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Strong ferromagnetic fluctuations in a doped checkerboard lattice
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Using the determinant quantum Monte Carlo method, we study the magnetic susceptibility in the parameter
space of the on-site interaction U , temperature T , electron filling 〈n〉, and the frustration control parameter t ′

within the Hubbard model on a two-dimensional checkerboard lattice. It is shown that the system exhibits stable
and strong ferromagnetic fluctuations about the electron filling 〈n〉 � 1.2 for different t ′, and the ferromagnetic
susceptibility is strongly enhanced by the increasing interaction and decreasing temperature. We also discuss
the sign problem to clarify which parameter region is accessible and reliable. Our findings not only demonstrate
important implications for modulating magnetism in the checkerboard lattice, but will also provide a theoretical
platform for a flat-band model that demonstrates a variety of physical properties.
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I. INTRODUCTION

Because of the discovery of doped graphene-based ma-
terials [1] and metal-doped transition-metal dichalcogenides
(TMDs) [2], which have the capacity to control magnetic
order through charge transfer, the possibility of manufacturing
new magnetic devices has attracted much attention. Re-
searchers are interested in semiconducting two-dimensional
(2D) materials doped with impurity atoms, which are consid-
ered as a promising platform for high-performance spintronic
devices and sensors. Magnetism plays an important role in
the properties of these materials [3] and, in the past few
years, people have had great interest in the properties of quan-
tum magnets with geometric frustration [4], such as organic
charge transfer salts of triangular lattices [5], compounds of
kagome lattices [6–9], and so on, which are expected to de-
scribe novel quantum states and interesting magnetic phases
in this field, including quantum spin liquid [10], and spin
ice [11–13]. Additionally, pyrochlore oxides such as LiV2O4

[14,15] and Sn2X2O7 (X = Nb,Ta) [16,17] represent another
geometric frustration structure, i.e., the checkerboard lattice
[18], which attracts intensive studies due to its rich phase dia-
gram induced by electronic correlation, including the quantum
Hall effect [19], superconductivity [20], Mott physics [21,22],
and other phenomena. One promising candidate is Sn2X2O7

(X = Nb,Ta), which shows possible ferromagnetism induced
by the quasi-flat band [17].

Most of the previous theoretical investigations primarily
focused on the checkerboard lattice at half filling. Based on
the Heisenberg model with spin exchange coupling interaction
[23,24], rich magnetic characteristics such as valence-bond
crystal phases [25], and various magnetization plateaus [26]
have been proposed. The ground-state properties of the
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geometrically frustrated Hubbard model on the anisotropic
checkerboard lattice at half filling have been studied us-
ing the path-integral renormalization group method [27–29].
It was found that the increase of the Coulomb interaction
may induce the first-order metal-insulator transition to the
antiferromagnetically ordered phase [27], and the plaquette-
singlet insulator may emerge besides the antiferromagnetic
insulator and the paramagnetic metal, depending on the
frustration-control parameter [29]. However, intriguing phys-
ical phenomena always arise as the system is doped. For
a simple square lattice, it is well known that it is a Mott
insulator with antiferromagnetic Néel order for all values of
U > 0 [30–33]. By using various approaches, including deter-
minant quantum Monte Carlo (DQMC) [34–36], variational
Monte Carlo (VMC) [37,38], and dynamic cluster approxi-
mation (DCA) [39], there is evidence that the doped square
lattice exhibits many of the basic physical properties which
characterize the unconventional superconductors [40,41], for
example, antiferromagnetic spin fluctuations [42,43], pseudo-
gap [44–46], and nematic correlations [47], as well as stripes
[48]. Besides these, a doping-dependent metal-insulator tran-
sition in the disordered Hubbard model on a square lattice
[49,50] and the possible controllability of ferromagnetism in
a doped honeycomb lattice [51] are also proposed. These
stimulate us to investigate the properties of a checkerboard
lattice at finite doping, especially the evolution of magnetic
characteristics. Since the checkerboard lattice contains frus-
tration and a flat band, which the square lattice does not
possess, it would be an interesting topic to study how strong
ferromagnetic fluctuations emerge in a doped Hubbard model
on a checkerboard lattice.

