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Phonon-mediated superconductivity in the Sb square-net compound LaCuSb2
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We investigated the electronic structure and superconducting properties of single-crystalline LaCuSb2. The
resistivity, magnetization, and specific heat measurements showed that LaCuSb2 is a bulk superconductor. The
observed Shubnikov–de Haas oscillation and magnetic field dependence of the Hall resistivity can be reasonably
understood assuming a slightly hole-doped Fermi surface. An electron-phonon coupling calculation clarified the
difference from the isostructural compound LaAgSb2, indicating that (i) low-frequency vibration modes related
to the interstitial layer sandwiched between the Sb square nets significantly contribute to the superconductivity
and (ii) carriers with sizable electron-phonon coupling distribute isotropically on the Fermi surface. These
are assumed to be the origin of the higher superconducting transition temperature compared with LaAgSb2.
We conclude that the superconducting properties of LaCuSb2 can be understood within the framework of the
conventional phonon-mediated mechanism.
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I. INTRODUCTION

The relationship between superconductivity (SC) and other
ordered states can provide new insights into the mechanism of
the SC. For example, a number of so-called unconventional
superconductors, whose properties cannot be understood
based on the conventional phonon-mediated mechanism, have
been discovered adjacent to an ordered state in the phase
diagram. Heavy-fermion systems allow the exploration of
unconventional SC near the quantum critical point (QCP) of
a magnetic order, at which the spin fluctuation effect plays
an important role in the physical properties [1]. As the SC
emerges only in the vicinity of the QCP, the phase diagram
represents a characteristic domelike shape [2–4]. This fact
indicates that spin fluctuation plays an important role in the
pairing mechanism of this material class.

Another example is a critical point of charge order. Re-
cent studies reported the emergence of the SC or notable
enhancement of the transition temperature Tc near the critical
point of a charge density wave (CDW) [5–9]. Although the
possible existence of a quantum fluctuation associated with
the CDW has been discussed, the origin of the enhancement
of SC remains unclear. To elucidate whether there is an uncon-
ventional pairing mechanism around the CDW critical point,
model materials are needed to investigate systematically the
relationship between the SC and the CDW.

As a candidate material, we recently focused on the
intermetallic compound LaAgSb2. LaAgSb2 crystallizes a
tetragonal structure (space group P4/nmm, No. 129) with a
Sb square-net structure [10]. This material class has attracted
attention as an extended system possessing a Dirac fermion
for the band folding of a 44 square net [11–13]. LaAgSb2
shows successive CDW transitions at TCDW1 ∼ 210 K and
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TCDW2 ∼ 190 K at ambient pressure [14,15], which can be
systematically suppressed by applying hydrostatic pressure
[16,17]. We investigated the transport properties of LaAgSb2
at high pressures and established the phase diagram and the
Fermi surface (FS) subjected to pressure [18,19]. Further, we
discovered SC with Tc ∼ 0.3 K coexisting with the CDWs at
ambient pressure. Tc was considerably enhanced up to 1 K
only around the critical pressure of CDW1 [20]. Theoretical Tc

assuming the conventional phonon-mediated mechanism can-
not reproduce the 1 K order Tc and its significant suppression
in the normal metallic phase above 3.2 GPa, which indicates
that an additional mechanism is activated at the CDW criti-
cal point to reinforce the pairing interaction. In addition, the
electron-phonon coupling (EPC) calculation has indicated that
the FSs derived from px and py orbitals of the Sb square net
introduce a primary contribution to the SC, whereas the con-
tributions from the rest of the FSs are considerably smaller.
This indicates that the Sb square-net structure is important not
only for the emergence of linear dispersion and the nesting of
CDW1 but also for the primary conduction layer of the SC.
Thus, LaAgSb2 is a promising candidate for elucidating the
relationship between these orders. To understand the origin
of the enhancement of Tc, a careful comparison with related
materials is of primary importance.

LaCuSb2, the target of the present study, crystallizes a
structure identical to that of LaAgSb2, which is shown in
Fig. 1(a). In contrast to LaAgSb2 and another isostructural
compound, LaAuSb2 [21–24], no CDW transition is reported
at ambient pressure, and only SC at Tc ∼ 0.9 K has been
reported in polycrystalline samples by Muro et al. [25]. On
the other hand, a recent study investigated the band struc-
ture using angle-resolved photoemission spectroscopy and the
magnetotransport properties of a single crystal [26]. In that
study, Chamorro et al. experimentally reported a Dirac-like
linear dispersion, a possible weak antilocalization effect due
to the two-dimensionality of the electronic structure, a linear
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FIG. 1. (a) Crystal structure of LaCuSb2. (b) Photograph of a
single crystal. (c) Back-reflection Laue pattern with x rays applied
parallel to the [001] direction. Red points represent the simulation
(see the text).

magnetoresistance effect, and a Shubnikov–de Haas (SdH)
oscillation with light cyclotron effective mass m∗

c . Based on
the above, Chamorro et al. suggested a possible realization
of topologically nontrivial electronic states in LaCuSb2. Con-
trary to the previous study by Muro et al., however, SC has not
been observed. Thus, whether the SC is intrinsic or not has not
been conclusively determined.

