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Frequency-dependent Faraday and Kerr rotation in anisotropic
nonsymmorphic Dirac semimetals
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We calculate the frequency-dependent longitudinal and Hall conductivities and the Faraday and Kerr rotation
angles for a single sheet of anisotropic Dirac semimetal protected by nonsymmorphic symmetry in the presence
of a Zeeman term coupling to the out-of-plane component of the spin. While the Zeeman term causes a rotation of
the plane of polarization of the light, the anisotropy causes the appearance of an elliptically polarized component
in an initially linearly polarized beam. The two effects can be combined in a single complex Faraday rotation
angle. At the zero-frequency limit, we find a finite value of the Faraday rotation angle, which is given by 2αF ,
where αF is the effective fine structure constant associated with the velocity of the linearly dispersing Dirac
fermions. We also find a logarithmic enhancement of the Faraday (and Kerr) rotation angles as the frequency
of the light approaches the absorption edge associated with the Zeeman-induced gap. While the enhancement
is reduced by impurity scattering, it remains significant for an attainable level of material purity. These results
indicate that two-dimensional Dirac materials protected by nonsymmorphic symmetry are responsive to Zeeman
couplings and can be used as platforms for magneto-optic applications, such as the realization of polarization-
rotating devices.
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I. INTRODUCTION

Two-dimensional (2D) electronic systems have garnered
tremendous attention over the past decade due to their ex-
ceptional optoelectronic properties and gate-tunable response
[1,2]. Starting with graphene [3], followed by Dirac and Weyl
semimetals, these materials [4–6] have been shown to possess
several unique electronic and optical properties, which are
traceable to their linear energy dispersion and nontrivial Berry
phase.

However, the Dirac points in many existing 2D materi-
als, including graphene, are vulnerable to spin-orbit coupling
(SOC). Motivated by finding alternative 2D materials be-
yond graphene, various atomically thin materials, including
silicene, MoS2, and phosphorene, have been added to the
list, each with its peculiar properties and other 2D com-
pounds, have been theoretically proposed and experimentally
prepared [7–10]. The Dirac semimetals with nonsymmorphic
symmetry are a comparatively recent addition to the 2D ma-
terial family. These materials feature Dirac points that are
not gapped by spin-orbit coupling and are protected by non-
symmorphic lattice symmetry [11,12]. Specific realizations of
these materials have recently been proposed to occur in the
nonsymmorphic monolayer film of α-bismuthene, the mono-
layer of bismuth (MBi), black phosphorene, PtPb4, and in
several others, and more details on the lattice structures and
symmetries can be found in Refs. [12–19].

In our recent paper [13], we have shown that nonsymmor-
phic Dirac semimetals are very interesting when the Zeeman
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coupling breaks the time-reversal symmetry and open a gap.
As a result, it creates sharp features in the optical absorp-
tion spectrum. In addition, these materials are intrinsically
anisotropic and therefore exhibit the phenomenon of opti-
cal birefringence. In the context of 2D materials, for a TRS
broken system, the rotation of the polarization of the trans-
mitted (reflected) light, i.e., the Faraday (Kerr) effect, can
be used to deduce the off-diagonal element of the optical
conductivity σxy as was shown for monolayer graphene by
Crassee et al. [20]. Nandkishore and Levitov have recently
proposed that the quantum anomalous Hall state could be ob-
served by measuring the Kerr rotation [21] in bilayer graphene
samples. Inspired by the various interesting physics one can
get from a gapped nonsymmorphic 2D Dirac semimetal, we
investigate the magneto-optical properties like Faraday and
Kerr rotation in our paper, owing to their invaluable scientific
and engineering applications. In an applied context, these ef-
fects can be used for nondestructive material characterization,
magneto-optical memory, magnetic field or current sensing,
polarization rotators, and nonreciprocal optical devices (isola-
tor, circulator) [22,23].

For a single atomic layer, whose thickness is much smaller
than the wavelength of the incident light, the relationship be-
tween the Hall conductivity and Faraday (Kerr) angle θF (θK )
can be derived by solving the Maxwell equations on the
two sides of the atomic layer and matching solutions at
the boundary. Such a derivation is worked out for bilayer
graphene [20,24], for thin films of topological insulators
[25–27], and for thin films of topological Weyl semimetals
[28,29]. However, the chiral response of 2D nonsymmorphic
Dirac materials has not been systematically investigated.

Here we present our own derivation of the Faraday and
Kerr rotation angles for a nonsymmorphic Dirac semimetal
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FIG. 1. (a) Schematic band diagram of a nonsymmorphic two-dimensional Dirac semimetal in the presence of a magnetic exchange
potential. The exchange potential (in the form of a Zeeman term) creates the gap in otherwise linearly dispersing bands when it couples
to out-of-plane spin. For an in-plane spin coupling, there is no gap. (b) Schematics of the Faraday and Kerr rotation effects. In our study, we
consider light incident normal to the plane; thus, we keep the θI = 0 and θR = 0.

