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Low-rank Green’s function representations applied to dynamical mean-field theory
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Several recent works have introduced highly compact representations of single-particle Green’s functions in
the imaginary time and Matsubara frequency domains, as well as efficient interpolation grids used to recover
the representations. In particular, the intermediate representation with sparse sampling and the discrete Lehmann
representation (DLR) make use of low rank compression techniques to obtain optimal approximations with
controllable accuracy. We consider the use of the DLR in dynamical mean-field theory (DMFT) calculations,
and in particular show that the standard full Matsubara frequency grid can be replaced by the compact grid of
DLR Matsubara frequency nodes. We test the performance of the method for a DMFT calculation of Sr2RuO4

at temperature 50 K using a continuous-time quantum Monte Carlo impurity solver, and demonstrate that
Matsubara frequency quantities can be represented on a grid of only 36 nodes with no reduction in accuracy,
or increase in the number of self-consistent iterations, despite the presence of significant Monte Carlo noise.
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I. INTRODUCTION

In the past several decades, dynamical mean-field theory
(DMFT) [1] has become a standard method for studying
interacting fermionic lattice problems. In combination with
first-principles methods [2,3], it has been widely adopted to
calculate properties of strongly correlated materials. In such
DMFT calculations of real materials, the low-temperature
regime is of particular importance, as numerous experimental
examples show: the critical temperature TC for superconduc-
tivity in Sr2RuO4 is as low as approximately 1.5 K ≈ 10−4 eV
[4]; the magnetic ordering in double-perovskite iridates sets
is below 2 K [5]. In these cases, the ordering temperature
energy scale differs by about five orders of magnitude from
the high-energy cutoff of approximately 10 eV.

The single-particle Green’s function, a central quantity in
DMFT, is often calculated in the imaginary time or Matsubara
frequency domain. The standard representation on an equis-
paced grid in imaginary time, or on Matsubara frequencies up
to a cutoff, is low-order accurate, and requires

N = O(βωmax) (1)

degrees of freedom. Here, β is the inverse temperature,
and ωmax is the high energy cutoff of the spectral function
(i.e., ρ(ω) = 0 outside [−ωmax, ωmax]). In typical DMFT cal-
culations, computing the local Green’s function requires a
possibly expensive Brillouin zone (BZ) integration for each
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Matsubara frequency grid point and each iteration of a self-
consistency loop determining the chemical potential. This cost
can become substantial as the temperature is decreased.

A significant research effort has recently focused on de-
veloping compact and generic representations of imaginary
time and Matsubara frequency Green’s functions, beginning
with orthogonal polynomial bases [6–9] and adaptive grid
representations in imaginary time [7,10]. More recently, op-
timized basis sets obtained from low-rank compression of the
Lehmann integral representation have been developed, along
with associated stable interpolation grids allowing recovery of
Green’s functions from a small number of samples in either
the imaginary time or Matsubara frequency domains. This
began with the introduction of the orthogonal intermediate
representation (IR) basis [11,12]. Interpolation grids for the IR
were later developed using the sparse sampling method [13],
and the related minimax isometry method [14] was developed
to generate efficient grids for Matsubara frequency summa-
tion. Recently, some of the authors introduced the discrete
Lehmann representation (DLR) [15], which uses a nonorthog-
onal but explicit basis of exponentials, with associated DLR
interpolation grids. Both the IR and DLR bases, and their
interpolation grids, contain only

N = O(log(βωmax) log(ε−1)) (2)

degrees of freedom, with ε a user-provided error tolerance.
They therefore yield exceptionally compact representations
with controllable, high-order accuracy. Fortran, Python, and
Julia libraries are available for both the IR with sparse sam-
pling [16] and the DLR [17]. Low-rank Green’s function
representations have been used to solve self-consistent dia-
grammatic equations in a variety of applications, including the
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SYK model [15,17,18], the self-consistent finite temperature
GW method [13,19], Eliashberg-type equations for super-
conductivity [20–23], and Bethe-Salpeter-type equations for
Hubbard models [24].