From the viewpoint of the analogy with LaAgSb2 and
LaAuSb2, it is worth noting that the unit cell volume of
LaCuSb2 is 198.1 Å3 (a = 4.3690 Å, c = 10.376 Å) [27],
which is significantly smaller than the values of 209.84 Å3 for
LaAgSb2 (a = 4.3941 Å, c = 10.868 Å) [18] and 205.80 Å3

for LaAuSb2 (a = 4.441 Å, c = 10.435 Å) [24]. This suggests
that LaCuSb2 can be regarded as the pressurized counterpart
of LaAgSb2 and LaAuSb2. Thus, elucidating the physical
properties of LaCuSb2 would contribute to the understanding
of the La-based intermetallic system under pressure.

In this study, we investigate the electronic structure and su-
perconducting properties of LaCuSb2 using experimental and
computational techniques. We observe Tc at 1.0 K in electrical
resistivity, magnetization, and specific heat measurements,
certifying that SC is a bulk effect. In magnetotransport mea-
surements, we reveal the field angular dependence of the
SdH oscillation and positive Hall resistivity. First-principles
calculation show that the experimental results are consis-
tently understood assuming a hole-doped FS. In contrast to
the case of LaAgSb2, EPC calculations show that (i) several
low-frequency phonon modes related to the interstitial layer
sandwiched between the Sb square-net layers show significant
EPC and (ii) the momentum-resolved EPC distributes isotrop-
ically over the entire FS. The factors listed above double
the integrated EPC strength compared with that of LaAgSb2,
contributing to the higher Tc of LaCuSb2. The experimental
Tc is reasonably reproduced by the McMillan-Allen-Dynes
formalism; thus, we conclude that the SC of LaCuSb2 is
reasonably understood based on the conventional phonon-
mediated mechanism without considering possible quantum
critical phenomena.

II. EXPERIMENTAL METHOD

Single crystals of LaCuSb2 were obtained using
the Sb self-flux method. La(99.9%), Cu(99.99%), and
Sb(99.9999%) with a molar ratio of 1:2:20 were placed in an
alumina crucible and sealed in a quartz ampoule with argon
gas. After the mixture was heated to 1150 ◦C, it remained at
that temperature for 12 h. It was then cooled to 670 ◦C for
120 h. The flux was removed using a centrifuge separator. We
obtained platelike crystals with millimeter-size dimensions,
as shown in Fig. 1(b). The obtained samples were investigated
by Laue diffraction measurements using IPX-YGR (IPX Co.,
Ltd.) based on a back-reflection configuration. Clear Laue
spots were observed, as shown in Fig. 1(c), ensuring the high
quality of the single crystal. The pattern was reproduced by
simulations (red points) executed using QLAUE [28] assuming
the reported lattice constants [27].

The resistivity measurements were performed following
a standard four-terminal method. We utilized a model 370
AC resistance bridge (Lake Shore Cryotronics, Inc.) or a
combined system of a 2400 sourcemeter and a 2182A nano-
voltmeter (Keithley Instruments).

Magnetization measurements were performed using a di-
rect current superconducting quantum interference device
(dc-SQUID; Tristan Technologies, Inc.). A signal-pickup coil
wound using a superconducting NbTi wire was connected to
the sensing terminals on the dc-SQUID. The dc-SQUID was
placed in a He bath, and its temperature was held at 4.2 K. The
signal from the dc-SQUID was acquired with a controller via
a communication cable, and we finally obtained the voltage
signal, which was proportional to the change in the magnetic
flux inside the pickup coil. In the magnetization measurement,
we did not intentionally apply an external magnetic field.
The measurements were conducted in a residual geomagnetic
field.

Specific heat was measured by the relaxation method using
a homemade calorimetry cell. A calibrated thermometer (2 k�

RuO2 chip resistor, KOA Corporation) and a heater (120 �

strain gauge, Kyowa Electronic Instruments Co., Ltd.) were
attached to the sample stage (a piece of Ag ribbon) with
Stycast 1266. The sample stage was suspended in the vacuum
space by manganin wires, which served as both thermal leak
paths and current leads. The temperature dependence of the
addenda heat capacity and the thermal conductivity of the
manganin were determined beforehand by a measurement
without sample. The sample was attached to the stage with
Apiezon N grease. We measured several relaxation processes
and obtained the temperature dependence of the total heat
capacity, which contained both sample and addenda contri-
butions. We finally obtained the sample heat capacity by
subtracting the known addenda heat capacity.