model, which includes intrinsic anisotropy. We consider
an effective Zeeman coupling arising from exchange inter-
actions with magnetic impurities or a nearby magnetized
film [30–32]. The out-of-plane coupling of the exchange po-
tential to the spin gives rise to a gap in the Dirac cone
(proximity effect) whereas an in-plane coupling does not
[16,25,33–35] (See Fig. 1(a)). This exchange potential can
be tuned by changing the magnetization in the ferromagnetic
insulator. Based on this model, we calculate the complete
frequency-dependent optical conductivity tensor, including
diagonal and off-diagonal (Hall) terms, and using that we
construct the frequency-dependent transmission (reflection)
matrix. When acting on the polarization vector of the incident
light, this matrix gives out the polarization of the transmitted
or reflected light. We have provided a simple diagram of the
Faraday and the Kerr rotation in Fig. 1(b), where we consider
normal incidence and show that a linearly polarized light
becomes elliptical after transmission or reflection. Through a
simplified approach, we calculate the change in the direction
of polarization of a linearly polarized wave upon transmis-
sion or reflection and show that the Faraday rotation angle
is significantly enhanced as the frequency of the incident
light approaches the threshold for optical absorption. In the
Appendix, we provide complete analytical formulas to cal-
culate the Faraday and the Kerr rotation angles for a general
state of polarization of the incident light and show that the
change in the state of polarization can be described by a single
complex Faraday or Kerr rotation angle. As a special case,
we show that linearly polarized incident light acquires, upon
transmission/reflection, an elliptic component of polarization,
which is caused by the anisotropy of the system.

II. MODEL HAMILTONIAN

It is well known that two-dimensional materials with non-
symmorphic symmetries, such as glide mirror and screw
axis [36,37], support symmetry-protected level crossings at
time-reversal invariant points in the Brillouin zone. For exam-
ple, α-bismuthene (α-Bi), with a glide-mirror symmetry M̃z

[12,13] has symmetry-protected Dirac points at points X̄1 =
(π, 0) and X̄2 = (0, π ) of the Brillouin zone. The points X1

and X2 are not related to each other by a symmetry operation

of the material. Therefore the corresponding Dirac cones will
have, in general, different dispersions and different energies
at the crossing point. We note that having symmetry-protected
Dirac points does not guarantee that these points will occur in
close vicinity of the Fermi level, where they can control the
electronic properties of the material. We will assume that at
least one of the Dirac points is indeed at the Fermi level: this
is not too far from reality for the X1 point of α-Bi.

A general Hamiltonian that captures the low-energy disper-
sion of nonsymmorphic Dirac semimetals near the Dirac point
has been derived [12,13]. It has the form

H = ρvkx(cos α σx ⊗ τz + sin α σ0 ⊗ τy) + vky (σy ⊗ τz ),

(1)

where the Pauli matrices σ and τ refer to spin degrees of
freedom and orbital degrees of freedom, respectively—the
orbital degrees of freedom are associated with p orbitals of
the atomic sites of the α-bismuthene lattice [12]. The essential
glide-mirror symmetry is represented by the operator M̃z =
σz ⊗ τy, while the remaining time-reversal, inversion, and
the x-mirror symmetries are represented by T = −iσy ⊗ τ0K ,
P = σ0 ⊗ τx, and Mx = −iσx ⊗ τx respectively.

In Eq. (1) we have introduced ρ as the anisotropy factor
ρ = vx

vy
, which gives the ratio of the Fermi velocities along x

and y direction, where vy = v and ρv = vx. For example, in
α-Bi, the Dirac cones at X1 and X2 have ρ = 1.86 and ρ =
0.25, respectively (again, this difference is allowed because
the two valleys at X1 and X2 are not connected by any crystal
symmetries). The angle α, which we call the “mixing angle”,
is also an intrinsic parameter of the model and is related to
the spin-orbit coupling of the system. While α does not affect
the dispersion of the bands in the absence of a gap, it plays
a central role in determining the magnitude of the gap that
appears when the time-reversal symmetry is broken, and a gap
opens up.

The M̃z symmetry allows us to decompose the 4 × 4
Hamiltonian into two 2 × 2 blocks representing the M̃z

even sector (eigenvalue +1) and odd sector (eigenvalue –1).
Since the eigenvalues are the same in the two sectors, for
convenience, we choose to work within the even sector, corre-
sponding to σz = 1, τy = 1 and σz = −1, τy = −1. Choosing
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a convenient basis as described in Ref. [13]) σz becomes σx,
σx becomes σy, and σy becomes σz. The reduced Hamiltonian
is written as

H̃M̃z=1 = ρvkx (σx cos α + σy sin α) + vkyσz, (2)

whose eigenvalues are

E = ±v

√
ρ2k2

x + k2
y (3)

Notice that we could reduce the whole Hamiltonian to 2 × 2
form only because the system has the glide mirror symmetry
M̃z.

