinder: the positive real axis maps
to the line x′ = 0, while the negative real axis maps to the line
x′ = L/2. Meanwhile, the branch cut along the unit semicircle
in the upper-half plane is mapped to the semicircle from
x′ = 0 to x′ = L/2 along the τ ′ = 0 line.

Under the transformation (F2), a short-distance cutoff of
size ε on the complex plane becomes a cutoff of size Lε/2π

on the cylinder; explicitly, an infinitesimal rectangle of area ε2

centered on z = ±1 is mapped to an infinitesimal rectangle of
area (εL/2π )2 on the cylinder. Let Zcyl

n (L, ε) denote the par-
tition function of the n-fold replicated cylinder, with defects
along x′ = 0 and x′ = L/2, and with a branch cut between
x′ = 0 and x′ = L/2 along τ ′ = 0. Then the above sequence
of mappings has shown the following equivalence of partition
functions:

Zn(r, ε0) = Zn(2, 2ε0/r) = Zcyl
n (L, Lε0/πr). (F3)

Having formally established the connection between par-
tition functions, we may now make connection with known
results from the literature. From previous studies of the en-
tanglement entropy of the TFIM and the Ising CFT in the
presence of exactly marginal defects [39,40,48–50], it is

7Note that we are being somewhat cavalier about ψ (α)(τ, x) being
a Grassmann field; strictly speaking, the field ψ (α)(τ, x) is indeter-
minate, and its continuity is ill-defined. Instead one should consider
a properly discretized path integral, where the continuity condition
is realized by couplings between lattice points across the τ = 0
boundary.
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known that the half-system entanglement entropy with defects
at the entangling boundaries exhibits the following form:

S∗
d (L/2, ε) = lim

n→1

1

1 − n
log

[
Zcyl

n (L, ε)[
Zcyl

1

]n

]

= ceff (ν)

3
log

L

ε
+ bd (ν), (F4)

where c∗
eff (ν) is a continuously varying effective central

charge which depends on the defect strength ν, while bd (ν)
is an L-independent constant which depends on the precise
regularization scheme used. Substituting ε = Lε0/πr, we ob-
tain the following result for the original entanglement entropy
(F1):

S∗(r, ε0) = S∗
d (L/2, Lε0/πr)

= c∗
eff (ν)

3
log

(
L

Lε0/πr

)
+ bd (ν)

= c∗
eff (ν)

3
log r + b′(ν), (F5)

where we have absorbed the constant log(π/ε0) into the
definition of b′(ν). Notably, all dependence on the cylinder
circumference L has been eliminated from the final expres-
sion; since L can be chosen arbitrarily, this is to be expected.
We therefore arrive at the desired result: the entanglement
entropy of a subregion of length r in the Ising CFT, in the
presence of a marginal defect along the τ = 0 line (such as
that arising due to forced projective measurements), scales
logarithmically with r with an effective central charge c∗

eff (ν)
that continuously varies with the defect strength.

APPENDIX G: ZjZj+1 MEASUREMENTS

Throughout the main text, we considered measurements of
the observable Xj throughout the Ising chain. An alternative

scheme is to consider measurements of ZjZ j+1. Since Xj and
ZjZ j+1 are related by the Kramers-Wannier duality [86], it
is natural to expect that measurements of these observables
have similar effects on the ground state. There are, however,
important differences in the behavior of observables.

1. Born projective ZjZj+1 measurements

We first consider a measurement protocol analogous to
that of Sec. III: for each site j, we perform a projective
measurement of ZjZ j+1 with probability p, and sample the
measurement outcome according to the Born rule. Such a
protocol is described by a measurement operator M̂Z

m, which
is a product of local measurement operators:

M̂Z
m =

N∏
j=1

M̂Z
mj , j, M̂Z

0, j =
√

1 − p,

M̂Z
±1, j = √

p
1 ± ZjZ j+1

2
. (G1)

We obtain the state |ψZ
m〉 with probability pZ

m, where

∣∣ψZ
m

〉 = M̂Z
m|ψg.s.〉√〈[
M̂Z

m

]2〉
g.s.