The details of the magnetization and specific heat measure-
ments are described in the Supplemental Material of [20].

Temperatures down to 2 K were realized by using a
He-gas-flow-type optical cryostat (Oxford Instruments). Tem-
peratures down to 50 mK were realized using a homemade
dilution refrigerator. The magnetotransport properties in the
presence of magnetic fields were measured using a supercon-
ducting magnet with a variable-temperature insert (Oxford
Instruments, B < 8 T and T > 1.6 K). The field angular
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dependence of the resistivity was measured using a homemade
mechanical rotator, which can uniaxially rotate the stage in the
variable-temperature insert.

III. COMPUTATIONAL METHOD

The structural optimization and band structure calculation
based on the density-functional theory (DFT) were performed
using the QUANTUM ESPRESSO (QE) package [29,30]. We
employed scalar-relativistic projector augmented-wave
pseudopotentials with the Perdew-Burke-Ernzerhof
exchange-correlation functional [31]. We used cutoffs
of 95 and 950 Ry for the plane-wave expansions of the
wave functions and charge density, respectively, and a
�-shifted Monkhorst-Pack 10 × 10 × 6 k-point grid for the
self-consistent calculation. Self-consistent calculations were
performed with a threshold of 1.0 × 10−8 Ry. Structural
optimization was performed using convergence thresholds of
1.0 × 10−5 Ry for the total energy change and 1.0 × 10−4

Ry/bohr for the forces. Fully relaxed lattice constants and
positions for La (0.25, 0.25, zLa) and Sb2 (0.75, 0.75, zSb2)
are shown in Table I. The obtained lattice constants are close
to the experimental values, a = 4.3690 Å, c = 10.376 Å
[27], and the atomic coordinates agree with the previous
calculation, zLa = 0.2537 and zSb2 = 0.3535 [32]. The crystal
structure was visualized by VESTA [33].

Based on the DFT calculation, we constructed the tight-
binding Hamiltonian using WANNIER90 [34]. We confirmed
that 16 Wannier orbitals (La dz2 , La dx2−y2 , and Sb p) are
sufficient to reproduce the DFT band structure at the Fermi
level. Particularly, in the band structure calculation with or-
bital character projections, we employed 46 Wannier orbitals
(La d , La f , Ag d , and Sb p) to represent the band character
accurately. Visualization of the Wannier-interpolated FS was
performed using FERMISURFER [35]. The simulations of quan-
tum oscillation frequency F and cyclotron effective mass m∗

c
were performed using the SKEAF code [36].

The simulation of electrical conductivity tensor σ was
conducted based on the Boltzmann equation within the
relaxation-time approximation using WANNIERTOOLS [37,38].
In the framework described above, the conductivity tensor was
represented by

σ
(n)
i j = e2

4π3

∫
dkv

(n)
i (k)τnv̄

(n)
j (k)

(
−∂ fFD

∂ε

)
ε=εn(k)

. (1)

Herein, e, fFD, and n represent the elemental charge, Fermi-
Dirac distribution function, and band index, respectively. τn

represents the relaxation time of the nth band, which is
assumed to be independent of k. Because of the energy
derivative of the Fermi-Dirac distribution function, σ

(n)
i j was

determined by the states within the thermal energy width of
∼kBT near the Fermi level. We set T = 10 K to define the

TABLE I. Lattice constants a and c and atomic coordinates for
La (0.25, 0.25, zLa) and Sb2 (0.75, 0.75, zSb2) obtained based on the
structural optimization.

Space group a (Å) c (Å) zLa zSb2

P4/nmm (No. 129) 4.423 10.293 0.2529 0.3524

thermal energy width. v(n)(k) represents the velocity defined
by the gradient of the energy in the reciprocal space as

v(n)(k) = 1

h̄

∂εn(k)

∂k
. (2)

v̄(n)(k) represents the weighted average of velocity over the
orbit, which is defined as

v̄(n)(k) =
∫ 0

−∞

dt

τn
et/τnv(n)[k(t )]. (3)

The historical motion of k(t ) under a magnetic field B was
obtained using the equation of motion

dk(t )

dt
= − e

h̄
v(n)[k(t )] × B, (4)

where k(t = 0) = k. We adopted a 1013 k mesh for the inte-
gration over the first Brillouin zone.