A magnetic exchange potential coupling to the out-of-
plane spin can arise from a magnetic proximity effect and
takes the form of a Zeeman term BMσzτ0 in the Hamiltonian,
where BM is the effective out-of-plane field arising from the
exchange coupling. The glide mirror symmetry is preserved
in the presence of this term. We can, therefore, still use the
reduced Hamiltonian Eq. (2) under the glide mirror symmetry
operator. To this end, we decouple this term for even and odd
sectors (the same as we do for the Hamiltonian). We note
that BMτ0σz can be reduced to BMσz in the even sector and
−BMσz in the odd sector. Continuing to work in the even
sector with the modified basis and also with the term added,
we find

H ′
Mz=1 = (ρvkx cos α + BM)σx + ρvkx sin ασy + vkyσz,

(4)

whose eigenvalues are

E = ±v

√(
ρkx + BM

v
cos α

)2

+ k2
y + B2

M
v2

sin2 α. (5)

The main qualitative effect of the exchange potential is the
appearance of a gap in the excitation spectrum. We find the
band gap using Eq. (5) as

� = 2 min |Ē | = 2BM sin α, (6)

In practice, this gap is expected to be on the order of a few
meV [16,30–35]. As anticipated, Eq. (6) offers a direct way to
determine the mixing angle of our model from optical absorp-
tion experiments. The eigenfunctions for this Hamiltonian are

|ψck〉 =
⎛
⎝cos θ

2 e−iγ

sin θ
2

⎞
⎠, |ψvk〉 =

(
sin θ

2 e−iγ

− cos θ
2

)
, (7)

with

tan γ = ρkx sin α

ρkx cos α + BM
v

,

tan θ =
√(

ρkx + BM
v

cos α
)2 + B2

M
v2 sin2 α

ky
, (8)

which clearly depends on the effective Zeeman field BM.
To proceed with the study of optical properties, we need the
current operators ĵx and ĵy, which are obtained by taking the
derivative of our Hamiltonian [Eq. (4)] with respect to kx and
ky respectively, i.e., ĵ = ∂H

∂k with components

ĵx = ρv(cos ασx + sin ασy), ĵy = vσz. (9)

These operators commute with the glide mirror operation M̃z,
which makes the transitions preserve the parity of M̃z. Fig-
ure 2(b) shows that the two valleys have opposite parity under
the glide mirror symmetry; hence, intervalley transitions are
not allowed.

III. THE TRANSMISSION/REFLECTION MATRIX

To treat effects like Faraday (Kerr) rotation for a single
atomic layer, we need to compute the 2 × 2 matrices that
connect the polarization state of the incoming light (a two-
dimensional complex vector in the plane perpendicular to the
direction of propagation of the light) to the polarization states
of the transmitted and reflected light. (We assume here for
simplicity that the incident, transmitted, and reflected light
all travel along the z axis perpendicular to the layer). In the
standard treatment, these matrices are obtained by matching
the electric fields on opposite sides of the layer, taking into
account the two-dimensional electronic current that flows in
the layer under the action of the electric field, causing the
magnetic field to change discontinuously across the layer. In
what follows, we will assume that the layer is much thin-
ner than the wavelength of the light so that the thickness of
the layer can be neglected, and positions immediately before
and after the layer will be labeled by z = 0− and z = 0+,
respectively.

We work in the gauge where the scalar potential and the
z component of the vector potential of the incoming elec-
tromagnetic wave vanish. The transverse components of the
vector potential A = (Ax, Ay) satisfy the Maxwell equation (in
Gaussian units)

−∂2
z A(z) − ω2

c2
A(z) = 4π

c
J(z), (10)

where ω is the wave’s frequency and J(z) is the three-
dimensional current density, concentrated in an infinitesimal
region around z = 0. We define the two-dimensional current
density in the layer as

j =
∫

dzJ(z), (11)

where the integral over z, while formally extending to infinity,
converges within a small vanishing region corresponding to
the thickness of the layer. The two-dimensional current den-
sity j is related to the electric field by the frequency-dependent
electrical conductivity tensor σ(ω),

j = σ(ω) · E. (12)

The electric and magnetic field are given respectively by
E = iω

c A and H = ẑ × A′ where A′ is the derivative of A with
respect to z.

Integrating Eq. (10) over z from z = −ε to z = +ε, with ε

tending to zero we obtain

δA′ ≡ −A′|ε−ε = 4π

c
j = σ · E. (13)

This tells us that H “jumps” across the layer. At the same
time, the vector potential itself (and hence the electric field) is
continuous across the layer, i.e.,

δA ≡ A(ε) − A(−ε) = 0. (14)
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FIG. 2. (a) The band dispersion of α-Bi near the X1 Dirac point. (b) This figure shows that only intravalley transitions are possible as the
two valleys hold opposite eigenvalues for M̃z when there is a gap present in the system

We seek a solution to the form

A(z) ∝
{

eieikz + R · eie−ikz, z < 0

T · eieikz, z > 0
(15)

where ei is a two-dimensional complex vector describing the
state of polarization of the incident polarization of the incom-
ing wave in the (x, y) plane, R and T are the reflection, and
the transmission matrices—2 × 2 complex matrices acting on
the polarization. Imposing the boundary conditions (13) and
(14) we find

T = (1 + a.σ )−1, (16)

R = T − 1 = aσ · (1 + a.σ )−1, (17)

where we have defined a ≡ 2π
c . As previously mentioned, the

transmission matrix (T), acting on the incoming polarization
vector (ei), gives the polarization of the transmitted light et

and similarly, the reflection matrix (R) gives the polarization
of the reflected light er ,

et = T · ei; er = R · ei. (18)

Now that we have established the relation between the
transmission/reflection matrices and the conductivity tensor,
we will calculate the latter.