In this work we investigate the applicability and robustness
of the DLR in self-consistent DMFT calculations. Specif-
ically, we replace the standard Matsubara frequency grid
with the compact DLR grid in the calculation of the local
Green’s function and all subsequent expressions in the DMFT
equations. We find that this method is stable, even in the
presence of noisy Green’s function data as obtained from
continuous-time quantum Monte Carlo (CTQMC) impurity
solvers, and that neither the convergence nor the accuracy
of self-consistent iteration is compromised. We demonstrate
a reduction in computational effort and memory required
to calculate the local Green’s function by over two orders
of magnitude for the correlated Hund’s metal Sr2RuO4 at
T = 50 K. Although the expensive solution of the impurity
problem remains a barrier in many DMFT calculations, our
approach therefore dramatically reduces the other significant
cost in the DMFT loop, and leads to a more automated
procedure.

II. BACKGROUND

A. The dynamical mean-field theory loop

We briefly outline the DMFT equations, and refer the
reader to Refs. [1,2] for a more comprehensive overview. The
central quantity of interest is the local Green’s function

Gloc(iνn) =
∫

BZ

dk
VBZ

[iνn − εk + μ − �(k, iνn)]−1. (3)

Here iνn = i(2n + 1)π/β is the Matsubara frequency variable
(for fermionic Green’s functions), εk is the noninteracting
lattice Hamiltonian, μ is the chemical potential, �(k, iνn)
is the lattice self-energy, and VBZ is the volume of the BZ.
The chemical potential can be computed self-consistently in
each DMFT iteration in order to maintain the correct particle
density. In DMFT, the self-energy is approximated as a local
quantity, and is computed from the Green’s function Gimp(iνn)
of an effective impurity problem via the Dyson equation

�(k, iνn) ≈ �imp(iνn) = G−1
0 (iνn) − G−1

imp(iνn). (4)

Here, the effective noninteracting bath is represented by the
Weiss mean-field

G−1
0 (iνn) = G−1

loc (iνn) + �imp(iνn), (5)

obtained from the local Green’s function Eq. (3). The local
Green’s function is obtained self-consistently, and conver-
gence is reached when Gloc = Gimp. For concreteness, we
focus in this paper on the continuous-time hybridization ex-
pansion (CTHYB) impurity solver [25], in which the impurity
problem is defined through the local noninteracting Hamilto-
nian

H0,loc =
∫

BZ

dk
VBZ

εk − μ (6)

and the Matsubara frequency hybridization function

	(iνn) = iνn − G−1
0 (iνn) − H0,loc, (7)

FIG. 1. The steps of the DMFT loop. The arrows around the for-
mula for Gloc indicate that this quantity is computed self-consistently
with the chemical potential to maintain the correct particle density.
Our approach improves the efficiency of the DMFT loop by mak-
ing two simple changes compared with the standard algorithm: (1)
All operations in the Matsubara frequency domain are carried out
only at the DLR nodes νn = νnk , rather than the full Matsubara
frequency grid, and (2) the imaginary time hybridization function
	(τ ) is obtained from the computed values 	(iνnk ) by forming a
DLR expansion and obtaining its Fourier transform analytically.

or its Fourier transform 	(τ ) to the imaginary time domain.
We emphasize, however, that compact representations of the
type used here are in principle equally applicable for other
types of impurity solvers.

The DMFT loop, outlined above, is summarized in Fig. 1.
Although the solution of the impurity problem is often the
most computationally intensive and technical step in the
DMFT loop, it is outside the scope of our current discus-
sion. Rather, we focus on the calculation of Gloc(iνn), which
requires the evaluation of a BZ integral for each Matsubara
frequency grid point iνn. In typical calculations all Matsubara
frequency points are used up to a cutoff O(ωmax) [yielding
O(βωmax) points in total], in order to capture the effective
energy scales of the system. We demonstrate here that the
number of Matsubara frequency points at which Gloc(iνn)
must be computed can be dramatically reduced.

B. Discrete Lehmann representation and compact
Matsubara frequency grids

The DLR method provides a compact, explicit basis for
Matsubara Green’s functions and self-energies, along with
associated interpolation grids. We give a brief review of these
concepts here, and refer to Ref. [15] for a detailed presentation
and analysis.