In the checkerboard lattice, there are two nonequivalent
sites per unit cell of the square lattice, defining two inter-
penetrating sublattices, as illustrated in Fig. 1(a), where t
represents the nearest hopping and t ′ indicating the next-
nearest hopping. Figure 1(b) shows the high-symmetry lines
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FIG. 1. (a) Sketch of checkerboard lattice. (b) The first Brillouin
zone and the high-symmetry direction (red line). (c) The energy band
along the high-symmetry direction. (d) DOS (solid lines) and filling
n (dashed lines) as functions of energy.

of the first Brillouin zone. In Fig. 1(c), one can see that the
checkerboard lattice exhibits an energetically flat band that
is in touch with a quadratically dispersive band along with
high-symmetry lines of the first Brillouin zone in k space. The
density of states (DOS) is shown in Fig. 1(d), and there is van
Hove singularity in its shape at different fillings that depend
on the value of t ′. Usually, the interplay between electronic
correlation and flat band, or van Hove singularity, may lead
to strong ferromagnetic fluctuations. The magnetic exchange
between local spins is largely dominated by the contribution
of the flat band, which is ferromagnetic, as revealed by many
studies [52–56].

In this work, we will further provide an intensive numerical
simulation on the magnetism of the doped Hubbard model on
a checkerboard lattice using the DQMC method. The checker-
board lattice that we construct can be realized and modulated
through considering next-nearest-neighbor hopping t ′ as the
frustration-control parameter, to study the effect of the geo-
metric frustration and doping on the magnetic order at finite
temperatures and to interpret the observed magnetic behavior
as a result of electronic correlation and the synergetic effect of
a special lattice geometry. We also discuss the sign problem to
determine which parameter regions are accessible and unreli-
able. Interestingly, we found that the system showed obvious
ferromagnetism when the electron filling is n � 1.2, and it
is stable and strongest at approximately n ≈ 1.5. The strong
ferromagnetic fluctuations we revealed can be understood in
the framework of the flat-band scenario.

II. MODEL AND METHODS

We consider the Hubbard model defined on a two-
dimensional checkerboard lattice. The checkerboard lattice
possesses two sublattices, so the number of total lattice sites

is 2 × L2. The Hamiltonian that we studied is given by

H = H1 + H2 + H3 + H4,

H1 = −t
∑
〈i, j〉σ

(c†
iAσ c jBσ + H.c.),

H2 = −t ′ ∑
iσ

(c†
iAσ ci+xAσ + c†

iAσ ci−xAσ + H.c.),

H3 = −t ′ ∑
jσ

(c†
iBσ ci+yBσ + c†

iBσ ci−yBσ + H.c.),

H4 = U
∑

il

nil↑nil↓ + μ
∑
ilσ

nilσ , (1)

where t is the hopping amplitude between the nearest-
neighbor sites on the lattice. We set t = 1 as a unit of energy,
where t ′ is the next-nearest-neighbor (NNN) hopping inte-
gral and c†

ilσ (cilσ ) indicates the creation (annihilation) of an
electron at a site i. The sublattice is l and the spin is σ .
nilσ = c†

ilσ cilσ is the corresponding particle number operator
and 〈i, j〉 denotes the nearest neighbor. The second term H2

represents the next-nearest hopping term of the A sublattice,
where only the hoppings in the x direction are considered.
The third term H3 represents the next nearest B sublattice, and
only the y-direction hoppings are considered. The last term
contains the Hubbard interaction U , which is the strength of
the electron repulsion, and the chemical potential μ, which
tunes the electron filling.

We can carry out a Fourier transformation cklσ =∑
j ei jRc jlσ to extract the band structure in the noninteracting

limit (U → 0). After Fourier transformation, the noninteract-
ing Hamiltonian can be block diagonalized to H = ∑

k H(k),
and H(k) can be written as

H =
∑
kσ

(c†
k1σ c†

k2σ )

(
αk βk
βk γk

)(
ck1σ

ck2σ

)
, (2)

where

βk = −2t

[
cos

k
2

· ( 	a1 + 	a2) + cos
k
2

· ( 	a1 − 	a2)

]
,

αk = −2t ′ cos k · 	a1,

γk = −2t ′ cos k · 	a2. (3)

The unit vector 	a1 = (1, 0), 	a2 = (0, 1). Diagonalizing this
matrix can transform the Hamiltonian into a band basis, and
the two eigenvalues of this matrix are E±(k) = 1/2[αk +
βk] ± 1/2

√
α2

k − 2αkγk + 4β2
k + γ 2

k . The band structure is
plotted in Fig. 1(c), where we can see that the flat band starts
to develop when the t ′ term is introduced, and the upper band
becomes completely flat when t ′/t = 1.