IV. CALCULATION OF THE CONDUCTIVITY TENSOR

In this section, we calculate the conductivity tensor using
linear response theory, as described in Ref. [38]. The conduc-
tivity tensor for our model system is given by

σαβ (ω) = ie2

ω
χ jα jβ (ω), (19)

where χ jα jβ is the current-current response function

χ jα jβ (ω) =
∑

k

{
〈ψck| ĵα|ψvk〉〈ψvk| ĵβ |ψck〉

ω − ωcv (k) + iη

− 〈ψck| ĵβ |ψvk〉〈ψvk| ĵα|ψck〉
ω + ωcv (k) + iη

}
, (20)

where ψck and ψvk are the Bloch states of the conduction
and valence band, respectively, and ωcv (k) is the difference
of their energies. η is an infinitesimal positive real number.
The operators ĵα are defined in Eq. (9). We notice that the
“diamagnetic” contribution to the conductivity [38] is absent
because our model Hamiltonian is linear in k.

In the next two subsections, we treat this tensor’s off-
diagonal and diagonal components separately.

A. Off-diagonal component of the conductivity tensor (σxy)

We calculate the off-diagonal component of the conduc-
tivity tensor first. We separately consider the imaginary and
the real parts of the response function χ jx jy . For the imaginary
part, we find (in the limit η → 0)

χ ′′
jx jy = 2ρv2

∑
k

2ω

ω2 − ω2
cv (k)

BM sin α

E (k)
, (21)

where the integral over k is done according to the Cauchy
principal value prescription. This is different from zero both
below (|ω| � �) and above the gap (|ω| � �). For the real
part of χ jx jy we find

χ ′
jx jy = 2πρv2

∑
k

BM sin α

E (k)
[δ(ω − ωcv (k))+δ(ω+ωcv (k))],

(22)

which differs from zero only above the gap, i.e., for |ω| > �.
In writing these expressions, we have included a factor 2
arising from the double degeneracy of the energy eigenvalues
associated with glide-mirror parities M̃z = 1 and M̃z = −1
[see discussion before Eq. (4)]. Then, making use of Eq. (19)
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FIG. 3. (a) Plots of σ ′
xy and σ ′′

xx vs ω. Both exhibit a logarithmic singularity at the absorption edge ω = � (� = 2BM sin α = 1 in this

plot); however, the divergence in σ ′
xy has a stronger prefactor. Notice that σ ′

xy has a finite value (2 e2

h ) at zero frequency, whereas σ ′′
xx vanishes.

(b) Plots of σ ′′
xy and σ ′

xx vs ω. These functions vanish for frequencies below the gap. The red dashed line marks the absorption edge.

we obtain the real part of the off-diagonal conductivity

σ ′
xy(ω) = − e2

2π h̄

�

ω
ln

∣∣∣∣� − ω

� + ω

∣∣∣∣ (here reinstating the h̄ to match dimension). (23)

This expression shows that the Hall conductivity has logarithmic divergence when ω approaches the gap frequency � (Fig. 3).
Similarly, the imaginary part of the off-diagonal conductivity is given by

σ ′′
xy = e2

4h̄

�

ω
�(|ω| − �), (24)

where �(x) is the Heaviside step function �(x) = 1 for x > 0 and �(x) = 0 for x < 0. Notice that σxy vanishes for BM = 0,
leaving the system with only diagonal components of the conductivity in the absence of BM.

B. Diagonal components of the conductivity tensor (σxx, σyy)

Following the same procedures as in the previous section, we obtain the following formulas for the real and imaginary parts
of the diagonal response functions χ jx jx and χ jy jy :

χ ′
jx jx (ω) = 2ρ2v2

∑
k

2ωcv (k)

ω2 − ω2
cv (k)

(
k2 sin2 φ(k) + B2

M sin2 α

E2(k)

)
, χ ′

jy jy (ω) = χ ′
jx jx (ω)

ρ2
, (25)

and

χ ′′
jx jx (ω) = −2πρ2v2

∑
k

[δ(ω − ωcv (k)) − δ(ω + ωcv (k))]

(
k2 sin2 φ(k) + B2

M sin2 α

E2(k)

)
, (26)

where φ(k) = arctan
( ky

ρkx+BM
v

cos α

)
and χ ′′

jy jy = χ ′′
jx jx /ρ

2. Using Eq. (19), we can conclude that the imaginary and real parts of

the conductivity (Fig. 3) are given by

σ ′′
xx(ω) = ρe2

4π h̄

[
�

ω
+ (�2 + ω2)

2ω2
ln

∣∣∣∣� − ω

� + ω

∣∣∣∣
]

; σ ′′
yy(ω) = σ ′′

xx(ω)

ρ2
, (27)

and

σ ′
xx(ω) = ρe2

8h̄

[
1 + �2

ω2

]
�(|ω| − �); σ ′

yy(ω) = σ ′
xx(ω)

ρ2
. (28)

The anisotropy parameter ρ is the ratio between the velocities in the x and y directions and reduces to 1 in the isotropic case.
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V. CALCULATION OF THE FARADAY AND KERR
ROTATION ANGLES

From Eq. (16) we see that the transmission matrix is given
by

T = 1

N

(
1 + aσyy −aσxy

−aσyx 1 + aσxx

)
, (29)

where σxy = −σyx and

N = (1 + aσxx )(1 + aσyy) + (aσxy)2. (30)

On the other hand, from Eq. (17), we find that the components
of the reflection matrix are given by

R =
(

Txx − 1 Txy

Tyx Tyy − 1

)
. (31)

From these formulas, we now proceed to extract the Faraday
and Kerr rotation angles.