The phonon calculations were performed based on the
density-functional perturbation theory (DFPT) with the op-
timized tetrahedron method [39] implemented in QE. A
convergence threshold of 1.0 × 10−14 Ry was employed for
the DFPT self-consistent iterations. The phonon dispersions
were calculated using a �-centered 43 q-point grid. The lattice
vibrations were visualized using the phonon website [40].

EPC properties were calculated using the EPW [41] code.
The electron-phonon matrix element, which describes the
scattering process (from band n to m) of an electron (wave
number k) by a phonon (wave number q and mode index ν),
is defined as

gmn,ν (k, q) =
√

h̄

2Mωqν

〈�mk+q|∂qνV |�nk〉, (5)

where M and h̄ are the mass of the nuclei and reduced
Planck constant, respectively. ωqν represents the frequency
of a phonon with wave vector q and mode ν. |�nk〉 is the
electronic wave function for band index n and wave vector
k with an eigenvalue of εnk. ∂qνV is the derivative of the
self-consistent potential associated with a phonon with a wave
vector q and mode ν. Using gmn,ν (k, q), the phonon linewidth
γqν and EPC strength λqν are represented as

γqν = 2πωqν

∑
nm

∫
BZ

dk
�BZ

|gmn,ν (k, q)|2δ(εnk − εF )

× δ(εmk+q − εF ), (6)

λqν = 2

N (εF )ωqν

∑
nm

∫
BZ

dk
�BZ

|gmn,ν (k, q)|2

× δ(εnk − εF )δ(εmk+q − εF )

= γqν

πN (εF )ω2
qν

, (7)

where N (εF ) is the density of states per spin at the Fermi level
εF . The integral was evaluated over the Brillouin zone (BZ)
with an �BZ volume. δ(ε) represents the Dirac delta function.
Alternatively, we can represent the EPC strength in the k space
as

λnk =
∑
mν

∫
BZ

dq
�BZ

2

ωqν

|gmn,ν (k, q)|2δ(εmk+q − εF ). (8)

Hereafter, we omit the band index n and simply write it as λk.
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Using λqν , the Eliashberg spectral function α2F (ω) can be
obtained by calculating its integrated value over the Brillouin
zone as follows:

α2F (ω) = 1

2

∑
ν

∫
BZ

dq
�BZ

ωqνλqνδ(ω − ωqν ). (9)

We estimated the superconducting transition temperature
T MAD

c using the McMillan-Allen-Dynes formula [42–44],

T MAD
c = ωlog

1.2
exp

(
− 1.04(1 + λ)

λ − μ∗
c (1 + 0.62λ)

)
. (10)

Herein, λ is defined using the Eliashberg spectral function and
maximum phonon frequency ωmax as

λ = 2
∫ ωmax

0
dω

α2F (ω)

ω
, (11)

and ωlog is a logarithmic average of the phonon frequency,
defined as

ωlog = exp

(
2

λ

∫ ωmax

0
dω ln ω

α2F (ω)

ω

)
. (12)

μ∗
c represents the Coulomb pseudopotential, which is treated

as an empirical parameter to express the Coulomb interaction.
For typical metals, μ∗

c is known to take values around 0.1 [45].
In the present study, we assumed μ∗

c = 0.1.
We used coarse 83 k and 43 q meshes for the initial cal-

culation of the electronic Hamiltonian, dynamical matrix, and
electron-phonon matrix. To calculate the EPC properties on
arbitrary, dense Brillouin zone grids, an interpolation scheme
described in [46] was applied using EPW. In this procedure, we
used 16 Wannier orbitals. The integrations over the Brillouin
zone were performed on uniform 753 k and 153 q meshes. The
Dirac delta functions were smeared with widths of 25 meV for
electrons and 0.05 meV for phonons.

IV. RESULTS

First, we show the temperature dependence of in-plane
resistivity ρ in Fig. 2(a). Metallic behavior without any indi-
cation of phase transition is exhibited, and a zero-resistivity
state emerges below 1.0 K, as seen in the low-temperature
data in Fig. 2(b). The onset of the resistivity drop is consistent
with that of the polycrystalline sample [25]. Accompanied by
the resistivity drop, the magnetization exhibits a distinct and
abrupt anomaly, as shown in Fig. 2(c), which is ascribed to the
Meissner effect. Additionally, the thermodynamic evidence of
the SC is depicted by a sudden change in the molar specific
heat c at 1.0 K, as shown in Fig. 2(d). The results described
above demonstrate that LaCuSb2 is a bulk superconductor.