, pZ
m = 〈[

M̂Z
m

]2〉
g.s.. (G2)

The discussion of Sec. III A then follows identically, with
the caveat that we focus on the correlator [CZ

m(r)]2 =
[〈Z0Zr〉Z

m]2 in developing our replica scheme, where 〈·〉Z
m =

〈ψZ
m| · |ψZ

m〉. To study GZ
m(r) = 〈X0Xr〉Z

m − 〈X0〉Z
m〈Xr〉Z

m, we
use the approach of Appendix E to handle noncommuting
measurements and observables. Following the same steps,
we arrive at an averaged measurement operator M̂Z

avg which
couples the n replicas:

M̂Z
avg =

∑
m

([
M̂Z

m

]2)⊗n ∝
∏

j

⎛
⎝1 + μ


n/2�∑
r=1

∑
1�α1<···<α2r�n

Z (α1 )
j Z (α1 )

j+1 · · · Z (α2r )
j Z (α2r )

j+1

⎞
⎠. (G3)

The derivation of the continuum limit of M̂Z
avg then follows

nearly identically to that of M̂avg in Appendix D. The only
difference lies in the replacement of the operators Xj =
iγ2 j−1γ2 j with ZjZ j+1 = iγ2 jγ2 j+1. The partition function
Z (n)

M,Z = 〈ψ⊗n
g.s.|M̂Z

avg|ψ⊗n
g.s.〉 is then given by the same expression

as Eq. (D2), with the replacement8

2iψ2 j−1ψ2 j → iψ2 jψ2 j+1

= −2iψ2 j−1ψ2 j + 2iψ2 j (ψ2 j+1 − ψ2 j−1)

= aψT σ yψ + ia2ψT σ x∂xψ. (G4)

8In the final term, we have integrated by parts and dropped a total
derivative, which vanishes under the integral

∫
dx.

Altogether, the defect created by ZjZ j+1 measurements sam-
pled according to the Born rule is described by a contribution
to the action of the form

S (n)
M,Z = −μ

∑
α<β

∫
dx(ψT σ yψ + iaψT σ x∂xψ )(α)

× (ψT σ yψ + iaψT σ x∂xψ )(β ) + · · · . (G5)

The extra derivative terms iψT σ x∂xψ are further irrelevant
compared to the term ψT σ yψ . We therefore arrive at the
same conclusion as in Sec. III: a nonzero density of ZjZ j+1

measurements performed on the ground state |ψg.s.〉 of the
TFIM, with outcomes sampled according to the Born rule, do
not affect the asymptotic structure of correlation functions or
entanglement.
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FIG. 6. [(a),(b)] Ensemble-averaged correlation functions [CZ
m(r)]2 and GZ

m(r) and (c) entanglement entropy SZ
m(r) following ZjZ j+1

measurements with outcomes sampled according to the Born rule, for measurement probabilities p = 0.2 (blue), 0.5 (green), and 0.8 (red),
and for system sizes N = 32, 64, 128, and 256 (light to dark). Data is plotted as a function of s = N

π
sin( πr

N ) to achieve scaling collapse of the
various system sizes. Similar to the ensemble with Xj measurements (see Sec. III), both correlation functions retain their power-law scaling
with exponents of the unmeasured system at sufficiently long distances, while the entanglement entropy retains its logarithmic scaling with
central charge c = 1/2 of the unmeasured system.

Figure 6 gives the numerically computed correlation func-
tions [CZ

m(r)]2 and GZ
m(r) and the entanglement entropy

SZ
m(r), each defined analogously to Eq. (7) with the replace-

ment |ψm〉 → |ψZ
m〉. As in the case of Xj measurements, we

find excellent scaling collapses by plotting each observable
as a function of s = N

π
sin( πr

N ). As expected from the above

discussion, we find [CZ
m(r)]2 ∼ s−1/2 and GZ

m(r) ∼ s−2 at suf-
ficiently large s, as well as SZ

m(r) ∼ 1
6 log s + b4(p).

Two differences appear between the numerical results of
ZjZ j+1 measurements and Xj measurements. First, whereas
the power-law coefficient in Fig. 2(a) decreases with increas-
ing Xj measurement probability, the power-law coefficient of
Fig. 6(a) increases with increasing ZjZ j+1 measurement prob-
ability. This feature is easily understood on physical grounds:
by projecting a large fraction of the ground state onto Xj = ±1
the short-range ferromagnetic correlations are reduced; in par-
ticular, since 〈Z0Zr〉m = 0 whenever m0 = ±1 or mr = ±1,
C2

m(r) is bounded above by the probability (1 − p)2 that both
sites 0 and r remain unmeasured. In contrast, projecting a
large fraction of the ground state onto ZjZ j+1 = ±1 gives
the resulting postmeasurement state |ψZ

m〉 short-range “spin-
glass” structure; in particular, [CZ

m(r)]2 = +1 with probability
at least pr . Remarkably, even at large p when typical states
|ψZ

m〉 feature such spin-glass structure throughout the majority
of the system, at sufficiently long distances the power-law
scaling of the ground state is recovered.