Each Matsubara Green’s function G(iνn) has a spectral
Lehmann representation

G(iνn) = −
∫ ∞

−∞
K (iνn, ω) ρ(ω) dω, (8)
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where ρ(ω) is the spectral function, and the analytic continu-
ation kernel K is given in the fermionic case by

K (iνn, ω) ≡ (ω − iνn)−1. (9)

In most practical applications, ρ is unknown, but G(iνn) can
either be sampled directly or obtained from samples of the
imaginary time Green’s function G(τ ). We assume ρ can be
truncated beyond a frequency cutoff |ω| = ωmax. Defining the
dimensionless parameter

� ≡ βωmax,

and nondimensionalizing variables by νn ← βνn and ω ←
βω, we obtain the truncated Lehmann representation

G(iνn) = −
∫ �

−�

K (iνn, ω) ρ(ω) dω, (10)

where νn is given as above with β = 1, and the arguments of
G, ρ have been suitably rescaled.

It can be shown that the kernel of this integral represen-
tation K (iνn, ω) has super-exponentially decaying singular
values [11,12]. This low-rank structure is indicative of the
well-known ill conditioning of analytic continuation from
the Matsubara Green’s function to the spectral function on
the real frequency axis [26]. However, it is advantageous
for the representation of Matsubara Green’s functions them-
selves, implying that K (iνn, ω) can be approximated for any
ω ∈ [−�,�] as a linear combination of a small number of ba-
sis functions. In particular, the DLR approach uses frequency
samples of the kernel itself as basis functions:

K (iνn, ω) ≈
r∑

l=1

K (iνn, ωl )πl (ω). (11)

The r DLR frequencies ωl can be selected automatically by
the pivoted Gram-Schmidt algorithm such that the approxi-
mation in Eq. (11) is numerically stable, and accurate to a
user-provided error tolerance [27]. Substitution of Eq. (11)
into Eq. (10) demonstrates the existence of an expansion of an
arbitrary Matsubara Green’s function in the basis K (iνn, ωl ):

G(iνn) ≈
r∑

l=1

K (iνn, ωl )ĝl , (12)

with ĝl = − ∫ �

−�
πl (ω)ρ(ω) dω.

The rapid decay of the singular values of K implies the
scaling r = O(log(�) log(ε−1)), yielding exceptionally com-
pact expansions at high accuracies and low temperatures. For
example, Matsubara Green’s functions with � = 100 can be
represented to six-digit accuracy by fewer than 20 basis func-
tions; with � = 104 to six-digit accuracy by fewer than 50
basis functions; and with � = 106 to 10-digit accuracy by
fewer than 120 basis functions. By contrast, in a typical cal-
culation, for example with β = 1000 eV−1 and ωmax = 10 eV
(� = 104), one would typically require on the order of tens of
thousands of Matsubara frequencies. We emphasize that given
� and ε, the representation is universal; that is, independent
of the specific structure of the spectral function ρ characteriz-
ing the Green’s function, which is already taken into account
by the automatic compression of the kernel K .

Since ρ is typically not known and the DLR coefficients ĝl

cannot be computed directly, they can in practice be recov-
ered by fitting, or by interpolation at a collection of r DLR
Matsubara frequency nodes {iνnk }r

k=1 [15]. These nodes can
be obtained automatically, using a process similar to that used
to obtain the DLR frequencies, to ensure stable interpolation.
Thus, a Green’s function G can be characterized, to within a
controllable error, by its values G(iνnk ) at the DLR nodes.

The Fourier transform of Eq. (12) yields an imaginary time
representation

G(τ ) ≈
r∑

l=1

K (τ, ωl )ĝl , (13)

with

K (τ, ω) ≡ e−ωτ

1 + e−ω

in the transformed variables τ ← τ/β, ω ← βω. As for the
Matsubara frequency expansion, G(τ ) can either be recovered
by least squares fitting, or by interpolation at a collection of
automatically selected DLR imaginary time nodes {τk}r

k=1. We
note that the DLR interpolation procedure is similar to the
method of sparse sampling used in conjunction with the IR
basis, in which interpolation nodes are selected based on the
extrema of the highest degree IR basis function [13].