We perform DQMC [57–59] simulations to extract the
finite-temperature properties of a checkerboard lattice at dif-
ferent fillings and different t ′/t values. The main principle of
the DQMC algorithm is as follows: first, the partition func-
tion Z = Tre−βH is expressed in a discretized imaginary-time
slice, and this step is called the Trotter decomposition. Next,
we decouple the interaction term by the Hubbard-Stratonovich
(HS) transformation [34,59]. After this step, an auxiliary field
couples to electrons and the interaction term disappears. Then,
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we can trace out the electron freedom and the resulting de-
terminant becomes the weight in the sampling process. The
observable can be written as 〈O〉 = Tr[e−βH O]

Z = ∑
s Ps〈O〉s,

where the weight is Ps = det[1+Bs (β,0)]∑
s det[1+Bs (β,0)] and, in practice,

the sampling used is based on a single-flip algorithm, and
the accept ratio is R = Ps′

Ps
. Green functions of certain aux-

iliary field configurations can be computed by the formula
Gσ = [I + ∏

l Bσ
l ]−1. The B matrix introduced above is Bσ

l =
eσ�τλsl e−�τH0 , and sl is the auxiliary field introduced, λ is the
corresponding coefficient, and H0 is the noninteracting part of
the Hamiltonian. One should note that after HS transforma-
tion, the action becomes bilinear and the correlations can be
calculated by using the Wick theorem; then, all observables
can be calculated by Green functions. In practice, we start at a
random initialized auxiliary field; then we conduct a warm-up
process without calculating observables. Next, we conduct
several measurements to accumulate observables into bins. In
our simulations, we use 8000 sweeps to equilibrate the sys-
tem and an additional ∼10 000–200 000 sweeps to generate
measurements, which were split into 10 bins to provide the
basis of the coarse-grain averages. The validity of this method
has been verified in many previous studies, including doped
graphene [51], an iron-based superconductor [60], as well as
a highly geometry-frustrated system [61].

To study ferromagnetic fluctuations, we define the spin
susceptibility in the z direction at zero frequency,

χ (q) = 1

N

∑
i, j

∑
l,m

∫ β

0
dτe−iq(Ri−R j )

〈
Sz

i,l (τ )Sz
j,m(0)

〉
, (4)

where Sz
i,l (τ ) = eHτ Sz

j,m(0)e−Hτ with Sz
i,l = c†

il↑cil↑ − c†
il↓cil↓.

To have a deep understanding of the effect of t ′ on the mag-
netic order, we look at the spin susceptibility as a function
of temperature T , interaction U , and electronic filling n on a
L = 8 lattice for several typical t ′/t = 0.25 ∼ 1.50.

III. RESULTS AND DISCUSSION

In Fig. 2, we show the magnetic susceptibility χ (q) along
with high-symmetry lines of the first Brillouin zone including

 = (0, 0), K = (π, π ), and M = (π, 0). We can see that the
t ′/t term has a significant effect at U = 3.0t , T = t/6, with
different filling (a) n = 1.30, (b) n = 1.40, (c) n = 1.50, and
(d) n = 1.60. χ (
) gets enhanced greatly as t ′/t increases,
while χ (K ) increases only slightly. The change of χ (
) is
considered to be a significant ferromagnetic fluctuation with
increasing t ′/t . And we may also notice that χ (
) have a
peak at t ′ = 1, where the upper band is a flat band. This
reflects the importance of the flat band and electron structure
in the shaping of ferromagnetic behavior. To understand the
filling dependence of magnetic correlations in a checkerboard
lattice, we show, in Fig. 3, the magnetic susceptibilities for
ferromagnetic fluctuation χ (
) and antiferromagnetic fluctu-
ation χ (K ) at T = t/6 and U = 3.0t with different values
of t ′/t , (a) t ′/t = 0.50, (b) t ′/t = 0.75, (c) t ′/t = 1.00, and
(d) t ′/t = 1.25. Here we can see that χ (
) increases faster
than χ (K ) at filling in the range 1.20 to 1.60, and χ (
)
becomes higher than χ (K ), indicating that ferromagnetic fluc-
tuation is dominant. We also see the maximum of magnetic

FIG. 2. Magnetic susceptibility vs momentum q at different t ′/t .
Here, U = 3.0t , T = t/6 for (a) n = 1.30, (b) n = 1.40, (c) n =
1.50, and (d) n = 1.60.

susceptibilities at approximately n ≈ 1.5, which is stable and
the strongest ferromagnetic fluctuation.

Then, we investigate the properties of ferromagnetic cor-
relation at a fixed electron filling n = 1.50. In Figs. 4(a)
and 4(b), we show the magnetic susceptibility at the filling
n = 1.50, U = 3.0t , t ′/t = 0.75, and t ′/t = 1.00. For temper-
ature T ranging from 1/2 to 1/8, the magnetic susceptibility
increases as T decreases. In Figs. 4(c) and 4(d), we show the
magnetic susceptibility at the filling n = 1.50, t ′/t = 0.75,
and t ′/t = 1.00. For U ranging from 1.0 to 4.0 and tem-
perature T = t/6, the magnetic susceptibility increases as
U increases. This reflects the enhancement of ferromagnetic
correlation by interaction U .