Second, whereas the contribution b1(p) to the entan-
glement entropy Sm(r) strictly decreases with increasing
measurement probability [see Fig. 3], the analogous contri-
bution b4(p) to SZ

m(r) exhibits nonmonotonic behavior [see
Fig. 6(c)]. In contrast to the Xj measurement scheme of
Sec. III, where measurements are localized within subsystem
A = [0 : r) or its complement and strictly decrease the entan-
glement entropy, here measurements of Zr−1Zr or Z−1Z0 are
capable of increasing the entanglement entropy between the
two subsystems.

2. Forced projective ZjZj+1 measurements

We can similarly analyze the effects of forced ZjZ j+1 mea-
surements, in which we postselect on the outcome +1 for
each measurement of ZjZ j+1. Analogously to the discussion
of Sec. IV, we describe this measurement protocol with the
measurement operator

K̂Z
k =

N∏
j=1

K̂Z
k j , j, K̂Z

0, j = 1, K̂Z
1, j = 1 + ZjZ j+1

2
. (G6)

We then obtain the state |ψZ
k 〉 with probability pk, where

∣∣ψZ
k

〉 = K̂Z
k |ψg.s.〉√〈
K̂Z

k

〉
g.s.

, pk = p|k|(1 − p)N−|k|, (G7)

where |k| = ∑N
j=1 k j is the number of measurements per-

formed. The analysis of Sec. IV A then follows identically,
with the replacement (G4) in the averaged measurement oper-
ator. The end result is a defect described by the action

S (n)
K,Z = −ν

n∑
α=1

∫
dx(ψT σ yψ )(α) + · · · , (G8)

where as usual ψ is here evaluated strictly at τ = 0, and
the ellipsis again contains irrelevant terms, including the
derivative term of Eq. (G4). Notably, ZjZ j+1 measurements
yield an exactly marginal term identical to that of Eq. (25),
but crucially with the opposite sign. This change of sign
does not affect the scaling dimension of ψ and therefore
is not expected to affect the asymptotic scaling of GZ

k (r).
On the other hand, it has crucial effects on the behavior of
the correlations CZ

k (r) = 〈Z0Zr〉Z
k . As a continuum analog of

a two-dimensional classical Ising model with a defect line,
the perturbation (25) corresponds to weakened bonds along
the defect line and results in weaker ferromagnetic corre-
lations along the defect. In contrast, Eq. (G8) corresponds
to strengthened bonds along the defect line and results in
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FIG. 7. [(a),(b)] Ensemble-averaged correlation functions CZ
k (r) and GZ

k (r) and (c) entanglement entropy SZ
k (r) in the forced-measurement

ensemble, for measurement probabilities p = 0.2 (blue), 0.5 (green), and 0.8 (red), and for system sizes N = 32, 64, 128, and 256 (light
to dark). Data are plotted as a function of s = N

π
sin( πr

N ) to achieve scaling collapse of the various system sizes. Dotted lines depict the

behavior of the unmeasured system. While GZ
k (r) ∼ s−2 exhibits the same scaling as the unmeasured system, CZ

k (r) ∼ s−2�Z (p) exhibits
a continuously varying exponent �Z (p); unlike in the forced Xj measurement scheme, where Ck(r) ∼ r−2�(p) featured a monotonically
increasing scaling dimension �(p), here the scaling dimension �Z (p) continuously decreases to zero with increasing measurement probability.

The entanglement entropy SZ
k (r) ∼ cZ

eff (p)
3 log r + b5(p) again features a continuously decreasing effective central charge cZ

eff (p), but with a
nonmonotonic contribution b5(p).

enhanced ferromagnetic correlations. Following the results
of Refs. [35,36], we expect CZ

k (r) ∼ r−2�Z (p) to again ex-
hibit a continuously varying power law, but with a scaling
dimension �Z (p) which decreases with increasing measure-
ment strength. Asymptotically as p → 1, we expect projecting
ZjZ j+1 = +1 almost everywhere results in near-perfect long-
range order, so that �Z (p) → 0 as p → 1.

Figure 7 depicts the numerically computed correlation
functions CZ

k (r) and GZ
k (r) and the entanglement entropy

SZ
k (r), defined analogously to Eq. (7) with the replace-

ment |ψm〉 → |ψZ
k 〉. As expected, GZ

k (r) ∼ s−2 exhibits the
same power-law scaling as in the unmeasured system, while
CZ

k (r) ∼ s−2�Z (p) features a continuously varying power law
characterized by a scaling dimension �Z (p). As p increases,
�Z (p) decreases towards zero, resulting in longer-ranged
order parameter correlations. Similar to the entanglement en-
tropy Sk(r) in Sec. IV C, the entanglement entropy SZ

k (r) ∼
cZ

eff (p)
3 log s + b5(p) exhibits a continuously decreasing effec-

tive central charge, which can be understood by mapping to a
problem with ordinary timelike impurities as in Sec. IV C.