III. RESTRICTION TO COMPACT MATSUBARA
FREQUENCY GRID

We propose the following procedure to improve the effi-
ciency of the DMFT loop: Given the self-energy �imp, the
local Green’s function Gloc is evaluated only at the r DLR
Matsubara frequency nodes {iνnk }r

k=1, as are the Weiss mean-
field G0 from Eq. (5) and the hybridization function 	 from
Eq. (7). At this point, the DLR expansion of 	(iνn) is formed
by interpolation from its values at the DLR nodes using the
representation in Eq. (12), with G replaced by 	. 	(τ ) is then
given analytically by a DLR expansion in imaginary time, as
in Eq. (13). The rest of the DMFT procedure can be carried
out without modification.

The primary purpose of this paper is to verify that sys-
tematic or statistical error generated by the quantum impurity
solver does not destabilize our proposed procedure. Although
this question depends on the specific choice of impurity
solver, we carry out tests using the most popular solver,
CTQMC. We show in the next section that the interpolation
procedure is stable to Monte Carlo noise, and that the conver-
gence of the DMFT loop is not affected by the reduction of
the Matsubara frequency grid.

IV. NUMERICAL EXAMPLE: STRONTIUM RUTHENATE

We demonstrate our procedure using the correlated
Hund’s metal Sr2RuO4 [28] at low T . We compute the
electronic structure using the planewave-based QUANTUM

ESPRESSO package [29] using the standard Perdew–
Burke–Ernzerhof exchange-correlation functional, and scalar-
relativistic ultrasoft pseudopotentials [30]. After structural
optimization on a 12×12×12 Monkhorst-Pack grid, we ob-
tain lattice parameters that correspond to a = 3.880 Å and
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FIG. 2. Orbital-resolved hybridization function 	 and self-energy �imp of the three t2g orbitals during the first iteration of the DMFT loop
for the Sr2RuO4 example, demonstrating the use of the DLR procedure. (a) 	(iνn) (from initial guess with zero self-energy) given by Eq. (7).
(b) 	(τ ) obtained using the standard method, i.e., asymptotic expansion and discrete Fourier transform, and DLR interpolation from the
values 	(iνnk ). (c) �imp(iνn) calculated via the Dyson equation after the impurity problem is solved, with the hybridization functions obtained
using both methods. To suppress QMC noise, an asymptotic expansion is fit to the tail above νn = 2 eV. In the DLR approach, all Matsubara
frequency quantities are obtained only at the DLR nodes iνnk (with the parameters ωmax = 12 eV and ε = 10−6 eV−1), which are indicated in
(a) and (c).

c = 12.887 Å in the conventional unit cell [space group
I4/mmm (139)]. The primitive unit cell contains one ruthe-
nium site with a partially filled t2g shell for which we construct
three maximally localized Wannier functions [31], represent-
ing the degenerate dxz/dyz orbitals and the dxy orbital. We
recompute the Hamiltonian on a 40×40×40 k-point grid us-
ing Wannier interpolation in order to compute the BZ integrals
in Eq. (3) by equispaced integration. We add a local rotation-
ally invariant Hubbard-Kanamori interaction with U = 2.3 eV
and J = 0.4 eV [28]. The impurity problem is solved using
TRIQS/CTHYB [25] in the TRIQS library [32]. To address
the well-known numerical instability of computing the self-
energy via the Dyson equation in Eq. (4) in the presence of
quantum Monte Carlo (QMC) noise, we replace this formula
at high frequencies with an asymptotic expansion. This ex-
pansion is given by a polynomial in (iνn)−1, fit to �imp in a
window in which the QMC noise is sufficiently small so that
Eq. (4) is valid.

The DMFT calculation is implemented using the TRIQS
library [32], and the Python library pydlr provided by
libdlr [17,33] is used for DLR calculations. We solve the
DMFT equations at β = 232 eV−1, which corresponds to
T = 50 K. We note that the DLR scheme is equally applica-
ble at much lower temperatures, and we are hindered only
by the sign problem of the Monte Carlo impurity solver
used in our calculations. At this temperature, without the
DLR, approximately 12 000 Matsubara frequency nodes are
required to adequately capture the slowly-decaying tail of
the Green’s functions to allow for accurate Fourier trans-
forms. More specifically, in the TRIQS library, the Fourier
transform 	(τ ) of 	(iνn) is obtained by the following pro-
cedure: (1) fit an asymptotic expansion in inverse powers of
iνn to 	(iνn), (2) Fourier transform this asymptotic expan-
sion analytically, (3) Fourier transform the difference between
	(iνn) and its asymptotic expansion, which is rapidly de-
caying, by a discrete Fourier transform on the Matsubara
frequency grid, and add the results. We note that since the
asymptotic expansion is not valid until n = O(�), and one
must fit from a window well within the tail region, a large
number of Matsubara frequencies is typically needed in this
procedure.