From the specific heat data, we can obtain quantitative
information. When the temperature T is sufficiently lower
than the Debye temperature, c is represented as c = α/T 2 +
βT 3 + γ T , where the first, second, and third terms represent
the nuclear, phonon, and electron contributions, respectively.
From the c/T -T 2 plot shown in Fig. 2(e), we can obtain
the coefficients β = 338 ± 7 µJ mol−1 K−4 and γ = 4.65 ±
0.03 mJ mol−1 K−2.

Additionally, we can recognize an upturn below 0.4 K,
which is scaled by α/T 2. This is ascribed to the tail of

un
its

FIG. 2. (a) Temperature dependence of resistivity ρ. Supercon-
ducting transition at Tc = 1.0 K in (b) ρ, (c) magnetization M, and
(d) specific heat c. (e) Plot of c/T as a function of T 2. Extrapolation
of the linear dependence to 0 K (dashed line) yields the electron-
specific heat coefficient γ = 4.65 mJ mol−1 K−2. (f) Temperature
dependence of ce/(γ T ), where ce is obtained by subtracting nuclear
and lattice contributions from c (see the text). The vertical scale
represents the jump expected from BCS theory.

the Schottky-type nuclear specific heat caused by an electric
quadrupole splitting, which has been observed in isostruc-
tural LaAgSb2 [20]. From curve fitting below 0.4 K, we
obtained the coefficient α = 259.4 ± 0.5 µJ mol−1 K. We
have confirmed that the α value is reasonably explained by
nuclear quadrupole resonance frequencies obtained with first-
principles calculations.

Using the obtained coefficients α and β, we calculated
the electronic specific heat ce by subtracting the nuclear and
phononic contributions from c. Figure 2(f) shows the temper-
ature dependence of ce divided by γ T . The observed jump in
ce/(γ T ) at 1.0 K is 1.09. Although this is slightly smaller than
the value of 1.43 expected by BCS theory, the accordance is
assumed to be reasonable.

In the following, we describe the magnetotransport prop-
erties. Figure 3(a) shows the in-plane magnetoresistivity ρxx

and Hall resistivity ρyx at 1.6 K. Herein, B was applied along
the [001] direction. ρxx shows a weak positive magnetore-
sistance effect, �ρ/ρ = [ρxx(B) − ρxx(0)]/ρxx(0) ∼ 0.27. In
this study, we did not observe the pronounced increase in ρxx

at the weak magnetic field reported previously [26], which
was interpreted as a possible weak antilocalization effect. ρyx

is positive up to 8 T, which indicates that the contribution of
a holelike orbit is dominant. We note that a previous study
reported negative ρyx under similar conditions [26], which
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un
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FIG. 3. (a) Magnetoresistivity ρxx (left axis) and Hall resistivity
ρyx (right axis) at 1.6 K. (b) Oscillating component �ρxx superposed
on ρxx as a function of B−1 at various temperatures. (c) Fast Fourier
transform (FFT) magnitude of �ρxx at the temperatures listed in (b).
The solid arrow indicates the peak at 50 T with a cyclotron effective
mass of 0.052m0.

apparently contradicts the present results. We show subse-
quently that the positive ρyx is supported by the FS geometry
determined in the present study. Additionally, ρyx shows non-
linear behavior as a function of B, as marked in the high-field
region. The possible origin of this nonlinearity will be dis-
cussed later.

We focus now on the SdH oscillations superimposed
on ρxx. Figure 3(b) shows the oscillating component �ρxx

at various temperatures. �ρxx was obtained by subtracting
the polynomial background from ρxx. The amplitude sys-
tematically decreases as the temperature increases, which
is expected from the conventional Lifshitz-Kosevich for-
mula [47]. From the fast Fourier transform spectra shown in
Fig. 3(c), we identify a single frequency of F = 50 T with
m∗

c = 0.052 ± 0.001m0, where m0 represents the bare mass of
the electron. The light m∗

c is consistent with that of a previous
report [26].

To obtain the geometrical information about the FS, we in-
vestigated the field angular dependence of the SdH frequency.
Herein, the electric current I was applied along [100], and
B was rotated from [001] toward [010]. B is always perpen-
dicular to I in this measurement. We define θ as an angle
measured from [001]. Figure 4(a) shows �ρ/ρ for various

(deg)

FIG. 4. (a) Magnetoresistance effect �ρ/ρ at various magnetic
field angles. The angle θ is measured from [001]. (b) Oscillating
component �ρxx at the θ shown in (a). The data are vertically shifted
for clarity. (c) Field angular dependence of the Shubnikov–de Haas
frequency F .