APPENDIX H: “NO-CLICK” MEASUREMENTS

Throughout the main text, we have considered two ran-
dom projective measurement schemes. Focusing on projective
measurements provides a closer comparison to typical exper-
imental platforms, while performing measurements randomly
throughout space restores translation invariance on average
and effectively softens the average strength of the a priori
completely disentangling projective measurements. One con-
ceptual downside to random measurement schemes, however,
is the requirement of replicas in order to perform statis-
tical averages. Random measurement schemes also impose
an additional computational overhead due to Monte Carlo

sampling, which becomes especially severe in the case of
non-self-averaging observables. An alternative deterministic
measurement scheme, which retains translation invariance, is
to consider the effects of postselected weak measurements
which only partially collapse the ground state. Here we con-
sider a particular postselected weak measurement scheme
which we call “no-click” measurements. A similar measure-
ment scheme was used in the previous work of Ref. [9].

To derive the no-click measurement of the observable Xj ,
we imagine introducing an ancillary qubit initialized in the
state |0〉. We then couple this ancillary qubit to the jth spin of
the system via the unitary

Un.c. = exp −iα

(
1 − Xj

2

)
⊗ σ y

=
(

1 + Xj

2

)
+

(
1 − Xj

2

)
⊗ e−iασ y

, (H1)

where σ y acts on the ancillary qubit, and 0 � α � π/2. Fol-
lowing the evolution by Un.c., the state of the system plus
ancilla is given by

Un.c.|ψg.s.〉 ⊗ |0〉 =
[

1 + (cos α − 1)

(
1 − Xj

2

)]
|ψg.s.〉 ⊗ |0〉

+ sin α

(
1 − Xj

2

)
|ψg.s.〉 ⊗ |1〉. (H2)

Finally, we measure the ancilla qubit in the computational
basis. A “click” of the measurement apparatus corresponds to
the outcome 1, which projects Xj into the eigenstate −1. In the
absence of a click, corresponding to the outcome 0, the ampli-
tude for Xj = −1 is only partially suppressed. Postselecting
on the latter outcome, the effect of the no-click measurement
is given by

|ψg.s.〉 �→ eλXj |ψg.s.〉
〈e2λXj 〉g.s.

, (H3)
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FIG. 8. [(a),(b)] No-click correlation functions Cn.c.(r) and Gn.c.(r) and (c) entanglement entropy Sn.c.(r), for measurement strengths 1 −
cos α = 0.1 (blue), 0.3 (green), and 0.5 (red), and for system sizes N = 128, 256, 512, and 1024 (light to dark). Data are plotted as a function
of s = N

π
sin( πr

N ) to achieve scaling collapse of the various system sizes. Dotted lines depict the behavior in the unmeasured system. Similar to
the case of forced projective measurements, Gn.c.(r) ∼ s−2 exhibits the same power-law scaling as in the unmeasured system, while Cn.c.(r) ∼
s−2�n.c. (α) exhibits a continuously varying power-law exponent and Sn.c.(r) ∼ ceff,n.c. (α)

3 log s + bn.c.(α) exhibits a continuously varying effective
central charge.

where λ is a monotonic function of α, with λ = ∞ corre-
sponding to the projective measurement α = π/2. Performing
the same no-click measurement on each qubit, we altogether
obtain the state

|ψn.c.〉 = K̂n.c.|ψg.s.〉〈
K̂2

n.c.

〉
g.s.

, K̂n.c. =
N∏

j=1

eλXj . (H4)

We are interested in comparing the behavior of observables
in the no-click state |ψn.c.〉 to that of the unmeasured ground
state |ψg.s.〉. For example, the connected energy density corre-
lator is given by

Gn.c.(r) = 〈X0Xr〉n.c. − 〈X0〉n.c.〈Xr〉n.c.

=
〈
X0XrK̂2

n.c.

〉
g.s.〈

K̂2
n.c.

〉
g.s.

−
〈
X0K̂2

n.c.

〉
g.s.〈

K̂2
n.c.

〉
g.s.

〈
XrK̂2

n.c.

〉
g.s.〈

K̂2
n.c.

〉
g.s.