Choosing ωmax = 12 eV and ε = 10−6 eV−1, the number
of DLR basis functions and Matsubara frequency nodes is
r = 36, reducing the number of BZ integrals required to cal-
culate Gloc in Eq. (3) by a factor of over 300 in this case. While
it may be possible to further optimize the number of Matsub-
ara frequencies used in the standard approach, our method
nevertheless represents a reduction from O(�) nodes, with
typically a large prefactor, to O(log �) nodes. Furthermore,
it avoids the complicated Fourier transform procedure used
with the standard Matsubara frequency grid, since 	(τ ) is
obtained from the DLR expansion of 	(iνn) by analytical
Fourier transform.

Figure 2 shows the first iteration of the DMFT loop com-
paring the hybridization function and the self-energy obtained
using the standard method and the DLR approach (shown
in markers/dashed lines and solid lines, respectively). In our
scheme, we first compute Gloc, G0, and 	 at the DLR nodes
iνn = iνnk , using zero self-energy as an initial guess in Eq. (3).
The hybridization function 	(iνn) is shown in Fig. 2(a) on the
full Matsubara frequency grid, as used in the standard method,
with the DLR nodes used in our method indicated. The DLR
expansion of 	(τ ) obtained from interpolation at these nodes
and analytical Fourier transform is shown in Fig. 2(b). Since
no Monte Carlo noise has been introduced at this stage, the

FIG. 3. Convergence of DMFT self-consistency for the Sr2RuO4

example using standard and DLR procedures, measured via the norm
of the difference between Gimp and Gloc in τ [see Eq. (14)].
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FIG. 4. Imaginary part of the orbitally-resolved (a) local Green’s function, and (b) impurity self-energy in a low-frequency window for
the Sr2RuO4 example, obtained using both the standard and DLR procedures. We show the converged results, obtained independently using
the two methods. In the DLR procedure, Matsubara frequency quantities are obtained only at the indicated DLR nodes (with the parameters
ωmax = 12 eV and ε = 10−6 eV−1).

DLR expansion of 	(τ ) is correct to the DLR tolerance ε.
We then solve the impurity problem using the DLR expan-
sion of 	(τ ) to obtain the impurity Green’s function, and
subsequently the self-energy �(iνn), shown in Fig. 2(c). We
see that the self-energies obtained using the hybridization
function obtained using the full grid DMFT procedure (shown
at all Matsubara frequencies as dots) and the DLR procedure
(shown at the DLR nodes as open circles) in the impurity
solver agree to within the Monte Carlo noise level.

We next run the standard and modified DMFT loops until
self-consistency. Convergence is measured by monitoring the
quantity

E =
√

1

β

∫ β

0
dτ ‖Gimp(τ ) − Gloc(τ )‖2

F , (14)

where ‖·‖F indicates the Frobenius norm, and the normaliza-
tion prevents a trivial scaling of the error with β, assuming
a uniform distribution of Monte Carlo error. Figure 3 shows
that the convergence behavior is nearly identical for the two
approaches, with both reaching self-consistency after after
approximately 20 iterations. Finally, Fig. 4 shows Gloc(iνn)

and �imp(iνn) at convergence, demonstrating that the final
results of the two calculations agree to within the Monte Carlo
noise level.

V. CONCLUSION

Our proposed method improves the efficiency of the DMFT
procedure by replacing the standard full Matsubara frequency
grid with a highly compact grid compatible with interpolation
using the DLR basis. We demonstrate the effectiveness of this
approach for a DMFT calculation of Sr2RuO4 using CTQMC
as the impurity solver. In general, our results suggest that the
standard representations of quantities appearing in the DMFT
loop can be replaced by much more efficient representations,
such as the DLR, without incurring a penalty in accuracy or
stability. We note that the same approach should be applica-
ble to other impurity solvers, in particular fast approximate
solvers used in real materials applications.
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