θ . The magnetoresistance effect is maximized (minimized)
at θ ∼ 0◦ (90◦). The SdH oscillation gradually becomes weak
as θ increases, and we cannot discern the oscillating com-
ponent at θ > 65◦. The field angular dependence of F is
summarized in Fig. 4(c), which suggests that the observed FS
has cylindrical or elongated ellipsoidal shapes.

V. DISCUSSION

In the following parts, we interpret our experimental results
using first-principles calculations. Figure 5(a) shows the band
structure of LaCuSb2. The horizontal dashed line (ε − εF =
0 eV) represents the Fermi level. Herein, we can see that
the spin-orbit coupling (SOC) can hardly modify the band
structure at the Fermi level. Thus, we adopted a band structure
without SOC in the following discussion. The band structure
has features in common with that of isostructural LaAgSb2,
which is shown in the Supplemental Material [48]. As shown
in Fig. 5(b), the major contribution to the density of states D
around the Fermi level comes from the p-like orbital of Sb,
which corresponds to more than 50% of the total D.

We attempted to determine the geometry of the FS based
on the quantum oscillation. Figure 6(a) shows the FS of
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FIG. 5. (a) Electronic band structure and (b) orbital-projected
density of states D. The energetic origin (horizontal dashed line) is
the Fermi level εF . The horizontal solid line indicates the hole-doped
case to reproduce the experimental results (see the text). The solid
black and dashed red band structures in (a) indicate the cases without
and with spin-orbit coupling, respectively.

FIG. 6. (a) Fermi surface of the undoped case. (b) Calculated
SdH frequencies based on the Fermi surface shown in (a). (c) Fermi
surface of the hole-doped case with a Fermi level shift of −0.16 eV.
(b) Calculated SdH frequencies based on the Fermi surface shown in
(c). The large open symbols in (b) and (d) represent the experimental
(expt.) result.

TABLE II. Representative SdH frequency F and cyclotron effec-
tive mass m∗

c at θ = 0◦ in the case with ε − εF = 0 eV. The values in
the square brackets indicate the case with ε − εF = −0.16 eV.

Label F (kT) m∗
c (in units of m0)

α 0.027 0.22
β 0.072 [0.33] 0.16 [0.22]
γ 0.13 [0.050] 0.065 [0.045]

LaCuSb2, in which the Fermi level is set at ε − εF = 0 eV
in Fig. 5(a). In the case of the aforementioned undoped con-
dition, there are four FSs labeled FS 1–4: the first two are
holes, and the remaining two are electron surfaces. FS 1 is
tiny and can thus vanish by a slight upward shift of the Fermi
level. Although the overall features of FSs 2–4 are similar to
those of LaAgSb2, FS 2 shows a complex three-dimensional
geometry compared with the cylindrical shape in LaAgSb2.
The obtained FS is consistent with previous studies [32,49].
Figure 6(b) shows the field angular dependence of SdH fre-
quencies calculated based on the FS shown in Fig. 6(a). Solid
(open) symbols represent the computational (experimental)
results. Around θ ∼ 0◦, the calculation has no correspond-
ing cross sections. This suggests that the actual Fermi level
slightly deviates from the calculation, presumably owing to
unintentional doping caused by an imperfect stoichiometry.
We can assume that branches α, β, and γ are possible candi-
dates for the experimentally observed SdH oscillation because
they show θ dependences similar to those of the experimental
results. The corresponding cross sections for these branches
are shown in Fig. 6(a), and the expected F and m∗

c are listed
in Table II. From the calculation, the m∗

c values of α and β

are expected to be 0.22m0 and 0.16m0, respectively, and only
γ can have 0.01m0-order m∗

c . Thus, we attempted to shift the
Fermi level within the rigid band approximation to reproduce
the experimental SdH data using the γ branch. The results are
shown in Fig. 6(d), and the corresponding FSs are shown in
Fig. 6(c). This required an energy shift of ε − εF = −0.16 eV,
which is shown by the horizontal solid line in Fig. 5. As seen
in Figs. 6(c) and 6(d), the hole (electron) FS gets fatter (thin-
ner) with hole doping, and an additional hole surface labeled
FS 0 emerges. This shift of εF corresponds to a change of
approximately 0.2 electron and hole per unit cell, as described
in the Supplemental Material [48]. As shown in Table II,
the recalculated F and m∗

c of the γ branch are 50 T and
0.045m0, respectively, which show reasonable agreement with
the experimental value of 50 T and 0.052m0. From the results
presented above, we can conclude that FS 4 is the most likely
cause of the observed SdH oscillation.