A. Isotropic system

For the isotropic system we have σxx = σyy (ρ = 1), which
leads to Txx = Tyy. In this case, it is easy to see that the states
of circular polarization are eigenstates of the transmission and
reflection matrix, meaning that these states of polarization are
not changed upon transmission or reflection but suffer a phase
shift.

The Faraday and Kerr rotation angles are defined as
half of the difference between the phase shifts of the left
circular polarized (LCP) wave and the right circular polar-
ized (RCP) waves in the transmitted and reflected wave,
respectively [24,25,39],

θF = 1

2
arg

[
Et

LCP

Et
RCP

]
; θK = 1

2
arg

[
Er

LCP

Er
RCP

]
. (32)

The x and y components of the electric field are related to the
LCP and RCP components as follows:(

Ex

Ey

)
= 1√

2

(
1 1
−i i

)(
ELCP

ERCP

)
. (33)

Substituting this in the equations that relate the transmitted
and reflected fields to the incident field [40], namely,(

Et
x

Et
y

)
=

(
Txx

Tyx

)
Ei

x;

(
Er

x

Er
y

)
=

(
Rxx

Ryx

)
Ei

x (34)

we easily find

θF = 1

2
arg

[
Txx + iTxy

Txx − iTxy

]
= 1

2
arg

[
1 + aσxx + iaσxy

1 + aσxx − iaσxy

]
, (35)

and

θK = 1

2
arg

[
Rxx + iRxy

Rxx − iRxy

]

= 1

2
arg

[
σxx − iσxy

σxx + iσxy

1 + a(σxx + iσxy)

1 + a(σxx − iσxy)

]
. (36)

At zero frequency, the Hall conductivity has a nonzero value
[σxy(0) = 2 e2

h ], but the longitudinal one is zero. This results in

a nonzero Faraday rotation angle at zero frequency,

θF (0) = 1

2
arg

[
1 − iaσxy(0)

1 + iaσxy(0)

]
= 1

2
arg

[
1 − 2iαF

1 + 2iαF

]
= 2αF ,

(37)

where αF = e2

h̄c is the fine structure constant. Plotting the
Faraday angle as a function of frequency, we see that, similar
to the conductivities, it has a sharp rise at the absorption edge.
Still, instead of diverging, it reaches a maximum theoretical
value π

2 . More precisely, when we choose the frequency very
near to the absorption edge, we find that

θF (ω ∼ �) ≈ 1

2
arg

[
aσyy − iaσxy

aσyy + iaσxy

]
≈ 1

2
arg

[−iaσxy

+iaσxy

]
= π

2
,

(38)

where the second approximate equality follows from the fact
that the logarithmic divergence of σxy(ω) for ω → � has a
larger prefactor compared to the logarithmic divergence of
σxx(ω). The range of frequencies around ω = � in which the
Faraday angle would be close to the theoretical limit π

2 is
exponentially small (�e−1/αF ) and unobservable in practice.
Nevertheless, an order of magnitude increase in θF is visible in
Fig. 4(b). While the peak value of θF is a far cry from π/2, it is
still more significant than any value previously measured near
the absorption edge for two-dimensional systems [39,41].

A similar analysis can be done for the Kerr rotation angle.
From Eq. (36), we see that in the low-frequency regime, the
Kerr rotation angle is θK ≈ π

2 . This large value describes that
left and right circularly polarized waves are reflected with
amplitudes of opposite signs, corresponding to a phase differ-
ence of π . In Fig. 4(c), it can be seen that this value remains
constant below the absorption edge, but it reverses its sign as
the frequency crosses the absorption edge.

As a final point, in Fig. 4(a) we plot the transmittance T
and the reflectance R defined as follows [39]:

T = 1
2 (|TLCP|2 + |TRCP|2); R = 1

2 (|RLCP|2 + |RRCP|2).

(39)

Below the absorption edge, we verify that we have T + R =
1, in accordance with the fact that there is no absorption of
energy in this frequency range. Above the absorption edge,
on the other hand, we find T + R < 1, where the difference
refers to the existence of absorption above the gap. In our
recent study [13], we have shown when there is a gap present
in this system, it will give rise to significant absorption above
the gap, and this is just another confirmation of the same.