, (H5)

where we have used [Xj, M̂n.c.] = 0. Order parameter correla-
tions Cn.c.(r) = 〈Z0Zr〉n.c. and entanglement entropy Sn.c.(r) =
−trρA

n.c. log ρA
n.c. are defined similarly, the former of which can

be analyzed within the same framework using the method of
Appendix E. From this expression, we see that correlations in
the postmeasurement state can be obtained from correlations
of the following partition function:

Zn.c. = 〈ψg.s.|K̂2
n.c.|ψg.s.〉

=
∫

Dψ exp

{
− S0[ψ] + λ̃

∫
dxψT σ yψ

}
, (H6)

where λ̃ is a monotonic function of λ, and in the latter
term ψ is evaluated at τ = 0. We immediately see that
no-click measurements result in an exactly marginal defect
along the τ = 0 line, of exactly the same form as in the
forced measurement scheme [see Eq. (25)]. We therefore
expect identical phenomenology for the long-distance
correlations: in particular, we expect Gn.c.(r) ∼ r−2 to
retain the same scaling as in the unmeasured state,

while Cn.c.(r) ∼ r−2�n.c.(α) obtains a continuously varying
power-law exponent with �n.c.(0) = 1/8 and
limα→π/2 �n.c.(α) = 1/2. We additionally expect the
entanglement entropy to exhibit a continuously varying
effective central charge, Sn.c.(r) ∼ ceff,n.c.(α)

3 log r + bn.c.(α),
such that ceff,n.c.(0) = π/2 and ceff,n.c.(α) decreases towards
zero as α → π/2. These qualitative features are verified
numerically in Fig. 8.

We may alternatively consider no-click measurements of
ZjZ j+1. The unitary U Z

n.c. which implements such a mea-
surement is obtained simply by replacing Xj with ZjZ j+1

in Eq. (H1). The resulting state following ZjZ j+1 no-click
measurements for each site j is

∣∣ψZ
n.c.

〉 = K̂Z
n.c.|ψg.s.〉〈[
K̂Z

n.c.

]2〉
g.s.

, K̂Z
n.c. =

N∏
j=1

eλZ j Z j+1 . (H7)

Similarly to the discussion of Appendix G, replacing Xj by
ZjZ j+1 results in the same type of defect as in (H6) (up to
irrelevant terms), but with an altered sign. Explicitly, the par-
tition function used to evaluate correlation functions is given
by

ZZ
n.c. = 〈ψg.s.|K̂2

n.c.|ψn.c.〉

=
∫

Dψ exp

{
− S0[ψ] − λ̃Z

∫
dxψT σ yψ

}
, (H8)

where λZ is a monotonic function of λ, the latter term
in the exponential is again evaluated strictly at τ = 0,
and we have neglected irrelevant terms. Identically to the
case of forced ZjZ j+1 measurements, we expect CZ

n.c.(r) ∼
r−2�Z

n.c.(α) to exhibit a continuously decreasing power-law ex-
ponent �Z

n.c.(α) with increasing measurement strength, while

SZ
n.c.(r) ∼ cZ

eff,n.c.(α)
3 log r + bZ

n.c.(α) exhibits a continuously de-
creasing effective central charge cZ

eff,n.c.(α). These features are
again verified numerically in Fig. 9.
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FIG. 9. [(a),(b)] No-click correlation functions CZ
n.c.(r) and GZ

n.c.(r) and (c) entanglement entropy SZ
n.c.(r), for measurement strengths 1 −

cos α = 0.1 (blue), 0.3 (green), and 0.5 (red), and for system sizes N = 128, 256, 512, and 1024 (light to dark). Data are plotted as a function
of s = N

π
sin( πr

N ) to achieve scaling collapse of the various system sizes. Dotted lines depict the behavior of the unmeasured system. Similar
to the case of forced projective ZjZ j+1 measurements, GZ

n.c.(r) ∼ s−2 exhibits the same power-law scaling as the unmeasured system, while

CZ
n.c.(r) ∼ s−2�Z

n.c. (α) exhibits a continuously varying power-law exponent and SZ
n.c.(r) ∼ cZ

eff,n.c.
3 log s + bZ

n.c.(α) exhibits a continuously varying
effective central charge.

[1] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and M.
Van den Nest, Nat. Phys. 5, 19 (2009).

[2] Y. Li, X. Chen, A. W. W. Ludwig, and M. P. A. Fisher, Phys.
Rev. B 104, 104305 (2021).

[3] L. Piroli, G. Styliaris, and J. I. Cirac, Phys. Rev. Lett. 127,
220503 (2021).

[4] Y. Bao, M. Block, and E. Altman, arXiv:2110.06963.
[5] N. Tantivasadakarn, R. Thorngren, A. Vishwanath, and R.