To gain more insights into the FS, we calculated the
conductivity tensors and magnetic field dependence of
Hall resistivity within the relaxation time approximation.
Figure 7(a) represents the electrical conductivity and Hall
conductivity divided by the relaxation time (σxx,xy/τ ) in
the undoped (ε − εF = 0 eV) and hole-doped (ε − εF =
−0.16 eV) cases. Herein, we assume that τ is independent
of the band index. Based on these data, we can calculate the
theoretical Hall response [ρyxτ = σxyτ/(σ 2

xx + σ 2
xy)] for each

case, as shown in Fig. 7(b). The calculation supports the fact
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FIG. 7. (a) Calculated conductivity tensors σxx,xy/τ as a function
of Bτ in the relaxation time approximation. The curves shown in
black (red) represent undoped (hole-doped) cases. (b) Calculated
Hall resistivity ρyxτ = σxyτ/(σ 2

xx + σ 2
xy ). The curves shown in black

(red) represent undoped (hole-doped) cases.

that the Hall resistivity is positive, which is consistent with
the experimental results shown in Fig. 3(a). Additionally, the
nonlinearity of ρyxτ is more prominent in the hole-doped
case, which qualitatively agrees with the experimental results.
Thus, our experimental results can be interpreted based on the
slightly hole-doped FS shown in Fig. 6(c).

Herein, we comment on the orbital character of the FS.
Figures 8(a)–8(f) show the orbital projections on the band
structure. FSs 3 and 4 have a Dirac-like steep dispersion
(around the X and R points and along the �-M and Z-A
paths) and consist of intensive px- and py-like characters of
Sb1 with slight hybridization of La d . The emergence of this
band crossing can be understood by the band folding of the
44 square-net structure [11–13]. Owing to the steep disper-
sion, the Fermi velocities vF of these FSs are higher than the
others, as indicated by the color code in Figs. 6(a) and 6(c).
Conversely, FSs 0–2 consist of the orbitals of the remaining
atoms (i.e., La d , Cu d , Sb2 p) and Sb1 pz. Among them,
La d and Sb2 p are particularly intensive, while Cu d and
Sb1 pz are relatively minor. Considering the above, we can
reasonably assert that the electronlike surfaces mainly derive
from the Sb1 square-net layer and the holelike surfaces derive
from the interstitial structure between the Sb1 square nets in
real space. An almost equivalent discussion applies in the case
of LaAgSb2, whose orbital-projected band structure is shown
in the Supplemental Material [48].

As the position of the Fermi level has been identified
above, we can estimate the bare electron specific heat coeffi-
cient γbare without any many-body effects using the calculated
density of states. Using D = 3.0 eV−1 unit cell−1 at ε −
εF = −0.16 eV, we obtain γbare = 3.5 mJ mol−1 K−2. The
difference between the experimental γ and γbare should rep-
resent the mass enhancement achieved by the many-body
effect, which in the present case was mainly derived from the
electron-phonon interactions. We defined the dimensionless
EPC strength λ as γ = γbare(1 + λ) and obtained λ = 0.33.
The EPC should also cause an enhancement of m∗

c . Using the
bare cyclotron effective mass m∗

c = 0.045m0 for the γ branch
and λ = 0.33, the enhanced mass should be 0.06m0. While
the experimentally observed m∗

c = 0.052m0 was slightly less
than that expected, the general trend did not contradict the
approximate estimation presented above.

FIG. 8. Orbital-projected band structure for (a) La d , (b) Cu d ,
(c) Sb1 px + py, (d) Sb1 pz, (e) Sb2 px + py, and (f) Sb2 pz. The
color code indicates the ratio of the corresponding orbital characters.

In the following, we discuss whether the observed SC can
be explained by conventional phonon-mediated mechanism.
Figure 9(a) shows the phonon dispersion of LaCuSb2. The
phonon bands spread up to 22 meV, and their energy scale
is similar to that of LaAgSb2. In the present case, however,
we can see several phonon bands located at relatively low fre-
quencies around 5 meV which are not observed in the phonon
dispersion of LaAgSb2. As shown in the phonon density of
states in the Supplemental Material [48], lattice vibrations
related to Sb2 and Cu atoms are primarily responsible for the
low-frequency modes.