B. Anisotropic system

The calculation of the Faraday angle for an anisotropic
system presents us with some basic difficulties. The right
and left circularly polarized states are no longer eigen-
states of the transmission and reflection matrix: rather, an
incident LCP wave will acquire an RCP component upon
transmission/reflection, and similarly, an incident RCP wave
will acquire an LCP component. If, on the other hand,
we start with a linearly polarized incident wave, then the
transmitted/reflected waves will not be in a state of linear
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FIG. 4. (a) Plot of transmittance and transmittance+reflectance vs frequency in units of � = 1011 Hz. Notice that transmittance and
reflectance add to 1 below the absorption edge, marked by the vertical red dashed line. The value of the reflectance can be inferred from the
small difference between these two plots. Above the absorption edge, the sum T + R is less than 1 due to the optical absorption. (b) Faraday
rotation angle vs frequency. The orange line is for the isotropic case (ρ = 1.0), and the blue line is for the anisotropic case (ρ = 0.1) calculated
as described in Sec. V B. I Notice that the same zero-frequency value (αF ) is independent of the anisotropy parameter ρ. The enhancement
of the Faraday rotation angle at the absorption threshold is much larger in the anisotropic case. (c) Kerr rotation angle vs frequency. The
orange and blue lines are for ρ = 1 and ρ = 0.1, respectively. (d) The effect of disorder broadening (δ = 1/τ ) on the Faraday rotation angle,
calculated by the procedure described in Sec. VI.

polarization, having acquired elliptic components. It is still
possible to define a rotation angle, as discussed in Appendix.
Still, this rotation angle will then depend on the orientation of
the incident linear polarization with respect to the crystallo-
graphic axes.

In this section, we adopt a practical definition of the Fara-
day and Kerr rotation angles, which avoids these difficulties
and yields values independent of the state of polarization of
the incident wave. The idea is to generalize the definition we
used in the isotropic case and define the magneto-optical rota-
tion angles as half the difference of the phase shifts associated
with the exact eigenstates of the transmission and reflection
matrices.

To do this, we will diagonalize the transmission matrix
first. In the chiral basis [42] this matrix has the following
structure:

T̃ = U † ·
(

Txx Txy

−Txy Tyy

)
· U =

(
T̄ + iTxy �T

�T T̄ − iTxy

)
(40)

where

T̄ ≡ Txx + Tyy

2
, �T ≡ Txx − Tyy

2
. (41)

Its eigenvalues can be written as

T± = T̄ ± i
√

T 2
xy − �T 2. (42)

Similarly, the eigenvalues of the reflection matrix are given by

R± = R̄ ± i
√

R2
xy − �R2. (43)

In terms of T+ and T−, the Faraday rotation angle is expressed
as

θF ≡ 1

2
arg

[
T+
T−

]
= 1

2
arg

⎡
⎢⎣ T̄ + i

√
T 2

xy − �T 2

T̄ − i
√

T 2
xy − �T 2

⎤
⎥⎦. (44)

In terms of the conductivities, this becomes

θF = 1

2
arg

⎡
⎢⎣2 + aσ̃xx(ρ + ρ−1)+ia

√
4σ 2

xy − σ̃ 2
xx(ρ−ρ−1)2

2 + aσ̃xx(ρ+ρ−1) − ia
√

4σ 2
xy−σ̃ 2

xx(ρ−ρ−1)2

⎤
⎥⎦,

(45)

where σ̃xx ≡ σxx
ρ

. The corresponding expression for the Kerr
rotation angle is

θK = 1

2
arg

⎡
⎢⎣aσ̃xx(ρ + ρ−1) + ia

√
4σ 2

xy − σ̃ 2
xx(ρ − ρ−1)2

aσ̃xx(ρ + ρ−1) − ia
√

4σ 2
xy − σ̃ 2

xx(ρ − ρ−1)2

⎤
⎥⎦

(46)
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where we have omitted a negligible second-order term
2a2(σ̃xxσ̃yy + σ̃ 2

xy).
In Figs. 4(b) and 4(c), we compare the Faraday and Kerr

rotation angles calculated for the isotropic case (ρ = 1,
orange line) and the strongly anisotropic case (ρ = 0.1,
blue line). The two plots are qualitatively similar, and
their low-frequency limits do not depend on the anisotropy
parameter ρ. However, the anisotropy results in a sharper
enhancement of the Faraday rotation angle at the absorption
edge, whereas the Kerr rotation angle is reduced.

A more complete discussion of the Faraday and Kerr rota-
tion angles in an anisotropic system is provided in Appendix.

VI. DISORDER BROADENING

Our calculations thus far have been done with the assump-
tion that momentum is strictly conserved, i.e., there is no
impurity scattering. A simple, although nonrigorous way, to
take into account the effect of a finite momentum relaxation
time τ is to replace the infinitesimal η in Eq. (20) by the finite
quantity δ = 1/τ . This is expected to be qualitatively correct
as long as δ remains much smaller than the gap �. With this
modification, the conductivity is calculated straightforwardly
and works out to be

σxy(ω) = − e2

4π h̄

�

ω
ln

ω′ − �

ω′ + �
, (47)

σxx(ω) = iρe2

8π h̄ω

[
� + (ω′2 + �2)

2ω′ ln
ω′ − �

ω′ + �

]
, (48)

where ω′ ≡ ω + iδ and ln is understood to denote the complex
logarithm. From the expression of the conductivities above,
we can see that the logarithmic divergence is not present
anymore. Instead, we have a function that has a finite peak
at the absorption edge. The Faraday rotation angle is still
given by Eq. (35), and it is plotted in Fig. 4(d). We see that
with increasing disorder, the curve is broadened, and the peak
value is decreased. A significant enhancement of θF can still
be observed if the system is sufficiently pure.