FIG. 3. Magnetic susceptibility χ (
) (red) and χ (K ) (blue)
vs electron filling n at U = 3.0t , T = t/6 with (a) t ′/t = 0.50,
(b) t ′/t = 0.75, (c) t ′/t = 1.00, and (d) t ′/t = 1.25.
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FIG. 4. The magnetic susceptibility vs the momentum q at dif-
ferent values of T with U = 3.0t , n = 1.50, (a) t ′/t = 0.75, and
(b) t ′/t = 1.00. The magnetic susceptibility vs the momentum q at
different values of U with T = t/6, n = 1.50, (c) t ′/t = 0.75, and
(d) t ′/t = 1.00.

Then, we present the temperature dependence of the mag-
netic susceptibility at n = 1.50 with different U and t ′/t in
Figs. 5(a) and 5(b). The figure exhibits a linear correlation
between 1/χ and temperature T , which corresponds to the
Curie-Weiss behavior 1/χ = (T − Tc)/A. Therefore, we ex-
trapolate 1/χ to zero temperature by using linear fitting. If the
system possesses a finite Tc, its intercept should be negative.
Figure 5(a) shows that the on-site interaction U enhances
the ferromagnetic fluctuations and the negative intercept ap-
pears at approximately U = 2.0t . Figure 5(b) shows that the
fully frustrated case t ′/t = 1.0 has the lowest intercept, which
means it has the highest Tc.

According to previous studies, the sign problem is a major
obstacle to reaching low temperatures and strong-coupling
regions in the QMC simulations. In Fig. 6, the average sign
evolves with electron filling n, while other parameters are
fixed, for a doped checkerboard lattice. In our simulations,
especially in the following simulation results where the sign
problem is much worse, we have increased the measurement

FIG. 5. (a) The temperature-dependent 1/χ at n = 1.50 and
t ′/t = 0.75 with different U . (b) The temperature-dependent 1/χ at
U = 3.0t and n = 1.50 with different t ′/t .

FIG. 6. The average sign as a function of electron filling n for
(a) different t ′/t , (b) different temperature T , (c) different lattice sizes
L, and (d) different interactions U .

from ∼10 000–200 000 times to compensate for the fluctu-
ations, which is large enough to ensure the reliability and
accuracy of the data [62]. Figure 6 plots the average sign with
different values of t ′/t [Fig. 6(a)], different temperatures T
[Fig. 6(b)], different lattice sizes L [Fig. 6(c)], and different
interactions U [Fig. 6(d)].

In Fig. 6(a), the sign problem becomes worse along with
hopping strength t ′, which increases at first and then decreases
as the value of t ′/t continuously increases. Particularly, when
t ′/t = 1.00, it is shown that the average sign falls to a min-
imum value. We note another universal feature for all values
of t ′, which is that 〈sign〉 presents a minimum at the electron
filling n around 1.20. As shown in the analysis of magnetism
in Fig. 3, we find that the value where ferromagnetic fluctua-
tions become dominant is also n ≈ 1.20. It has been reported
that 〈sign〉 can be related to the quantum phase transition
[63], So, this minimum in the 〈sign〉 may come out of the
ferromagnetism.

In Fig. 6(b), the average sign decays exponentially with
decreasing temperature. The average sign is almost zero when
n > 1.00 at the temperatures T = t/8 and T = t/10, making
the DQMC simulations nearly impossible. Moreover, by com-
paring various values of lattice size L for the t ′/t = 0.75, we
know that as the lattice size increases, the value of the average
sign decreases, as shown in Fig. 6(c). In Fig. 6(d), for values
of U in the range 1.0 to 4.0 with the temperature fixed at T =
t/6, the sign problem becomes worse as U becomes larger.

IV. CONCLUSIONS

In this work, we study the finite-temperature properties
of the checkerboard lattice Hubbard model by means of the
DQMC method. Our results present exact numerical results
on the magnetic correlation. By controlling the geometric
frustration via a systematic change in the transfer integral
t ′ along the diagonal bonds, we show the wide parameter
region from t ′/t = 0.25 to t ′/t = 1.50, including the fully
frustrated checkerboard lattice t ′/t = 1.00, where there is a
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stable ferromagnetic state at electron filling n = 1.5 for a
certain temperature, and this effect is obviously strengthened
as the interaction U increases. We also discuss the sign prob-
lem to clarify which parameter regions are accessible and
reliable. Our findings not only have important implications
for exploiting emergent flat-band physics in special lattice ge-
ometries, but also may shed light on the competition between
the magnetic modes of highly frustrated systems. Therefore,

we provide further guidance for experiments in this parameter
space.
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