Verresen, arXiv:2112.01519.
[6] R. Verresen, N. Tantivasadakarn, and A. Vishwanath,

arXiv:2112.03061.
[7] C.-J. Lin, W. Ye, Y. Zou, S. Sang, and T. H. Hsieh, Quantum 7,

910 (2023).
[8] T.-C. Lu, L. A. Lessa, I. H. Kim, and T. H. Hsieh, Phys. Rev. X

Quantum 3, 040337 (2022).
[9] S. J. Garratt, Z. Weinstein, and E. Altman, Phys. Rev. X 13,

021026 (2023).
[10] G.-Y. Zhu, N. Tantivasadakarn, A. Vishwanath, S. Trebst, and

R. Verresen, arXiv:2208.11136.
[11] J. Y. Lee, W. Ji, Z. Bi, and M. P. A. Fisher, arXiv:2208.11699.
[12] N. Tantivasadakarn, R. Verresen, and A. Vishwanath,

arXiv:2209.03964.
[13] N. Tantivasadakarn, A. Vishwanath, and R. Verresen, PRX

Quantum 4, 020339 (2023).
[14] S. Antonini, G. Bentsen, C. Cao, J. Harper, S.-K. Jian, and B.

Swingle, J. High Energy Phys. 12 (2022) 124.
[15] S. Antonini, B. Grado-White, S.-K. Jian, and B. Swingle, J.

High Energy Phys. 02 (2023) 095.
[16] B. Skinner, J. Ruhman, and A. Nahum, Phys. Rev. X 9, 031009

(2019).
[17] Y. Li, X. Chen, and M. P. A. Fisher, Phys. Rev. B 98, 205136

(2018).
[18] Y. Li, X. Chen, and M. P. A. Fisher, Phys. Rev. B 100, 134306

(2019).
[19] M. J. Gullans and D. A. Huse, Phys. Rev. X 10, 041020 (2020).

[20] S. Choi, Y. Bao, X.-L. Qi, and E. Altman, Phys. Rev. Lett. 125,
030505 (2020).

[21] Y. Bao, S. Choi, and E. Altman, Phys. Rev. B 101, 104301
(2020).

[22] C.-M. Jian, Y.-Z. You, R. Vasseur, and A. W. W. Ludwig, Phys.
Rev. B 101, 104302 (2020).

[23] A. C. Potter and R. Vasseur, in Entanglement in Spin Chains:
From Theory to Quantum Technology Applications, edited by
A. Bayat, S. Bose, and H. Johannesson (Springer International
Publishing, Cham, 2022), pp. 211–249.

[24] M. P. A. Fisher, V. Khemani, A. Nahum, and S. Vijay, Annu.
Rev. Condens. Matter Phys. 14, 335 (2023).

[25] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge
University Press, Cambridge, 2011).

[26] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov,
Nucl. Phys. B 241, 333 (1984).

[27] P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field
Theory (Springer, New York, 1997).

[28] M. Henkel, Conformal Invariance and Critical Phenomena
(Springer Science & Business Media, Heidelberg, 1999).

[29] J. Cardy, Nucl. Phys. B 240, 514 (1984).
[30] J. Cardy, Scaling and Renormalization in Statistical Physics,

Cambridge Lecture Notes in Physics (Cambridge University
Press, Cambridge, 1996).

[31] J. Y. Lee, Y.-Z. You, and C. Xu, arXiv:2210.16323.
[32] Y. Bao, R. Fan, A. Vishwanath, and E. Altman,

arXiv:2301.05687.
[33] J. Y. Lee, C.-M. Jian, and C. Xu, arXiv:2301.05238.
[34] Y. Zou, S. Sang, and T. H. Hsieh, arXiv:2301.07141.
[35] R. Bariev, Sov. Phys. JETP 50, 613 (1979).
[36] B. M. McCoy and J. H. H. Perk, Phys. Rev. Lett. 44, 840 (1980).
[37] F. Iglói, I. Peschel, and L. Turban, Adv. Phys. 42, 683 (1993).
[38] M. Oshikawa and I. Affleck, Nucl. Phys. B 495, 533 (1997).
[39] F. Iglói, Z. Szatmári, and Y.-C. Lin, Phys. Rev. B 80, 024405

(2009).