VII. CONCLUSIONS

We have performed a detailed theoretical analysis of the
Faraday and Kerr rotation for a generic model of gapped
nonsymmorphic 2D semimetals. Both the gap and the re-
quired breaking of time-reversal symmetry are caused by a
Zeeman term coupling with the out-of-plane component of
the spin. The Zeeman coupling could be generated by a real
magnetic field, but such a field would also couple to the
orbital motion of the electrons in the plane. This is not the
case for our model as it depends on the exchange interac-
tion with a magnetic dopant or proximal magnetization—the
so-called proximity effect. This gives rise to an “effective
Zeeman coupling,” which, being of Coulombic origin, does
not have the drawback of coupling to the orbital motion
of the electrons in the same way that a real magnetic field
does [25,33].

First, we matched Maxwell’s equation for either side of the
2D layer to express the transmission and reflection matrices
in terms of the conductivity matrix of the layer. We calculated

the frequency-dependent conductivity and finally computed
the Faraday and Kerr rotation angles. We also observed the
appearance of an elliptic component of the polarization, which
inevitably accompanies the Faraday or the Kerr rotation when
linearly polarized light is transmitted or reflected by the layer.

The Faraday rotation angle has a sharp peak at the
absorption edge, which results in order of magnitude
enhancement relative to its zero-frequency value. We also
find a giant Kerr rotation (≈π/2) in the low-frequency region,
which abruptly changes signs just above the absorption edge.
The anisotropy of the system, parameterized by ρ < 1, does
not change these qualitative features but leads to an even
sharper enhancement of the Faraday rotation angle at the
absorption edge. We also calculated the effect of a finite
momentum relaxation time on the Faraday rotation angle due
to disorder. Not surprisingly, the peak becomes broader and
weaker with increasing disorder.

We propose that the dependence of the polarization rotation
and the ellipticity on the incident angle, as shown, and the
variation of their magnitudes with changing frequency, can
be used to study the optical properties of nonsymmorphic
2D Dirac semimetals experimentally in the presence of a
gap-inducing effective Zeeman field. The giant peak value
in Faraday and Kerr rotation angles enabled by the band
anisotropy and the field suggests that these materials can
be useful platforms for optoelectronic and magnetoelectronic
device applications.

APPENDIX: CALCULATION OF THE POLARIZATION
STATE FOR TRANSMITTED AND REFLECTED WAVES

An elliptically polarized state with the major semiaxis
oriented along the x axis, with unit amplitude (A = 1)
and zero absolute phase (δ = 0) can be represented in the
Cartesian basis (x′ − y′ basis) (Fig. 5) [43] as follows:

E =
(

Ex′

Ey′

)
=

(
cos ε

i sin ε

)
, −π/4 < ε < π/4, (A1)

where ε is the ellipticity (for ε = 0 the polarization is linear
along the x axis, for ε = −π/4 it is right-circular, for ε = π/4
it is left-circular).

The general state of elliptic polarization has a major semi-
axis (x′) that forms an angle θ with the x axis. Thus the
polarization state in the x − y basis [44] is obtained by ap-
plying a rotation by an angle −θ to the state (A1). This gives(

Ex

Ey

)
= R(−θ )

(
Ex′

Ey′

)
=

(
cos θ cos ε − i sin θ sin ε

sin θ cos ε + i cos θ sin ε

)
,

− π/4 < ε < π/4, −π/2 < θ < π/2. (A2)

Transforming to the chiral basis as we did before in Eq. (40)
this becomes(

E+
E−

)
= 1√

2

(
eiθ (cos ε − sin ε)

e−iθ (cos ε + sin ε)

)
=

(
z

z−1

)
(A3)

where the complex number z is given by

z = eiθ

√
cos ε − sin ε

cos ε + sin ε
= eiθ

√
1 − tan ε

1 + tan ε
. (A4)
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Notice that arg(z) = θ varies between −π/2 and π/2,

while |z| =
√

1−tan ε
1+tan ε

ranges from 0 to ∞ as the ellipticity

varies from π/4 to −π/4. Thus it is easy to extract the
parameters θ and ε from any given state vector expressed in
the chiral representation. Let us define a second measure of
ellipticity γ in the following manner:

eγ =
√

1 − tan ε

1 + tan ε
, γ = 1

2
ln

1 − tan ε

1 + tan ε
(A5)

such that γ = 0 for linear polarization and γ = ∞ for circular
polarization. Then we can write

z = ei(θ−iγ ). (A6)

In other words, γ can be interpreted as the imaginary part of
the angle that defines the orientation of the major semiaxis
with respect to the x axis. Let us now consider the action of the
transmission or reflection matrix on the incoming polarization
state. Using the definition of z from Eq. (A6) and acting with
T̃ [Eq. (40)] on the state (A3) we get the output

T̃ ·
(

eiθ eγ

e−iθ e−γ

)
=

(
(T̄ + iTxy)eiθ eγ + �Te−iθ e−γ

(T̄ − iTxy)e−iθ e−γ + �Teiθ eγ

)
. (A7)

θ
x

y

x'y'

FIG. 5. Schematic diagram for left-handed elliptical polariza-
tion. The major and minor axes are aligned along the x′ and y′

axes, respectively. The four parameters that define the ellipse of
polarization are (1) The angle θ between the major axis and a fixed
axis of reference x. If the azimuthal angle θ is negative, it would be
a right-handed polarization. (2) The ellipticity e = b/a = tan ε. The
ellipticity has a range −1 � e � 1. If e = −b/a = − tan ε instead, it
is right-handed as well. (3) The total amplitude A = √

a2 + b2 and
(4) The absolute phase δ is defined as the angle between the electric
field at t = 0 and the major axis.