In the remainder, we focus on the EPC properties. Herein,
we performed the calculation based on the hole-doped FS
[Fig. 6(c)]. The color and radius of the symbols in Fig. 9(a)
show the EPC strength λqν for each q and ν. For comparison,
we also show an equivalent plot for LaAgSb2 at ambient pres-
sure in the Supplemental Material [48]. In both cases, we can
see the relatively strong EPC in optical phonons with energies
in the range of 10–15 meV near the zone center. The intense
EPC dominantly contributes to the Eliashberg spectral func-
tion divided by the phonon frequency α2F (ω)/ω, as shown
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FIG. 9. (a) Phonon dispersion and electron-phonon coupling
strength λqν projected on the q space, where q and ν represent the
wave vector and mode index of the corresponding phonon, respec-
tively. The color code and symbol size indicate the magnitude of
λqν . (b) Eliashberg spectral function divided by phonon frequency
α2F (ω)/ω (bottom axis) and integrated electron-phonon coupling
strength λ(ω) (top axis). Electron-phonon coupling strength λk pro-
jected on the kxy plane at (c) kz = 0, (d) kz = 0.49π/c, and (e)
kz = π/c. Color-coded and white symbols indicate the magnitude
of λk and the cross section of the FS, respectively.

in Fig. 9(b), and thus results in the notable enhancement of
integrated EPC strength λ(ω) [top axis in Fig. 9(b)] in this
energy region.

The important point to note in LaCuSb2 is that the
low-frequency phonon modes mentioned above show sub-
stantial EPC, which results in a secondary peak structure
in α2F (ω)/ω at approximately 5 meV. In the Supplemental
Material [48], we visualize the lattice vibrations at represen-
tative q points associated with intensive EPC. It is shown that
the low-frequency modes (e.g., points D-G indicated in the
Supplemental Material [48]) are relevant to atomic motions
within the interstitial layer, which is consistent with the atom-
projected density of states.

The theoretical EPC strength was estimated to be λ =
0.465; this value is slightly higher than but shows reason-
able agreement with the experimental value of λ = 0.33. The
theoretical λ value is approximately doubled compared with
λ = 0.237 in LaAgSb2 at ambient pressure [20]. In the case
of LaAgSb2, the contribution to λ up to 10 meV is only 0.044
(19% of the total λ). By contrast, it reaches 0.21 (44%) in
the case of LaCuSb2. We also note that the contribution to
λ above 10 meV is comparable in the LaCuSb2 (0.26) and
LaAgSb2 (0.19) cases. The results indicate that the additional
contribution from the low-frequency phonon modes is crucial
for the enhancement of Tc in LaCuSb2.

Figures 9(c)–9(e) shows the cross section of the FS (white
symbols) and distribution of the EPC strength λk in k space
(color-coded symbols). Compared with the case of LaAgSb2
shown in the Supplemental Material [48], λk is less sensitive
to the FS (i.e., more isotropic), and the strength of λk is typi-
cally higher. Notably, the magnitude of λk of the hole surfaces
(located inside the hollow-shaped FS) has values comparable
to those of electron surfaces. This is in contrast to the case of
LaAgSb2 in which only electron FSs with intense px + py Sb1
characters have significant EPC. The above supports the fact
that not only Sb1 square-net layers but also the interstitial lay-
ers contribute to the superconducting properties in LaCuSb2.

Finally, we deduced the theoretical Tc value based on the
McMillan-Allen-Dynes formalism to be T MAD

c = 0.93 K,
using λ = 0.465, logarithmic average frequency ωlog =
103.5 K, and typical Coulomb pseudopotential μ∗ = 0.1. The
correspondence with the experimental value (Tc = 1.0 K) is
quite reasonable. Thus, we conclude that the SC of LaCuSb2

derives from the conventional phonon-mediated mechanism
and seems to be less involved with the criticality of a CDW
order.

VI. CONCLUSIONS

In conclusion, we investigated the electronic structure and
superconducting properties of single-crystalline LaCuSb2. We
certified using resistivity, magnetization, and specific heat
measurements that superconductivity is a bulk effect. We ob-
served the Shubnikov–de Haas oscillation at the frequency of
50 T and obtained an effective cyclotron mass of 0.052m0,
which agreed with the findings of a previous study. In contrast
to the previous study, we observed monotonic field depen-
dence of the magnetoresistivity and positive Hall resistivity.
We showed that the hole-doped condition, which may be due
to the imperfect stoichiometry, explained the experimental
results. Based on the electronic structure determined above,
we investigated the electron-phonon coupling properties to
understand the superconductivity in LaCuSb2. The results
clarify the difference from LaAgSb2 that (i) the vibration
modes derived from the interstitial layer sandwiched between
the Sb square nets show sizable electron-phonon coupling
and (ii) the momentum-resolved electron-phonon couplings
distributed over the entire Fermi surface, i.e., all carriers,
contribute equally to the SC. These facts are ascribed to be the
origin of the enhanced superconducting transition temperature
compared with LaAgSb2. Further, we showed that the theo-
retical superconducting transition temperature estimated by
the McMillan-Allen-Dynes formula reasonably reproduced
the experimental results. Our study concludes that the SC of
LaCuSb2 can be understood within the conventional frame-
work of the phonon-mediated pairing mechanism.
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