245132-21

https://doi.org/10.1038/nphys1157
https://doi.org/10.1103/PhysRevB.104.104305
https://doi.org/10.1103/PhysRevLett.127.220503
http://arxiv.org/abs/arXiv:2110.06963
http://arxiv.org/abs/arXiv:2112.01519
http://arxiv.org/abs/arXiv:2112.03061
https://doi.org/10.22331/q-2023-02-02-910
https://doi.org/10.1103/PRXQuantum.3.040337
https://doi.org/10.1103/PhysRevX.13.021026
http://arxiv.org/abs/arXiv:2208.11136
http://arxiv.org/abs/arXiv:2208.11699
http://arxiv.org/abs/arXiv:2209.03964
https://doi.org/10.1103/PRXQuantum.4.020339
https://doi.org/10.1007/JHEP12(2022)124
https://doi.org/10.1007/JHEP02(2023)095
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevB.98.205136
https://doi.org/10.1103/PhysRevB.100.134306
https://doi.org/10.1103/PhysRevX.10.041020
https://doi.org/10.1103/PhysRevLett.125.030505
https://doi.org/10.1103/PhysRevB.101.104301
https://doi.org/10.1103/PhysRevB.101.104302
https://doi.org/10.1146/annurev-conmatphys-031720-030658
https://doi.org/10.1016/0550-3213(84)90052-X
https://doi.org/10.1016/0550-3213(84)90241-4
http://arxiv.org/abs/arXiv:2210.16323
http://arxiv.org/abs/arXiv:2301.05687
http://arxiv.org/abs/arXiv:2301.05238
http://arxiv.org/abs/arXiv:2301.07141
https://doi.org/10.1103/PhysRevLett.44.840
https://doi.org/10.1080/00018739300101544
https://doi.org/10.1016/S0550-3213(97)00219-8
https://doi.org/10.1103/PhysRevB.80.024405


WEINSTEIN, SAJITH, ALTMAN, AND GARRATT PHYSICAL REVIEW B 107, 245132 (2023)

[40] V. Eisler and I. Peschel, Ann. Phys. (Berl.) 522, 679 (2010).
[41] M. J. Gullans and D. A. Huse, Phys. Rev. Lett. 125, 070606

(2020).
[42] Y. Li, Y. Zou, P. Glorioso, E. Altman, and M. P. A. Fisher, Phys.

Rev. Lett. 130, 220404 (2023).
[43] X. Feng, B. Skinner, and A. Nahum, arXiv:2210.07264.
[44] Y. Li and M. P. A. Fisher, arXiv:2108.04274.
[45] M. Ippoliti and V. Khemani, Phys. Rev. Lett. 126, 060501

(2021).
[46] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information, 10th ed. (Cambridge University Press,
Cambridge, 2010).

[47] I. Peschel, J. Phys. A: Math. Gen. 38, 4327 (2005).
[48] I. Peschel and V. Eisler, J. Phys. A: Math. Theor. 45, 155301

(2012).
[49] E. Brehm and I. Brunner, J. High Energy Phys. 09 (2015) 080.
[50] A. Roy and H. Saleur, Phys. Rev. Lett. 128, 090603 (2022).
[51] M. A. Rajabpour, Phys. Rev. B 92, 075108 (2015).
[52] M. A. Rajabpour, J. Stat. Mech.: Theory Exp. (2016) 063109.
[53] X. Chen, Y. Li, M. P. A. Fisher, and A. Lucas, Phys. Rev. Res.

2, 033017 (2020).
[54] O. Alberton, M. Buchhold, and S. Diehl, Phys. Rev. Lett. 126,

170602 (2021).
[55] C.-M. Jian, B. Bauer, A. Keselman, and A. W. W. Ludwig, Phys.

Rev. B 106, 134206 (2022).
[56] Y. Bao, S. Choi, and E. Altman, Ann. Phys. 435, 168618 (2021).
[57] X. Turkeshi, A. Biella, R. Fazio, M. Dalmonte, and M. Schirò,

Phys. Rev. B 103, 224210 (2021).
[58] M. Buchhold, Y. Minoguchi, A. Altland, and S. Diehl, Phys.

Rev. X 11, 041004 (2021).
[59] T. Botzung, S. Diehl, and M. Müller, Phys. Rev. B 104, 184422

(2021).
[60] T. Boorman, M. Szyniszewski, H. Schomerus, and A. Romito,

Phys. Rev. B 105, 144202 (2022).
[61] X. Turkeshi, M. Dalmonte, R. Fazio, and M. Schirò, Phys. Rev.

B 105, L241114 (2022).
[62] G. Piccitto, A. Russomanno, and D. Rossini, Phys. Rev. B 105,

064305 (2022).

[63] G. Kells, D. Meidan, and A. Romito, SciPost Phys. 14, 031
(2023).