FIG. 6. Faraday rotation as a function of the initial angle of
linear polarization. The plots show the comparison between the exact
and the simplified approach from our main text. Here the incident
polarization is set to linear, making the ellipticity of the incident
light zero (εi = 0). For a low anisotropy factor, the Faraday angle
has a minimal difference between the two approaches. Still, with
increasing anisotropy, the Faraday rotation has a mismatch between
peak values.

This can be cast in the form ( z′
(z′ )−1 ), where, following Eq. (A6),

we have

z′ = eiθ ′
eγ ′ =

√
(T̄ + iTxy)eiθ eγ + �Te−iθ e−γ

(T̄ − iTxy)e−iθ e−γ + �Teiθ eγ
. (A8)

Finally, taking the complex logarithm and doing some simple
transformations, we get

γ ′ + iθ ′ = γ + iθ + 1

2
ln

T̄ + iTxy + �Te−2iθ e−2γ

T̄ − iTxy + �Te2iθ e2γ
. (A9)

Using Eq. (A9), we can find the complex angle, which has a
real part, the Faraday angle, and an imaginary part, which is
related to the ellipticity of the transmitted wave. Separating
the real and the imaginary parts of the logarithm we find

γ ′ = γ + 1

2
ln

∣∣∣∣ T̄ + iTxy + �Te−2iθ e−2γ

T̄ − iTxy + �Te2iθ e2γ

∣∣∣∣, (A10)

θ ′ = θ + 1

2
arg

(
T̄ + iTxy + �Te−2iθ e−2γ

T̄ − iTxy + �Te2iθ e2γ

)
. (A11)

The difference θ ′ − θ is the Faraday rotation angle θF , and we
can calculate the ellipticity (=tan ε) using the Eq. (A5) and
from the difference γ ′ − γ . A similar treatment can be applied
to the reflection matrix operating on the incoming polarization
to get the Kerr rotation of reflected light.

245120-9



CHAKRABORTY, BIAN, AND VIGNALE PHYSICAL REVIEW B 107, 245120 (2023)

FIG. 7. Faraday and Kerr rotation as a function of the incident polarization angle and the optical frequency of the incident beam. Panels
(a) and (c) show the exact Kerr and Faraday rotation angles as functions of θi for ω = 0.3 and ω = 0.5, respectively. Panel (b) and (d) show
the ellipticity e(= tan ε) of the transmitted and reflected wave as the function of θi for ω = 0.3 and ω = 0.5, respectively.

In the isotropic case, Txx = Tyy = T̄ and �T = 0, the for-
mula for the Faraday rotation angle reduces to

θ ′ − θ = θF = 1

2
arg

[
Txx + iTxy

Txx − iTxy

]
= 1

2
arg

[
T+
T−

]
, (A12)

which agrees with Eq. (35) of the main text and is indepen-
dent of the direction of polarization of the incident light. In
the presence of anisotropy, however, the rotation angle does
depend on the direction of polarization of the incident light
(linear), and, in addition, the transmitted light is elliptically
polarized.

As a demonstration of the use of Eqs. (A10), (A11), and
(29), we calculate the state of polarization of the outgoing
wave for an incident wave that is linearly polarized along the
x-direction (i.e., θ = 0; γ = 0). We find [see also Eq. (A2)](

E ′
x

E ′
y

)
=

(
cos θ ′ cos ε′ − i sin θ ′ sin ε′
sin θ ′ cos ε′ + i cos θ ′ sin ε′

)

=
(

0.999748 − 0.000184i
−0.020593 − 0.008917i

)
(A13)

where we have chosen ρ = 0.1, the bandgap � = 1, and the
frequency ω = 1.1�. From Eq. (A13), we see that an initially
linearly polarized wave after passing through the medium is
transformed into an elliptically polarized wave, with ellipticity
e = tan ε′ ≈ 0.01.

Now that we have established the exact formulation, let us
benchmark the “simplified” definition of the Faraday rotation
angle we used in our main text. For initial linear polarization
(εi = 0), we find that the dependence of the Faraday rotation
angle on θi is indeed negligible for all values of the anisotropy
parameter (Fig. 6). In addition, the difference between the ex-
act rotation angle and the approximate one of the main text is
relatively small in a broad range of values of ρ, 0.1 < ρ < 1.
This remains true essentially for all frequencies.

Lastly, let us consider an elliptically polarized initial state
and see what our exact formulas say. Figure 7 shows that the
Faraday rotation angle—and, more generally, the entire polar-
ization state of the transmitted wave—significantly depends
on the initial angle θi. Therefore, in this case (elliptically
polarized incident light and strong anisotropy), the simplified
approach we have used in the main text would not be accurate,
and the exact formulas must be used instead.
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then have ṽ = U †v where v is the representative of a state in the
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