[64] X. Turkeshi and M. Schirò, Phys. Rev. B 107, L020403 (2023).
[65] E. Fradkin, Field Theories of Condensed Matter Physics,

2nd ed. (Cambridge University Press, Cambridge, 2013).
[66] T. D. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod. Phys. 36,

856 (1964).
[67] B. M. Terhal and D. P. DiVincenzo, Phys. Rev. A 65, 032325

(2002).
[68] E. Knill, arXiv:quant-ph/0108033.
[69] S. Bravyi, Quantum Inf. Comp. 5, 216 (2005).
[70] P. Calabrese and J. Cardy, J. Phys. A: Math. Theor. 42, 504005

(2009).
[71] Y. Zou, A. Milsted, and G. Vidal, Phys. Rev. Lett. 124, 040604

(2020).
[72] C. Holzhey, F. Larsen, and F. Wilczek, Nucl. Phys. B 424, 443

(1994).
[73] R. Shankar, Quantum Field Theory and Condensed Matter: An

Introduction (Cambridge University Press, Cambridge, 2017).
[74] H. Nishimori, Statistical Physics of Spin Glasses and Infor-

mation Processing: An Introduction (Oxford University Press,
Oxford, 2001).

[75] M. Fava, L. Piroli, T. Swann, D. Bernard, and A. Nahum,
arXiv:2302.12820.

[76] I. Poboiko, P. Pöpperl, I. V. Gornyi, and A. D. Mirlin,
arXiv:2304.03138.

[77] H. Labuhn, D. Barredo, S. Ravets, S. De Léséleuc, T. Macrì, T.
Lahaye, and A. Browaeys, Nature (London) 534, 667 (2016).

[78] A. Browaeys and T. Lahaye, Nat. Phys. 16, 132 (2020).
[79] Z. Yang, D. Mao, and C.-M. Jian, arXiv:2301.08255.
[80] S. Murciano, P. Sala, Y. Liu, R. S. K. Mong, and J. Alicea,

arXiv:2302.04325.
[81] A. Y. Kitaev, Phys.-Usp. 44, 131 (2001).
[82] B. Zumino, J. Math. Phys. 3, 1055 (1962).
[83] M. Wimmer, ACM Trans. Math. Softw. 38, 1 (2012).
[84] M. Bander and C. Itzykson, Phys. Rev. D 15, 463 (1977).
[85] J. B. Zuber and C. Itzykson, Phys. Rev. D 15, 2875 (1977).
[86] J. B. Kogut, Rev. Mod. Phys. 51, 659 (1979).

245132-22

https://doi.org/10.1002/andp.201000055
https://doi.org/10.1103/PhysRevLett.125.070606
https://doi.org/10.1103/PhysRevLett.130.220404
http://arxiv.org/abs/arXiv:2210.07264
http://arxiv.org/abs/arXiv:2108.04274
https://doi.org/10.1103/PhysRevLett.126.060501
https://doi.org/10.1088/0305-4470/38/20/002
https://doi.org/10.1088/1751-8113/45/15/155301
https://doi.org/10.1007/JHEP09(2015)080
https://doi.org/10.1103/PhysRevLett.128.090603
https://doi.org/10.1103/PhysRevB.92.075108
https://doi.org/10.1088/1742-5468/2016/06/063109
https://doi.org/10.1103/PhysRevResearch.2.033017
https://doi.org/10.1103/PhysRevLett.126.170602
https://doi.org/10.1103/PhysRevB.106.134206
https://doi.org/10.1016/j.aop.2021.168618
https://doi.org/10.1103/PhysRevB.103.224210
https://doi.org/10.1103/PhysRevX.11.041004
https://doi.org/10.1103/PhysRevB.104.184422
https://doi.org/10.1103/PhysRevB.105.144202
https://doi.org/10.1103/PhysRevB.105.L241114
https://doi.org/10.1103/PhysRevB.105.064305
https://doi.org/10.21468/SciPostPhys.14.3.031
https://doi.org/10.1103/PhysRevB.107.L020403
https://doi.org/10.1103/RevModPhys.36.856
https://doi.org/10.1103/PhysRevA.65.032325
http://arxiv.org/abs/arXiv:quant-ph/0108033
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1103/PhysRevLett.124.040604
https://doi.org/10.1016/0550-3213(94)90402-2
http://arxiv.org/abs/arXiv:2302.12820
http://arxiv.org/abs/arXiv:2304.03138
https://doi.org/10.1038/nature18274
https://doi.org/10.1038/s41567-019-0733-z
http://arxiv.org/abs/arXiv:2301.08255
http://arxiv.org/abs/arXiv:2302.04325
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1063/1.1724294
https://doi.org/10.1145/2331130.2331138
https://doi.org/10.1103/PhysRevD.15.463
https://doi.org/10.1103/PhysRevD.15.2875
https://doi.org/10.1103/RevModPhys.51.659

